
Web-Application Modeling
With the CMS-ML Language?

João de Sousa Saraiva, Alberto Rodrigues da Silva

INESC-ID / Instituto Superior Técnico
Rua Alves Redol, 9, 1000-029 Lisboa, Portugal,

joao.saraiva@inesc-id.pt, alberto.silva@acm.org

Abstract. The Model-Driven Engineering paradigm has become in-
creasingly popular due to its advocation of using models as first-class
citizens in the software development process, while artifacts such as doc-
umentation and source-code can be produced from those models by using
automated transformations. On the other hand, we are currently witness-
ing the rise in popularity of a particular kind of web-application, Content
Management Systems (CMS). This paper overviews the CMS Modeling
Language (CMS-ML), a graphical language for the high-level modeling
of CMS-based web-applications. CMS-ML is oriented towards enabling
non-technical stakeholders to rapidly model a web-site supported by a
CMS system. The language also allows for its extension, in order to sup-
port the modeling of more complex web-applications.

Resumo O paradigma da Engenharia Conduzida por Modelos tem-se
popularizado devido à sua utilização de modelos como cidadãos de pri-
meira classe no processo de desenvolvimento de software, enquanto arte-
factos como documentação e código-fonte podem ser produzidos a partir
desses modelos através de transformações automatizadas. Por outro lado,
estamos actualmente a assistir à ascensão de um determinado tipo de
aplicação-web, os Sistemas de Gestão de Conteúdos (CMS). Este artigo
apresenta o CMS Modeling Language (CMS-ML), uma linguagem gráfica
para a modelação a alto ńıvel de aplicações-web baseadas em CMS. Esta
linguagem tem como objectivo permitir que os interessados não-técnicos
possam rapidamente modelar um web-site suportado por um sistema
CMS. A linguagem também permite a sua extensão, de modo a suportar
a modelação de aplicações-web de maior complexidade.

? This work was supported by FCT (PhD Scholarship SFRH/BD/28604/2006 and
INESC-ID multiannual funding) through the PIDDAC Program funds.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 461–472



1 Introduction

The global expansion of the Internet has led to the appearance of multiple web-
oriented Content Management Systems (CMS) [1,2] platforms. CMS systems are
web-applications oriented towards the dynamic management of web-sites and
their contents, providing concepts such as User, Role, Language, WebCompo-
nent, Dynamic WebPage and Visual Theme [3,4]. These systems typically present
aspects such as extensibility and modularity, independence between content and
presentation, support for several types of contents, support for access manage-
ment and user control, dynamic management of layout and visual appearance,
or support for workflow definition and execution.

Development of web-applications supported by CMS platforms is usually
done via traditional development processes, in which source-code is the primary
artifact, and design models and documentation are considered only as support
artifacts. As is already well-known in the Software Engineering community, such
processes are typically time-consuming and error-prone, because they rely heav-
ily on programmers and their execution of repetitive tasks. Also, the source-code
and the design models are often out of sync, because changes to source-code are
not automatically propagated to the models.

On the other hand, Model-Driven Engineering (MDE) [5] development pro-
cesses consider models as the primary artifact, and other artifacts (such as
source-code or documentation) are produced automatically from those models
via automatic model transformations. Besides leaving most of the repetitive tasks
to those transformations, these processes present additional advantages, such as:
(1) relieving developers from issues like underlying platform complexity or in-
ability of programming languages to express domain concepts; or (2) targeting
multiple deployment platforms without requiring several different code-bases.

In this paper we present the CMS Modeling Language (CMS-ML), a graph-
ical modeling language oriented towards the high-level modeling of CMS-based
web-sites and web-applications. CMS-ML has a number of aspects that dis-
tinguish it from other web-engineering-oriented modeling languages and ap-
proaches, namely: (1) it is CMS-independent, and so it does not address imple-
mentation details; (2) it allows language users to extend it (albeit in a controlled
manner) with new concepts; and (3) it is meant to allow regular stakeholders
(e.g., users not aware of software development problems) to easily understand
and change the model. This language was developed within the context of our re-
search regarding the usage of multiple modeling languages to address the various
stakeholder perspectives of a web-application’s development [6].

The remainder of this paper is structured as follows. Section 2 provides a brief
overview of our approach for the development of CMS-based web-applications,
in the context of which CMS-ML was created. Section 3 presents the CMS-ML
modeling language, as well as the underlying metamodeling rationale. Section 4
presents a discussion of CMS-ML and our approach, and compares it with some
related work. Finally, Section 5 presents the conclusions for our research so far
as well and points out some future work.

462 INForum 2010 João de Sousa Saraiva, Alberto Rodrigues da Silva



2 Context

The CMS-ML modeling language was created in the context of our proposed
model-driven approach for the development of CMS-based web-applications [6],
which is illustrated in Figure 1. Instead of defining a single CMS-oriented model-
ing language, our approach defines two languages: (1) CMS-IL (CMS Intermedi-
ate Language), a common low-level language for CMS platforms; and (2) CMS-ML,
which provides a set of elements that are used to quickly model a typical web-
application.

Fig. 1: The proposed MDE-oriented approach.

The Business Designer (a generic term to identify non-technical stakehold-
ers) creates a CMS-ML Model that represents the intended web-application,
according to some predetermined business requirements. After applying an auto-
matic transformation from that CMS-ML Model (and obtaining a corresponding
CMS-IL Model), the System Designer determines whether that CMS-IL Model
is satisfactory, namely by identifying any particular requirements that could not
be addressed by CMS-ML alone; if any such requirements exist, the obtained
CMS-IL Model must be modified/refined by the System Designer to address
them. After this refinement, the CMS-IL Model should be an accurate (and
correct) representation of what the intended web-application should be. This
CMS-IL Model is then deployed onto a target CMS in one of two ways, depend-
ing on the CMS: (1) importation to a CMS Model Interpreter component, or
(2) generation of low-level artifacts and subsequent installation. The first alter-
native is preferable, as it only requires that a CMS Administrator (with adminis-
trative privileges) upload the CMS-IL Model into a CMS Model Interpreter, but
it will not be feasible in CMS platforms that do not have that component avail-
able. In such cases, the second alternative (not illustrated, for simplicity reasons)
requires the intervention of a software developer – to perform the compilation of
the generated artifacts – and of a CMS Administrator, in order to both deploy
the compiled artifacts and make any necessary configuration changes.

This paper will not describe the approach further, as it has been described
in [6], and the main objective of this paper is to present the CMS-ML language
in greater detail.

Web-Application Modeling With the CMS-ML Language INForum 2010 – 463



3 The CMS-ML Modeling Language

The CMS Modeling Language (CMS-ML) is a graphical modeling language for
the high-level specification of CMS-based web-sites and web-applications. Its
main objective is to allow regular non-technical stakeholders to look at a web-
site’s model, understand it, and make changes to it.

CMS-ML modeling is focused on two different (and complementary) types of
model, (1) Web-Site Templates and (2) Toolkits. A Web-Site Template (or just
Template) is a model that reflects the intended web-site’s structure and behavior;
this Template is modeled using CMS elements – such as Role, DynamicWebPage,
WebComponent – that are provided by CMS-ML. On the other hand, a Toolkit
allows the addition of new modeling elements to the set of CMS elements that
are available for modeling a Web-Site Template, in a controlled and reusable
manner (due to text size constraints, we will not be going into detail regarding
the metamodeling rationale behind this language extension capability).

3.1 Roles

Because of the multiple web-site and web-application concerns that CMS-ML
addresses, the modeling effort for creating Web-Site Templates will be divided
among different kinds of roles, according to the “separation of responsibilities”
principle. CMS-ML considers the following modeling roles, depicted in Figure 2:
(1) the Toolkit Architect, who specifies Toolkits; (2) the Web-Site Template Cre-
ator (usually just called “Template Creator”), who models a Web-Site Template;
(3) the Web-Designer, who defines visual themes and graphics for the Tem-
plate; and (4) the CMS Administrator, who instantiates the elements defined in
the Template. Of these roles, the most relevant are the Toolkit Architect and
the Web-Site Template Creator. The remainder of this section will present an
overview of their modeling tasks.

Fig. 2: The modeling roles and artifacts considered by CMS-ML.

464 INForum 2010 João de Sousa Saraiva, Alberto Rodrigues da Silva



3.2 Web-Site Template Modeling

CMS-ML provides a set of generic modeling elements (generically called “CMS
elements”) that Web-Site Template Creators can use to define their Templates
for CMS-based web-sites. A Template is defined according to a set of views
(illustrated in Figure 3): (1) the Structure view, which specifies the web-site’s
structural components; (2) the Navigation view, specifying the possible naviga-
tion flows between the structural components of the web-site; (3) the Roles view,
which deals with the set of responsibilities that the web-site expects its users
to assume; (4) the Permissions view, specifying which Roles have access to the
web-site’s structural components; (5) the Users view, which specifies particu-
lar CMS users that are considered fundamental to the modeled web-site; (6) the
Languages view, which deals with internationalization and the languages that the
web-site should have available; (7) the Contents view, which specifies contents
(e.g., pieces of text) that should be available on the web-site; and (8) the Visual
Themes view, which specifies graphical parameters about how users should view
the web-site. The “bootstrapping views” are separated from the other views
because they are not necessary for the modeling of a web-site. Instead, the boot-
strapping views should only be defined when Template Creators have a priori
content that should be available in any web-site following the modeled Template.

Fig. 3: The views involved in the definition of a Web-Site Template.

The Structure view is the most important, as it conveys the web-site’s page
structure by using a set of CMS-oriented concepts: (1) WebSite, which repre-
sents the web-site itself and serves both as a container for Dynamic WebPages
and as the element that will import Toolkits (explained further down this text);
(2) Dynamic WebPage, representing the dynamically-generated pages (in the
sense that their contents can be changed through the CMS interface) that users
will access; (3) Container, which is modeled within a specific area of a Dynamic
WebPage and holds a set of WebComponents; and (4) WebComponent, repre-
senting the “units of functionality” (e.g., Blog, Forum) with which the user will
interact. The Structure view is further divided into two smaller views, the Macro
Structure view and the Micro Structure view. The former specifies a “bird’s eye”
view of the web-site, modeling only the existence of Dynamic WebPages and the
relationships between them, while the latter is where each Dynamic WebPage’s

Web-Application Modeling With the CMS-ML Language INForum 2010 – 465



structure is specified (i.e., what WebComponents are in the Dynamic WebPage,
their location, and their order relative to each other). Figure 4 presents the ab-
stract syntax for the Structure view, where the previously-mentioned concepts
can be observed.

Fig. 4: The abstract syntax for the Web-Site Template’s Structure view.

On the other hand, Figure 5 depicts two examples of the Structure view’s
concrete syntax: Figure 5a illustrates the Macro-Structure view, namely a simple
Web-Site containing only two Dynamic WebPages, while Figure 5b shows the
definition of a Dynamic WebPage (including Containers and WebComponents)
in the Micro-Structure view. The concrete syntax of CMS-ML was defined with
the purpose of being easy to understand and to draw manually, without requiring
that specialized modeling tools be used in order to create CMS-ML models.

The behavior aspect is only specified in Toolkits (described next) because
(1) behavior is usually defined by the WebComponents available in the CMS
(e.g., an HTML WebComponent will behave differently than a Forum Web-
Component), and (2) even CMS administrators are typically unable to change
the web-site’s behavior itself, and can only change some parameters regarding
specific behavior of the CMS.

466 INForum 2010 João de Sousa Saraiva, Alberto Rodrigues da Silva



(a) Macro-Structure view:
Web-Site and Dynamic
WebPages.

(b) Micro-Structure view: Dynamic WebPage
with Containers and WebComponents.

Fig. 5: The concrete syntax for the Web-Site Template’s Structure view.

Due to text size constraints, the abstract and concrete syntaxes of CMS-ML
will not be presented in greater detail in this paper, although they will be made
available in the very near future at our research group’s web-site1.

3.3 Toolkit Modeling

A Toolkit can be regarded as a “task-oriented extension of CMS elements”, as
it enables the addition of new CMS-related concepts (namely Roles and We-
bComponents) oriented towards supporting a particular set of tasks and the
corresponding domain model. Like a Web-Site Template, a Toolkit is defined
according to a set of views (shown in Figure 6): (1) the Tasks view, which deals
with the user tasks that the Toolkit should support; (2) the Roles view, spec-
ifying the Roles that are to perform those tasks; (3) the Domain view, which
specifies the domain model that is subjacent to the Toolkit’s tasks; (4) the States
view, dealing with the lifecycle of the entities that the tasks are to manipulate;
(5) the WebComponents view, specifying the WebComponents that will support
the tasks; (6) the Task Interface view, which establishes mappings between Roles,
Tasks and WebComponents, and determines which Roles can do what actions
with each of the Toolkit’s WebComponents; and (7) the Side-Effects view, which
establishes side-effects that the modeled Tasks and WebComponents will have.

The Tasks, Roles and WebComponents views are the most important in a
Toolkit. The Tasks view allows the Architect to define user tasks as orchestra-
tions of Steps which may involve user interaction (similarly to UML’s Activity
diagrams). The Roles view (not directly related to CMS Roles) models the differ-
ent kinds of behavior – Roles – that the web-application should expect. Finally,
the WebComponents view is where the Toolkit’s UI (WebComponents and Sup-
port Pages) is specified using WebElements, by creating complex UI structures
from simpler ones; in turn, WebElements are further divided into Simple WebEle-
ments (e.g., button, image), WebContainers (e.g., DIVs, pop-ups) and HTML

1 http://isg.inesc-id.pt

Web-Application Modeling With the CMS-ML Language INForum 2010 – 467



Fig. 6: The views involved in the definition of a Toolkit.

Elements (for cases in which Simple WebElements are not sufficiently adequate).
This variety of web interface elements allows the modeling of relatively complex
web interfaces using CMS-ML.

3.4 Importing Toolkits

Toolkits can be used in Web-Site Templates or even in other Toolkits, by means
of the “Toolkit Import” modeling element, a relationship between a Toolkit (the
“imported” element) and either a Web-Site Template or a Toolkit (the “im-
porter”). This relationship is transitive, which means that importing a Toolkit
T1 will automatically import all Toolkits that have been imported by T1. Also, it
is possible to import more than one Toolkit into a Web-Site Template or Toolkit,
enabling the composition of Toolkit functionalities in a simple manner.

When importing a Toolkit into a Template, the elements defined in the
Toolkit’s Roles and WebComponents views become available as new Template
modeling elements. When importing a Toolkit into another Toolkit, the elements
in the imported Toolkit’s Tasks, Domain and States views (but not the Roles or
WebComponents views) can be used or specialized by the importer.

It is very important to highlight that Web-Site Templates and Toolkits are
located in different conceptual levels. While Web-Site Templates are meant to
create abstractions of concrete web-sites (i.e., models of those web-sites) by us-
ing CMS-oriented elements, Toolkits use generic modeling elements (e.g., En-
tity, Task) to create new CMS-oriented modeling elements (namely Roles and
WebComponents). Because instances of Toolkit Role and WebComponent are
also automatically considered as specializations of the Web-Site Template’s Role
and WebComponent concepts (much like Generic WebComponent and Standard
WebComponent are specializations of WebComponent, as the reader can see in
Figure 4), Template Creators can then use those Toolkit Roles and WebCompo-
nents to create Web-Site Templates exactly in the same manner as when using
the pre-defined Template modeling elements.

Figure 7 depicts the metamodel levels that are considered by CMS-ML: the
“Toolkit”, “Web-Site Template” and “Web-Site Instance” models are created
(and changed) by designers, while the “Task Modeling”, “Domain Modeling”
and “CMS” models are fixed and cannot be changed by designers. In level ML3,
Toolkit designers can create instances of generic modeling elements (from Task

468 INForum 2010 João de Sousa Saraiva, Alberto Rodrigues da Silva



Modeling and Domain Modeling, located in ML4) in order to define new elements
(Roles and WebComponents) that specialize CMS modeling elements. In level
ML2, Template Creators can then use the CMS modeling elements, as well as
other modeling elements created in Toolkits, to define a Web-Site Template. In
level ML1, the Web-Site Template will be used to create an instance model for
a particular CMS installation; this instance model, in turn, will be representing
concrete entities that are located in ML0 (the “reality” level, so to speak). Note
that the metamodel layers from ML2 to ML0 are actually very similar to what
can be found in the OMG’s specification of UML [7], because their purpose is
nearly the same.

Fig. 7: The metamodel levels considered by CMS-ML.

The rationale for this metamodel level design is to: (1) address language ex-
tension in a simple, yet elegant, manner; (2) reduce the accidental complexity [8]
that is usually derived from using “type–instance”-like modeling patterns in the
same modeling level; and (3) obey the “strict metamodeling” doctrine [9], which
states that it should be possible to fully understand any metamodel level as
being instantiated from only the metamodel level immediately above it (a con-
sequence of this is that there should be no “instance-of” relationships crossing
more than one metamodel-level boundaries).

4 Discussion and Related Work

Besides the CMS-ML presentation done in Section 3, the language does pose
some aspects that deserve further discussion. In this section we present and

Web-Application Modeling With the CMS-ML Language INForum 2010 – 469



discuss those aspects, while relating them to some external work that we consider
relevant for our research, namely the Web Modeling Language (WebML) [10,11]
and UML-based Web Engineering (UWE) [12,13].

One of the first aspects to discuss is the reason why CMS-ML was defined
without using any particular meta-metamodel, as opposed to using a mechanism
such as a UML Profile [7] (in the same manner that UWE was defined). This is
made even more relevant by the fact that, to our knowledge, UML’s modeling
elements do not present any semantics that contradict the semantics of CMS-ML.
However, it would be problematic to represent the Toolkit aspect as a UML
Profile, in such a way that elements defined in a Toolkit could then be used
to define the Web-Site Template (another UML Profile). This problem is due
to the fact that UML (and UML-oriented tools) does not explicitly consider
metamodeling as an important issue [14], which in turn usually leads to a much
greater degree of accidental complexity [8] (i.e., making modeling languages more
complex than necessary). It should also be noted that other web-engineering
modeling languages do not consider their extension – in the sense of adding new
modeling elements – as an important concern (although WebML does define
some generic Data-Units, which must be later implemented in source-code, to
cover cases in which it is not expressive enough).

At first sight, the Web-Site Template may appear to be adequate for modeling
page-centric CMS web-sites (e.g., WebComfort [15], DotNetNuke [16]), but not
content-centric CMS web-sites (such as Joomla [17] or Drupal [18]). However,
this Template ultimately reflects how users will see the web-site, instead of
reflecting the concepts that the CMS itself is using. Considering that even web-
sites using content-centric CMS systems have a certain structure perceived by
their users, we believe that CMS-ML can adequately model web-sites based on
content-centric CMS systems.

Another aspect to discuss is how CMS-ML deals with the possible semantic
gap between the Toolkit’s WebComponents (i.e., UI) and Domain views. While
UWE sometimes requires that its Content Model be “tweaked” to particular
details of other Models (namely the Presentation Model) [19], WebML defines
the Derivation Model to define a layer that establishes mappings between the
Data Model and other WebML Models (namely the Hypertext Model). CMS-ML
Toolkits also do not require the Domain view to be oriented towards the needs
of other views, because the WebComponents view contains a set of modeling
elements that allow Architects to specify what parts of the Domain view are to
be displayed or used, by using a “binding context” mechanism inspired by our
previous work in XIS2 [20].

It is also important to discuss the language’s expressiveness and its ade-
quacy to model real-world web-applications. CMS-ML is not very expressive
when compared to other languages such as WebML or UWE. However, this level
of expressiveness is intentional: because CMS-ML is a part of a larger approach
– involving a set of languages – the rationale was to reduce the number of mod-
eling elements in this language, in order to make it easier to learn. Nevertheless,
unaddressed requirements cannot be just “ignored”: that is why CMS-ML de-

470 INForum 2010 João de Sousa Saraiva, Alberto Rodrigues da Silva



fines the concepts of Unaddressed CMS Requirement and Unaddressed Toolkit
Requirement, which are just textual segments (similar to UML comments or
constraints) that can be associated with any CMS-ML modeling element. These
concepts bring added value to the model (and are not just decorative), because
they will be translated to “reminders” in the corresponding CMS-IL models.

The final aspect to highlight is the fact that we believe accidental complex-
ity [8] in CMS-ML has been reduced to a minimum. This is mainly due to the
fact that the CMS and Toolkit modeling elements do not include the means to
establish “instance-of” relationships between elements; this kind of relationship
would become necessary to create models using the “type–instance” modeling
pattern, which in turn is usually a source of accidental complexity.

5 Conclusions and Future Work

In this paper we have introduced CMS-ML, a graphical language for the high-
level modeling of CMS-based web-applications, aimed at allowing non-technical
users to easily understand and change a web-site’s model. To achieve its goal,
CMS-ML defines a set of CMS-oriented views and can be extended with new
concepts. This language is a part of a larger approach for the development of
this kind of applications, which explains its lack of expressiveness to deal with
concrete implementation details, such as algorithm specification.

Regarding future work for CMS-ML, there are still some open issues, of which
we highlight here the ones that we consider most important for the time being.

One of those issues is expressiveness. The CMS-ML language is the result of
a tradeoff between language complexity, expressiveness, and how often a given
pattern can be found in existing web-applications. However, we acknowledge
that this tradeoff will always have a certain amount of subjectivity to it. We
consider it necessary to try and minimize this subjectivity factor, in order to
make the language more practical, adequate and useful for real-world scenarios.
Furthermore, the fact that CMS-ML is independent of any particular CMS makes
it unable to use CMS-specific concepts (e.g., Workflow), a problem that we wish
to address in the future (likely by using an approach similar to what we did with
the Toolkit—Web-Site Template metamodels).

The other issue, closely related to the expressiveness issue, is the validation of
CMS-ML. To minimize the subjectivity factor and validate the language in case-
studies, we intend to use it for modeling sites and applications with a reasonable
degree of complexity. Although we are already validating the language in some
academic case-studies, we will also use it in some more complex real-world sce-
narios, such as WebC-Docs [21], a document management system that we have
developed in the context of our research regarding CMS-based web-applications.

References

1. Boiko, B.: Content Management Bible. John Wiley & Sons, Hoboken, New Jersey,
U.S.A. (December 2001)

Web-Application Modeling With the CMS-ML Language INForum 2010 – 471



2. The CMS Matrix. Retrieved May 31, 2010 from http://www.cmsmatrix.org

3. Carmo, J.L.V.d.: Web Content Management Systems: Experiences and Evaluations
with the WebComfort Framework. Master’s thesis, Instituto Superior Técnico,
Portugal (December 2006)

4. Saraiva, J.d.S., Silva, A.R.d.: The WebComfort Framework: An Extensible Plat-
form for the Development of Web Applications. In IEEE Computer Society, ed.:
Proceedings of the 34th EUROMICRO Conference on Software Engineering and
Advanced Applications (EUROMICRO 2008). (September 2008) 19–26

5. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. Computer
39(2) (February 2006) 25–31

6. Saraiva, J.d.S., Silva, A.R.d.: CMS-based Web-Application Development Using
Model-Driven Languages. In IEEE Computer Society, ed.: Proceedings of the
Fourth International Conference on Software Engineering Advances (ICSEA 2009).
(September 2009) 21–26

7. OMG: Object Management Group – Unified Modeling Language: Superstructure
– Specification Version 2.0 (August 2005) Retrieved May 31, 2010 from http:

//www.omg.org/spec/UML/2.0/Superstructure/PDF/.
8. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. Soft-

ware and Systems Modeling 7(3) (July 2008) 345–359
9. Kühne, T.: Contrasting Classification with Generalisation. In Kirchberg, M., Link,

S., eds.: Proceedings of the Sixth Asia-Pacific Conference on Conceptual Modelling
(APCCM 2009). Volume 96 of CRPIT., Australian Computer Society (January
2009) 71–78

10. WebML.org. Retrieved May 31, 2010 from http://www.webml.org

11. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Design-
ing Data-Intensive Web Applications. Morgan Kaufmann (2003)

12. UWE – UML-based Web Engineering. Retrieved May 31, 2010 from http://uwe.

pst.ifi.lmu.de

13. Kroiß, C., Koch, N.: UWE Metamodel and Profile: User Guide and Ref-
erence. Technical Report 0802, Ludwig-Maximilians-Universität (February
2008) Retrieved May 31, 2010 from http://uwe.pst.ifi.lmu.de/download/

UWE-Metamodel-Reference.pdf.
14. Saraiva, J.d.S., Silva, A.R.d.: Evaluation of MDE Tools from a Metamodeling

Perspective. Journal of Database Management 19(4) (October/December 2008)
21–46

15. SIQuant: WebComfort.org. Retrieved May 31, 2010 from http://www.

webcomfort.org

16. DotNetNuke. Retrieved May 31, 2010 from http://www.dotnetnuke.com

17. Joomla CMS. Retrieved May 31, 2010 from http://www.joomla.org

18. Drupal CMS. Retrieved May 31, 2010 from http://drupal.org

19. UWE – Tutorial. Retrieved December 9, 2009 from http://uwe.pst.ifi.lmu.de/

teachingTutorial.html

20. Silva, A.R.d., Saraiva, J.d.S., Silva, R., Martins, C.: XIS – UML Profile for eX-
treme Modeling Interactive Systems. In: Fourth International Workshop on Model-
based Methodologies for Pervasive and Embedded Software (MOMPES 2007), Los
Alamitos, CA, USA, IEEE Computer Society (March 2007) 55–66

21. SIQuant: WebComfort.org – WebC-Docs. Retrieved May 31, 2010 from http:

//www.webcomfort.org/WebCDocs

472 INForum 2010 João de Sousa Saraiva, Alberto Rodrigues da Silva


