LiveWeb — Core Language for Web Applications

Miguel Domingues and Joao Costa Seco

CITI - Departamento de Informética FCT/UNL, Lisboa, Portugal
miguel.domingues@fct.unl.pt, joao.seco@di.fct.unl.pt

Abstract. We present a typed core language for web applications that
integrates interface definition, business logic and database manipulation.
By expressing the interactions between different application layers in the
same programming language, we gain the benefits of strongly typed lan-
guages without loosing the programming flexibility of interpreted lan-
guages which is frequently an argument in favor of unsafe programming
languages. We describe a prototype of a programming environment and
runtime support system for our language that allows a very dynamic
style of web application development.

Keywords: Web applications, programming languages, type systems

1 Introduction

The main-stream of web application development is usually based on a three-
layer architecture that divides applications into client interface, business logic
and database layers. In practice, applications are developed in heterogeneous
programming language environments, and in particular, the application logic is
specified using general purpose programming languages to define computations
and specialized query languages to access the information stored in databases.
The two language paradigms have several mismatches [5,6] making the inte-
gration between layers one of the most important aspects of web application
development. Typically, layers interact through dialects and programming con-
ventions, and communication code is not subject to effective mechanical verifi-
cation and is highly error prone. Writing SQL queries as strings is a simple and
fast way to implement database applications but doesn’t allow for any kind of
static checks. Object-Relational Mapping approaches provide a safer solution to
this problem but are in many cases considered too heavy [11].

Furthermore, web application development is very high demanding for rapid
construction and constant change, which gave rise to a series of flexible languages
that trade the benefits of statically strongly typed programming languages for
the advantages of dynamically typed interpreted languages (e.g., PHP, ASP,
Ruby). Some development frameworks targeting web applications (e.g., Ruby
On Rails, CakePHP) provide scaffolding features to increase developers’ produc-
tivity, others provide extensions to general purpose languages and include typing
for database operations [3,7], a third category of frameworks choose to use do-
main specific languages to provide program safety by construction [1,4,7,14]. We

INForum 2010 - IT Simpésio de Informaética, Luis S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 91-94



argue that the latter approach, to integrate query support in the language and
hence enable static verification between layers, has clear advantages and is more
challenging from a programming language perspective.

Although the rising of the level of abstraction allows for checking the basic
safety of programs and elimination of many programming errors, our language
aims at potentiating the verification of other more sophisticated properties. In
particular, we refer to properties related to data security and access control
[2,10,12] and related to the coordination of several interacting parts in dis-
tributed systems [13]. In order to allow future experiments on these theoretical
studies on type systems we introduce a typed core language for web applications
that integrates the typing of interface definition, business logic and database ma-
nipulation. A more complete description of the language is available in [8]. Our
approach compares to Links [7] and Ur/Web [4] that also define strongly typed
languages but we take a more limited approach of starting from first principles
with primitive operations, types and a clear separation between interface and
program, and thus allowing for formal studies to be easily applied here.

We also describe an implementation of an interpreter and a highly flexible
programming environment for our language, designed to provide a dynamic pro-
gramming style where the developers act directly over the actual running code
without loosing the global integrity checks of interpreted languages.

2 Core Language for Web Applications

Our core language has three main programming elements: entities, screens and
actions. Entities are containers of structured persistent data implemented in
database tables. Operations over entities mimic a subset of the standard database
query language (SQL). Screens are abstractions over a user interface definition
language whose values are web pages. Screens may be parameterized and some
of the user interface expressions may contain general purpose expressions to
be executed back at the server. Actions are abstractions over general purpose
expressions comprising operations over entities, screens and other values.

We now illustrate the syntax of the language by means of the code fragment
in Fig. 1 implementing a phone number directory. We define an entity called
Person containing phone numbers and names by enumerating its attributes and
corresponding types. The interface of the application is defined in a screen called
directory, built by iterating the results of a from expression (written in a syntax
similar to LINQ [3]) that fetches all values stored in entity Person. The language
fragment used to define web pages is inspired in the nested structure of web
page blocks, it contains an iterator expression that maps query results in web
page blocks, and also contains input elements (textfield) and actuator elements
(button). Input elements declare local variable names that can be used in ex-
pressions that pass the control flow from the browser back to the web server.
The button element in screen directory calls action addPerson using as arguments
the values given by the user in the text fields, which are available through to
the local names name and phone. Action addPerson adds a new row to entity

92 INForum 2010 Miguel Domingues, Joao Seco



def entity Person { id:ld, name:String, phone:String }
def screen directory {
iterator (row in (from (p in Person) select p)) {
label "Name: " + row.name; br;
label "Phone: " + row.phone; br; br
}
label "Name”; textfield name; br;
label "Phone”; textfield phone; br;
button "Add” to addPerson(name, phone)

}

def action addPerson(nm:String, ph:String):Block {
insert { name = nm, phone = ph } in Person;
directory ()

}

Fig. 1: LiveWeb Example

Person with the given values for name and phone. After the insertion of a new
row, screen directory is rendered in the browser. The type system of the language
ensures that there are no runtime errors due to ill-formed queries, with missing
entity names or ill-typed arguments in where clauses, it ensures that screens are
rendered properly, e.g. with no missing information from entity attributes, and
that all actions used in screens exist and expect matching parameter types, etc.

3 Runtime Support System

We implement our language in a runtime support system that combines a web
server with a language interpreter and a database for application data. The
system also provides a wiki style development environment based on a persistent
and versioned code base. Source code is stored, versioned, and organized in a
database instead of being scattered in files. This allows for the type safe dynamic
reconfiguration of the system, since we maintain as active the code that was last
verified as well typed. The Ul fragment evaluates to regular HTML code with
JavaScript for name binding and activating continuation code in the server.

Our runtime support system provides two functioning modes, one for exe-
cuting the application and another for editing and checking the source code.
The first mode of interaction, the execution mode, allows for actions and screens
to be called by standard URL conventions using the name of element (action
or screen) and by indicating the corresponding arguments by means of literals.
More complex browser interactions can be achieved by standard techniques but
are out of the scope of this work. Query expressions are evaluated to regular
SQL expressions and executed in the database.

The development mode is also available through the browser (usually through
an “edit” button or link). It lets the user access and change all available elements
of an application. The runtime support system stores screen, action, and entity
definitions as separate pieces of code, and establishes a notion of published ver-
sion of an application built from the latest verified copies. When the structure

LiveWeb - Core Language for Web Applications INForum 2010 — 93



of an entity is modified, the database model of application data must also be
modified to match the new entity definition. For the sake of simplicity, entity
data is transformed in the more direct way in order to keep applications working.

4 Final Remarks

On the one hand, this work aims at developing a simple and small language that
could be easily extended and allow the formal study of type related properties
like data security and access control. On the other hand, it aims at providing an
implementation of a runtime system for the language that works like a workbench
for those extensions. Security related property checking techniques based on
refinement types [9] are presented in [2] and a prototype is already available from
the authors’ web page. There are many technological issues that can be improved
to make the language and runtime system more usable (e.g. nested queries,
lazy query evaluation, asynchronous page updates, etc.) and robust (keeping
versions of data of deleted columns, etc.). However, the main goal is to provide
a framework to future experiments on type systems for web applications.

Acknowledgments. This work is partially supported by the Certified Inter-
faces project NGN44-CMUPortugal. We thank to Luis Caires, Anténio Melo and
Lucio Ferrao for the discussions at OutSystems that motivated this work.

References

1. OutSystems (Jan 2010), http://www.outsystems.com/
2. Caires, L., Perez, J.A., Seco, J.C., Vieira, H.T.: Refinement Types for Database
Access Control. Tech. rep., UNL-DI-3-2010, Dep. Informatica, FCT/UNL (2010)
3. Calvert, C., Kulkarni, D.: Essential LINQ. Addison-Wesley Professional (2009)
4. Chlipala, A.: Ur: Statically-Typed Metaprogramming with Type-Level Record
Computation. PLDI 2010, SIGPLAN Notices 45(6), 122-133 (2010)
5. Cook, W.R., Ibrahim, A.H.: Integrating Programming Languages and Databases:
What’s the Problem? In: ODBMS.ORG, Expert Article (2005)
6. Cooper, E.: The Script-Writer’s Dream: How to Write Great SQL in Your Own
Language, and Be Sure It Will Succeed. DBPL 2009, LNCS 5708 (2009)
7. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: Web programming without
tiers. FMCO 2006, LNCS 4709, 266-296 (2006)
8. Domingues, M., Seco, J.C.: Definition of a Core Language for Web Applications
(LiveWeb). Tech. rep., UNL-DI-4-2010, Dep. Informéatica, FCT/UNL (2010)
9. Freeman, T., Pfenning, F.: Refinement Types for ML. PLDI 1991, SIGPLAN No-
tices 26(6) (1991)
10. Pires, M., Caires, L.: A type system for access control views in object-oriented
languages. In: ARSPA-WITS 2010. LNCS (2010)
11. Spiewak, D., Zhao, T.: ScalaQL: Language-Integrated Database Queries for Scala.
SLE 2009, LNCS 5969, 154-163 (2010)
12. Toninho, B., Caires, L.: A spatial-epistemic logic and tool for reasoning about
security protocols. Tech. rep., Dep. de Informética, FCT/UNL (2009)
13. Vieira, H.T., Caires, L., Seco, J.C.: The conversation calculus: A model of service
oriented computation. ESOP 2008, LNCS 4960 (2008)
14. Visser, E.: WebDSL: A case study in domain-specific language engineering. GTTSE
II, LNCS 5235 (2008)

94 INForum 2010 Miguel Domingues, Joao Seco



