

INForum 2010

Actas do II Simpósio de Informática

Universidade do Minho, 9-10 Setembro, 2010

Lúıs S. Barbosa, Miguel P. Correia (Eds.)

Universidade do Minho
9-10 Setembro, 2010

Conteúdo

Prefácio ix

Conferências Convidadas 1
Distributed coordination 1
Hands on a verification challenge: proving a journaled file system correct 2
Grammar inference technology applications in software engineering 2

Ciência e Engenharia de Software 5
Distributed Work Stealing for Constraint Solving
Vasco Pedro, Salvador Abreu 7
JFly: A JML-Based Strategy for Incorporating Formal Specications

into the SoftwareDevelopment Process
Nestor Catano, João Pestana, Ricardo Rodrigues 19
Snapshot Isolation Anomalies Detection in Software Transactional

Memory
Ricardo J. Dias, João Costa Seco, João M. Lourenço 31
Lightweight Type-Like Hoare-Separation Specs for Java
Tiago Santos 43
Monitorização da Correcção de Classes Genéricas
Pedro Crispim, Antónia Lopes, Vasco T. Vasconcelos 55
Separation of Concerns in Parallel Applications with Class
Refinement
Matheus Almeida, João Sobral 67
Uma Estrutura de Dados Métrica Genérica, Dinâmica, em Memória
Secundária
Ângelo Sarmento, Margarida Mamede 79
LiveWeb - Core Language for Web Applications
Miguel Domingues, João Seco 91
Replicated Software Components for Improved Performance
Paulo Mariano, Nuno Preguiça, João Soares 95

Compiladores e Linguagens de Programação 99
A Static Approach for Detecting Concurrency Anomalies in
Transactional Memory
Bruno Teixeira, João Lourenço, Diogo Sousa 101
Animation of Tile-Based Games Automatically Derived from
Simulation Specifications
Bastian Cramer, Jan Wolter, Uwe Kastens 113

iii

Domain-Specific Language for Coordination Patterns
Nuno Oliveira, Nuno Rodrigues, Pedro Rangel Henriques 125
GammaPolarSlicer: A Contract-based Tool to help on Reuse
Sérgio Areias, Daniela Cruz, P. R. Henriques, J. S. Pinto 137
Identification and Characterization of Crosscutting Concerns in
MATLAB Systems
Miguel Monteiro, João Cardoso, Simona Posea 149
Producing EAM code from the WAM
Paulo André, Salvador Abreu 161
Solving Difficult LR Parsing Conflicts by Postponing Them
Luis Garcia-Forte and Casiano Rodriguez-Leon 173
Using ontology in the development of domain-specific languages
Ines C̆eh, Matej C̆repins̆ek, Tomaz̆ Kosar, Marjan Mernik 185
AGile, a structured editor, analyzer, metric evaluator, and
transformer for Attribute Grammars
André Rocha et al 197
Efficient Retrieval of Subsumed Subgoals in Tabled Logic Programs
Flávio Cruz, Ricardo Rocha 201
Mixed-Strategies for Linear Tabling in Prolog
Miguel Areias, Ricardo Rocha 205
Parser Generation in Perl: an Overview and Available Tools
Hugo Areias, Alberto Simões, P. R. Henriques, Daniela Cruz 209
Realizing Bidirectional Transformations in Attribute Grammars
João Saraiva, Eric van Wyk 213

Computação Distribúıda e de Larga Escala 217
Curiata: Uma arquitectura P2P auto-organizável para uma
localização flex́ıvel e eficiente de recursos
João Alverinho, João Leitão, João Paiva, Luis Rodrigues 219
Evaluating Data Freshness in Large Scale Replicated Databases
Miguel Araújo and José Pereira 231
Exploring Fault-tolerance and Reliability in a Peer-to-peer Cycle-
sharing Infrastructure
João Paulino, Paulo Ferreira,Lúıs Veiga 243
Impacto da Organização dos Dados em Operações com Matrizes
Esparsas na GPU
Paula Prata, Gilberto Melfe, Ricardo Pesqueira, João Muranho 255
Scalable and Efficient Discovery of Resources, Applications, and
Services in P2P Grids
Raoul Felix, Paulo Ferreira, Lúıs Veiga 267
Thicket: Construção e Manutenção de Múltiplas Árvores numa
Rede entre Pares
Mário Ferreira, João Leitão, Luis Rodrigues 279
Towards full on-line deduplication of the Web
Ricardo Filipe, João Barreto 291

Computação Gráfica 303

iv INForum 2010

Construção Interactiva de Exposições Virtuais
Jorge C. Gomes, Maria Beatriz Carmo, Ana P. Cláudio 305
GUItar and FAgoo: Graphical interface for automata visualization,
editing, and interaction
André Almeida, Nelma Moreira, Rogério Reis 317
Instant Global Illumination on the GPU using OptiX
Ricardo Marques, Lúıs Paulo Santos 329
Projecções Interactivas na Sala de Aulas
Vasco M. A. Santos, Frutuoso G. M. Silva 341
WAACT - Widget Augmentative and Alternative Communication
Toolkit
Gonçalo Fontes, Salvador Abreu 353

Computação Móvel e Ub́ıqua 365
A system for coarse-grained location-based synchronisation
André Coelho, Hugo Ribeiro, Mário Silva, Rui José 367
Ad Hoc Routing Under Randomised Propagation Models
João Matos, Hugo Miranda 379
Decentralized Processing of Participatory Sensing Data
Heitor Ferreira, Sérgio Duarte, Nuno Preguiça 391
Displaybook - Bringing online identity to situated displays
Abel Soares, Pedro Santos, Rui José 403
Novos Serviços Tuŕısticos para Mobile Advertising
Leonel Dias, António Coelho 415
Um Sistema Publicador/subscritor com Subscrições Geograficamente
Distribúıdas para RSSFs
Ricardo Mascarenhas, Hugo Miranda 427
Bluetooth Hotspots for Smart Spaces Interaction
Miguel M. Almeida, Helena Rodrigues, and Rui José 439
Indoor Positioning Using a Mobile Phone with an Integrated
Accelerometer and Digital Compass
Paulo Pombinho, Ana Paula Afonso, Maria Beatriz Carmo 443

Engenharia Conduzida por Modelos 447
UbiLang: Towards a Domain Specific Modeling Language for
Specification of Ubiquitous Games
Ricardo Guerreiro et al 449
Web-Application Modeling With the CMS-ML Language
João de Sousa Saraiva, Alberto Rodrigues da Silva 461
Enterprise Governance and DEMO: Guiding enterprise design
and operation by addressing DEMO competence, authority and
responsibility notions
Miguel Henriques, José Tribolet, Jan Hoogervorst 473

Especificação, Verificação e Teste de Sistemas Cŕıticos 477
A (Very) Short Introduction to SPARK: Language, Toolset,
Projects, Formal Methods & Certification
Eduardo Brito 479

INForum 2010 – v

Timing Analysis - From Predictions to Certificates
Nuno Gaspar, Simão Melo de Sousa, Rogério Reis 491
Towards a Formally Verified Kernel Module
Joaquim Tojal, Carlos Carloto, José Faria, Simão Sousa 503
Inferência de tipos em Python
Eva Maia, Nelma Moreira, Rogério Reis 515
Reasoning about time-critical reactive systems: A case-study
André M. Rodrigues da Silva 519

Gestão e Tratamento de Informação 523
A Search Log Analysis of a Portuguese Web Search Engine
Miguel Costa, Mário J. Silva 525
Extração de conhecimento léxico-semântico a partir de resumos da
Wikipédia
Hugo Gonçalo Oliveira, Hernani Costa, Paulo Gomes 537
Extraction of Family Relations between Entities
Daniel Santos, Nuno Mamede, Jorge Baptista 549
O impacto de diferentes fontes de conhecimento na marcação de
Nomes Próprios em Português
João Tomé da Silva Laranjinho, Irene Pimenta Rodrigues 561
RuDriCo2 - a faster disambiguator and segmentation modifier
Cláudio Diniz, Nuno Mamede, João D. Pereira 573

Internet das Coisas e Serviços 585
Bridging the Browser and the Server
Miguel Raposo, José Delgado 587
Execução de Fluxos de Trabalho com Simulação de Redes de
Sensores
Duarte Vieira, Francisco Martins 599
IoT-aware business processes for logistics: limitations of current
approaches
Pedro Ferreira, Ricardo Martinho, Dulce Domingos 611

Segurança de Sistemas de Computadores e Comunicações 623
Melhorando a Fiabilidade e Segurança do Armazenamento em
Clouds
Bruno Quaresma, Alysson Bessani, Paulo Sousa 625
On using Constraints for Network Intrusion Detection
Pedro Salgueiro, Salvador Abreu 637
TYPHON: Um Serviço de Autenticação e Autorização Tolerante a
Intrusões
João Sousa, Alysson Bessani, Paulo Sousa 649
Web Application Risk Awareness with High Interaction Honeypots
Sérgio Nunes, Miguel Correia 661

Sistemas Embebidos e de Tempo-Real 673
Exploiting AIR Composability towards Spacecraft Onboard Software
Update
Joaquim Rosa, João Craveiro, and José Rufino 675

vi INForum 2010

Resilient Middleware for a Multi-Robot Team
Eric Vial, Mário Calha 687
Using the MegaBlock to Partition and Optimize Programs for
Embedded Systems at Runtime
João Bispo, João M. P. Cardoso 699
A Framework for QoS-Aware Service-based Mobile Systems
Joel Gonçalves, Luis Lino Ferreira 711
Dependable Perception in Wireless Sensor Networks
Lúıs Marques, António Casimiro 715

Sistemas Inteligentes 719
Decision Making for Agent Moral Conducts
Helder Coelho, António Carlos da Rocha Costa, Paulo Trigo 721
Development of an Adaptive Interface for the Electronic School
Notebook
Lúıs Alexandre, Salvador Abreu 733
Jogos de Papéis e Emoções em Ambientes Assistidos
Luis Machado, Davide Carneiro, Cesar Analide, Paulo Novais 745
O Processo ETL em Sistemas Data Warehouse
João Ferreira, Miguel Miranda, António Abelha, José Machado 757
Processo Cĺınico Electrónico Visual
Rui Marinho, José Machado, António Abelha 767
Sistema de Resolução Online de Conflito para Partilhas de bens -
Divórcios e Heranças
Ana Café, Davide Carneiro, Paulo Novais, Francisco Andrade 779
Sistema Inteligente de Pesquisa de Eventos em Enfermagem
António Morais, José Machado, António Abelha, José Neves 791

Índice de Autores 803

INForum 2010 – vii

Prefácio

O presente volume reune as actas do II Simpósio de Informática — INForum 2010,
realizado em 9 e 10 de Setembro de 2010, na Universidade do Minho. Dando con-
tinuidade à experiência pioneira do ano anterior, de novo este Simpósio se afirmou
como um ponto de encontro e de partida.

Ponto de encontro de investigadores, docentes e alunos de pós-graduação em In-
formática de todo o páıs. Encontro de pessoas e equipas, oportunidade de interacção,
divulgação de resultados recentes e projectos de investigação.

Mas, talvez mais do que isso, ponto de partida na afirmação da maturidade desta
área cient́ıfica em Portugal e na sua concretização através de novas sinergias, da con-
fluência de interesses, da afirmação de parcerias inovadoras, da interacção crescente
entre as Academias e a Indústria.

O programa deste ano inclui 3 conferências convidadas, 60 artigos longos (correspon-
dentes a uma taxa de aceitação de 44% sobre o volume de submissões) e 14 artigos
curtos. Os artigos foram submetidos a uma das 12 áreas temáticas previstas:

• Ciência e Engenharia de Software
• Compiladores e Linguagens de Programação
• Computação Distribúıda e de Larga Escala
• Computação Gráfica
• Computação Móvel e Ub́ıqua
• Engenharia Conduzida por Modelos
• Especificação, Verificação, e Teste de Sistemas Cŕıticos
• Gestão e Tratamento de Informação
• Internet das Coisas e Serviços
• Segurança de Sistemas de Computadores e Comunicações
• Sistemas Embebidos e de Tempo-Real
• Sistemas Inteligentes

Cada uma destas áreas resultou de uma candidatura apresentada por um conjunto
de investigadores de diferentes instituições e é dotada de uma Comissão Cient́ıfica
própria responsável pela definição da chamada de trabalhos e pelo processo de se-
lecção.

A colaboração empenhada dos coordenadores de cada uma das áreas temáticas do
INForum 2010, a quem publicamente agradecemos, permitiu chegar a um programa,
simultaneamente plural e coerente. Mas permitiu também prosseguir o esforço de in-
teracção e conciliação de modos diversos de fazer e avaliar investigação em diferentes

ix

sub-domı́nios da Informática.

Estamos em crer que, mais uma vez, o resultado deste esforço é bem maior que a
soma das suas partes, afirmando este Simpósio como um evento de referência no
âmbito português, e com progressiva atractividade internacional.

O caminho, sabemo-lo bem, é o andar que o traça. Mas, por isso mesmo, a exigência
com que o edificarmos será a mais segura garantia para o futuro de uma área de
investigação de premente relevância social e na qual o páıs tem provas dadas.

Como coordenadores cient́ıficos do INForum 2010 é-nos grato reconhecer o apoio do
presidente da Comissão Coordenadora, Prof. Rui Oliveira, dos coordenadores locais,
Prof. António Nestor Ribeiro e Prof. Manuel Alcino Cunha, assim como de todos os
colegas e alunos que de alguma forma, mas sobretudo com a sua presença e entusi-
asmo, ajudaram a erguer este evento.

Lúıs S. Barbosa, Miguel P. Correia
Setembro 2010

x INForum 2010

Organização

O INForum 2010 foi organizado pelo Centro de Ciências e Tecnologias da Computação,
CCTC, na Universidade do Minho, nas instalações da qual decorreram todas as sessões.

Coordenação

Comissão de Programa: Lúıs S. Barbosa (U. Minho)
Miguel P. Correia (U. Lisboa)

Comissão Organizadora: António Nestor Ribeiro (U. Minho)
Manuel Alcino Cunha (U. Minho)

Coordenador Edição das Actas: José João Almeida (U. Minho)

Comissão para a Imagem e Divulgação: Dulce Domingos (U. Lisboa)
Jorge Sousa Pinto (U. Minho)

Comissão Coordenadora: Ademar Aguiar (U. Porto)
Ana Moreira (U. N. Lisboa)
António Casimiro (U. Lisboa)
Eduardo Tovar (I. P. Porto)
Fernando Lobo (U. Algarve)
José Lúıs Oliveira (U. Aveiro)
Lúıs Rodrigues (Instituto Superior Técnico)
Marco Vieira (U. Coimbra)
Rui Lopes (I. P. Bragança)
Rui Oliveira (U. Minho), Presidente
Simão Sousa (U. Beira Interior)

Webmaster: José Lúıs Faria (U. Minho)

Comissão de Selecção do Prémio “Melhor Artigo Redigido por Estudante”

José Luiz Fiadeiro (U. Leicester) Reino Unido
Pedro Trancoso (U. Cyprus) Chipre
Rodrigo Rodrigues, (MPI-SWS) Alemanha

INForum 2010 – xi

Comissões de Programa por Área Temática

Ciência e Engenharia de Software

Salvador Abreu (U. Évora) Ademar Aguiar (U. Porto)
João Cachopo I(ST) Lúıs Caires (U. N. Lisboa), Coord.
João Pascoal Faria (U. Porto) João M. Fernandes (U. Minho)
Mário Florido (U. Porto) Lúcio Ferrão (OutSystems SA)
Antónia Lopes (U. Lisboa) Inês Lynce (IST)
Paulo Marques (U. Coimbra) Paulo Mateus (IST)
Ana Moreira (U. N. Lisboa) José N. Oliveira (U. Minho)
Fernando Silva (U. Porto) Simão Melo de Sousa (U. Beira Interior)
Vasco Vasconcelos (U. Lisboa)

Compiladores e Linguagens de Programação

Alberto Simões (I. P. Porto) Alda Gançarski (I. T. M, SudParis, França)
António Menezes Leitão (U. T. Lisboa) Bastian Cramer (U. Paderborn, Alemanha)
Bostjan Slivnik (U. Ljubljana, Eslovénia) Casiano Rodŕıguez León (U. La Laguna, Espanha)
Daniel Riesco (U. San Luis, Argentina) Daniela da Cruz (U. Minho)
German Montejano (U. San Luis, Argentina) Giovani Librelotto (U. F. Santa Maria, Brasil)
Ivan Lukovic (U. Novi Sad, Sérvia) Jean-Cristophe Filliâtre (U. Paris Sud 11, França)
João M. P. Cardoso (U. Porto) João Costa Seco (U. N. Lisboa)
João Saraiva (U. Minho) José João Almeida (U. Minho)
Manuel Pérez Cota (U. Vigo, Espanha) Maria João Varanda Pereira (I. P. Bragança)
Marjan Mernik (U. Maribor, Eslovénia) Mario Berón (U. San Luis, Argentina)
Mario G. Leguizamón (U. San Luis, Argentina) Matej Crepinsek (U. Maribor, Eslovénia)
Nuno Rodrigues (I. P. Cávado e Ave) Paulo Matos (I. P. Bragança)
Pedro R. Henriques (U. Minho), Coord. Rogério Dias Paulo (Efacec)

Salvador Abreu (U. Évora) Simão Melo de Sousa (U. Beira Interior)
Susan Esquivel (U. San Luis, Argentina) Tomaz Kosar (U. Maribor, Eslovénia)
Vasco Amaral (U. N. Lisboa) Vitor Santos (Microsoft Portugal)
Xavier Gómez Guinovart (U. Vigo, Espanha)

Computação Distribúıda e de Larga Escala

Alysson Bessani (U. Lisboa) Antonio Luis Osório (I. S. E. Lisboa)
António Sousa (U. Minho) Bruno Schulz (Lab. Nac. Comp. Cient́ıfica, Brasil)
David Matos (IST) Henrique J. Domingos (U. N. Lisboa)
Hugo Miranda (U. Lisboa) João Barros (U. Porto)
João Lourenço (U. N. Lisboa) João Paulo Carvalho (IST)
Jorge Gomes (LIP) José Orlando Pereira (U. Minho)
José Vermelhudo (NAV) Lúıs Miguel Pinho (ISEP - I. P. Porto)
Lúıs Moura e Silva (U. Coimbra) Lúıs Oliveira e Silva (IST)
Lúıs Rodrigues (IST) Lúıs Veiga (IST), Coord.
Nuno Duro (Evolve Space Solutions) Paul Grace (U. Lancaster, Reino Unido)
Paula Prata (U. Beira Interior) Paulo Ferreira (IST)
Paulo Marques (U. Coimbra) Paulo Vilela (Sun Microsystems Portugal)
Pedro Bizarro (U. Coimbra) Pedro Furtado (U. Coimbra)
Przemyslaw Lenkiewicz (Microsoft Portugal) Renato Cerqueira (PUC-Rio, Brasil)
Sérgio Duarte (U. N. Lisboa)

xii INForum 2010

Computação Gráfica

Abel Gomes (U. Beira Interior) Adérito Marcos (CCG / U. Aberta)
Adriano Lopes (U. N. Lisboa) Alberto Proença (U. Minho)
Ana Paula Cláudio (U. Lisboa) Antão Almada (YDreams)
António Augusto Sousa (U. Porto) Beatriz Sousa Santos (U. Aveiro)
António Ramires Fernandes (U. Minho) João Paulo Carvalho (IST)
Elisabeth Simão Carvalho (U. Minho) Fernando Nunes Ferreira (U. Porto)
Fernando Birra (U. N. Lisboa) Francisco Morgado (ESTV - I. P. Viseu)
Frutuoso Silva (U. Beira Interior) Gonçalo Lopes (YDreams)
Hans du Buf (U. Algarve) Ido Iurgel (CCG / U. Minho)
João Cunha (LNEC) João Madeiras Pereira (IST)
João Paulo Moura (UTAD) Joaquim Jorge (IST)
Joaquim Madeira (U. Aveiro) José Carlos Teixeira (U. Coimbra)
José Creissac Campos (U. Minho) Leonel Valbom (Escola Superior Gallaecia)
Lúıs Gonzaga Magalhães (UTAD), Coord. Lúıs Marcelino (ESTG - I. P. Leiria)
Lúıs Paulo Santos (U. Minho), Coord. Manuel João Ferreira (U. Minho)
Manuel João Fonseca (IST) Manuel Próspero dos Santos (U. N. Lisboa)
Maria Beatriz Carmo (U. Lisboa) Mário Rui Gomes (IST)
Maximino Bessa (UTAD) Miguel Leitão (ISEP - I. P. Porto)
Miguel Sales Dias (ISCTE, Microsoft) Nelson Zagalo (U. Minho)
Nuno Correia (U. N. Lisboa) Nuno Jardim Nunes (U. Madeira)
Paulo Dias (U. Aveiro) Pedro Branco (U. Minho)
Pedro Moreira (ESTG - I. P. Viana do Castelo) Teresa Chambel (U. Lisboa)
Teresa Romão (U. N. Lisboa) Vı́tor Santo (Microsoft Portugal)

Computação Móvel e Ub́ıqua

Adriano Moreira (U. Minho) Ana Paula Afonso (U. Lisboa), Coord.
Carlos Baquero (U. Minho) Carlos Bento (U. Coimbra)
Daniel Gonçalves (IST) Filipe Pacheco (ISEP - I. P. Porto)
Francisco Pereira (U. Coimbra) Frederico Figueiredo (Nokia Siemens Networks)
Hugo Miranda (U. Lisboa), Coord. Lúıs Carriço (U. Lisboa)
Lúıs Veiga (IST) Manuel Sequeira (ZON)
Nuno Correia (U. N. Lisboa) Nuno Maria (Truewind)
Nuno Preguiça (U. N. Lisboa) Paulo Ferreira (IST)
Pedro Araújo (U. Beira Interior) Rui Andrade (NovaGeo)
Rui José(U. Minho) Sérgio Duarte (U. N. Lisboa)

Engenharia Conduzida por Modelos

Alberto Rodrigues da Silva (IST), Coord. Ana Paiva (U. Porto)
António Leitão (IST) Bruno Barroca (U. N. Lisboa)
David Ferreira (IST) Fernando Brito de Abreu (U. N. Lisboa)
João Araújo (U. N. Lisboa) João Miguel Fernandes (U. Minho)
João Paulo Carvalho (Quidgest) João Pascoal Faria (U. Porto), Coord.
João Saraiva (IST) José Borbinha (IST)
Leonel Nóbrega (U. Madeira) Levi Lúcio (U. N. Lisboa)
Lúıs Pedro (D’Auriol Swiss) Matteo Risoldi (U. Geneva)
Miguel Calejo (Declarativa) Miguel Goulão (U. N. Lisboa)
Nuno Nunes (U. Madeira) Ricardo Machado (U. Minho)

INForum 2010 – xiii

Vasco Amaral (U. N. Lisboa), Coord.

Especificação, Verificação, e Teste de Sistemas Cŕıticos

Ana Matos (U. T. Lisboa) Ana Paiva (U. Porto)
Carla Ferreira (U. N. Lisboa) Jorge Sousa Pinto (U. Minho), Coord.
José Miguel Faria (Critical Software) Lúıs Miguel Pinho (ISEP - I. P. Porto)
Lúıs Pinto (U. Minho) Mário Florido (U. Porto)
Nelma Moreira (U. Porto) Nestor Cataño (U. Madeira)
Sérgio Amado (EDISOFT) Simão Melo de Sousa (U. Beira Interior)

Gestão e Tratamento de Informação

Aĺıpio Jorge (U. Porto) Bruno Martins (IST), Coord.
Daniel Gomes (FCCN) David Matos (IST)
Diana Santos (SINTEF) Eugénio de Oliveira (U. Porto)
Francisco Couto (U. Lisboa) Gaël Dias (U. Beira Interior)
Helena Galhardas (IST), Coord. Helena Sofia Pinto (IST)

Irene Rodrigues (U. Évora) João Pereira (IST)
José João Dias de Almeida (U. Minho) Lúısa Coheur (IST), Coord.
Maribel Santos (U. Minho) Mário Silva (U. Lisboa)
Nuno Cavalheiro Marques (U. N. Lisboa) Nuno Mamede (IST)
Paulo Carreira (IST) Paulo Gomes (U. Coimbra)

Paulo Jorge Oliveira (ISEP - I. P. Porto) Paulo Quaresma (U. Évora)
Pavel Calado (IST)

Internet das Coisas e Serviços

António Rito-Silva (IST) Caio Fontana (U. S. Paulo, Brasil)
Dulce Domingos (U. Lisboa), Coord. Eduardo Dias (U. S. Paulo, Brasil)
Fabŕıcio Silva (U. Lisboa) Francisco Martins (U. Lisboa), Coord.
Henrique João Domingos (U. N. Lisboa) Hervé Paulino (U. N. Lisboa)
João Campos (Truewind) Jorge Cardoso (U. Coimbra)
Luis Lopes (U. Porto) Ricardo Martinho (I. P. Leiria)

Segurança de Sistemas de Computadores e Comunicações

Alysson Bessani (U. Lisboa) André Zúquete (U. Aveiro), Coord.
Carlos Ribeiro (IST), Coord. Edmundo Monteiro (U. Coimbra)
Henrique Domingos (U. N. Lisboa), Coord. José Alegria (Portugal Telecom)
Luis Antunes (U. Porto) Marco Vieira (U. Coimbra)
Miguel Pupo Correia (U. Lisboa) Nuno Neves (U. Lisboa)

Irene Rodrigues (U. Évora) João Pereira (IST)
Paulo Ferreira (IST) Paulo Simões (U. Coimbra)
Paulo Sousa (U. Lisboa) Pedro Adão (IST)
Ricardo Chaves (IST) Simão Melo de Sousa (U. Beira Interior)

Sistemas Embebidos e de Tempo-Real

Adelino Silva (LINCIS) Carlos Almeida (IST)
Helder Silva (EDISOFT) João Almeida (youmove, Lda)
João M. P. Cardoso (U. Porto) João Cunha (I. S. E. Coimbra)

xiv INForum 2010

João Fernandes (U. Minho) João Redol (Nokia Siemens Networks)
Joaquim Ferreira (U. Lisboa) José Fonseca (U. Aveiro)
José Malaquias (ISA) José Metrôlho (EST-II. P. Castelo Branco)
José Rufino (U. Lisboa), Coord. Leonel Sousa (IST)
Lúıs Almeida (U. Porto) Lúıs Correia (EMPORDEF-TI)
Lúıs Gomes (U. N. Lisboa) Lúıs Miguel Pinho (ISEP - I. P. Porto), Coord.
Lúıs Osório (I. S. E. Lisboa) Mário Calha (U. Lisboa)
Mike Rennie (DEIMOS Engenharia) Nelson Blanco (PDM&FC)
Nuno Pereira (ISEP - I. P. Porto) Nuno Silva (Critical Software S.A.)
Pedro Fonseca (Micro I/O) Rui Camolino (Brisa, SA)
Simão Melo de Sousa (U. Beira Interior) Tobias Schoofs (GMV-Skysoft)

Sistemas Inteligentes

Alberto Freitas (U. Porto) António Abelha (U. Minho), Coord.
César Analide (U. Minho) Goreti Marreiros (ISEP - I. P. Porto)
José Machado(U. Minho), Coord. José Neves (U. Minho), Coord.
Luis Antunes (U. Lisboa) Luis Moniz (U. Lisboa)
Manuel Santos (U. Minho) Paulo Novais (U. Minho), Coord.
Ricardo Oliveira (U. Porto) Ricardo Santos (ESTGF - I. P. Porto)
Vitor Alves (U. Minho)

INForum 2010 – xv

Apoios

Apoio à Comissão de Progama
Banco Esṕırito Santo
Critical Software
Eurotux
EFACEC
Glintt HS
Hewlett-Packard
Microsoft
Seegno

Apoio organizativo:
Cafés Delta
LONA
Pastelarias Cristo-Rei

Apoio institucional
FCT - Fundação para a Ciência e Tecnologia
UM - Universidade do Minho
CISUC - Center for Informatics and Systems of the Univ. of Coimbra, U. Coimbra
CCTC - Centro de Ciências e Tecnologias da Computação, U. Minho
IEETA - Instituto de Engenharia Electrónica e Telemática de Aveiro, U. Aveiro
LASIGE - Large-Scale Informatics Systems Laboratory, U. Lisboa
CISTER - Research Centre in Real-Time Computing Systems, I. P. Porto

xvi INForum 2010

Conferências Convidadas

Distributed coordination

Resumo. Distributed coordination is critical for Web-scale distributed systems.
Examples of such systems are distributed file systems used for data processing (e.g.,
GFS, HDFS1), scalable data storage systems (e.g., BigTable), and Web search infras-
tructure (e.g., Crawlers, Indexers). Coordination in these systems can take the form
of configuration metadata or more sophisticated synchronization primitives such as
locks and leader election. Some of these coordination needs arise frequently enough
to justify the design and implementation of systems for coordination.

In this presentation, we motivate the design of systems to enable the co- ordination
of distributed applications, and discuss the design of two systems currently used in
production: Chubby and ZooKeeper. Chubby is a lock service that exposes a file-
system-like interface, including operations to acquire and release locks. Chubby is a
replicated service and has the master of a replica group initiating all operations to
guarantee that they are linearizable. Chubby also enables clients to cache the data of
frequently accessed files and manages such caches directly, invalidating cached content
explicitly upon updates. ZooKeeper also exposes a file-system-like interface and is a
replicated service, but makes different design choices. ZooKeeper is not a lock service
and it does not guarantee that all operations are linearizable. Instead it guaran-
tees FIFO order for the operations of individual clients and linearizability of update
operations (operations that change the state of ZooKeeper). A weaker consistency
guarantee, however, does not imply a reduction of expressiveness when it comes to
implementing synchronization primitives. As for client-side caches, ZooKeeper does
not manage them directly, and instead uses watches to notify clients of changes.

We finally present ZooKeeper evaluation results and discuss our experience to date
with ZooKeeper in production. Our evaluation results show that we can obtain thou-
sands of operations per second with read-dominant workloads, which meets the re-
quirements of current applications.

Orador. Flávio Junqueira is a research scientist with Yahoo! Research in Bar-
celona. He holds a PhD degree from University of California San Diego in computer
science, a MSc degree in Electrical Engineering from COPPE/UFRJ in Rio de Janeiro,
and a BS degree cum laude in Electrical Engineering from UFRJ in Rio de Janeiro.
His research work has been concentrated on distributed systems and algorithms, and
he has worked on projects related to the modeling of failures and vulnerabilities in
distributed systems, to the design of distributed algorithms, and to information retri-
eval in large-scale distributed systems. He is the recipient of a number of awards and

1

nominations, such as the CSE Department best PhD dissertation award, a nomina-
tion to the ACM PhD Dissertation award, and the best paper awards at ACM CIKM
2009 and USENIX ATC 2010. He is an active contributor to open source projects,
such as Hadoop and ZooKeeper from the Apache Software Foundation.

Hands on a verification challenge: proving a journaled file system correct

Resumo. In the context of the Verifiable File System (VFS) challenge put forward
by Rajeev Joshi and Gerard Holzmann, this talk will address the refinement of an
abstract file store model into a journaled (flash) data model catering for wear leveling
and recovery from power loss. Such refinement steps are carried out within a simple
verification life-cycle where model checking in Alloy goes hand in hand with manual
proofs carried out in the (pointfree) algebra of binary relations. This provides ample
evidence of the positive impact of Alloy’s lemma everything is a relation on software
verification, in particular in its entailing induction-free proofs about data structures
such as stores and lists. (Joint work with Miguel Ferreira, SIG, Amsterdam).

Orador. José Nuno Oliveira (http://www.di.uminho.pt/~jno) is currently As-
sociate Professor of Computer Science. He graduated from the U.Porto and received
his MSc and PhD in Computer Science from the U.Manchester, where he became
interested in formal methods and transformational techniques. He is a member of
the Formal Methods Europe (FME) association, where he convenes a subgroup on
education, and of the scientific committee of the MAP-i doctoral programme. He is
also a member of the IFIP WG2.1 - Algorithmic Languages and Calculi. Since his
PhD work on data-flow program transformation, he became interested in program
calculi and transformational design. He has served the programme committee of se-
veral conferences in the series of FME symposia, MPC, TFM, SEFM, SBMF, ICTAC,
ESOP, etc. He was co-chair of MPC’00, FME’00 and TFM’09.

Grammar inference technology applications in software engineering

Resumo. There are many problems whose solutions take the form of patterns
that may be expressed using grammars (e.g., speech recognition, text processing,
genetic sequencing, programming language development, etc.). Construction of these
grammars is usually carried out by computer scientists working with domain experts.
Grammar inference (GI) is the process of learning a grammar from examples, either
positive (i.e., the pattern should be recognized by the grammar) and/or negative (i.e.,
the pattern should not be recognized by the grammar).

This talk will present the application of grammar inference to software engineering,
including recovery of domain-specific language (DSL) specifications from example
DSL programs and recovery of a meta model from instance models which have evolved
independently of the original meta model.

Further details are available at http://www.cis.uab.edu/softcom/GrammarInference.

This talk was scheduled in the context of the CoRTA Session (Track on Compi-
lers,Programming Languages, Related Technologies and Applications) and kindly open
to all participants to INForum 2010.

2 INForum 2010

Orador. Barrett Bryant has a B.S. in Computer Science, University of Arkansas
at Little Rock (1979); M.S. in Computer Science, Northwestern University (1980);
Ph.D. in Computer Science, Northwestern University (1983).

He was Assistant Professor of Computer and Information Sciences, The University of
Alabama at Birmingham (1983-1988); 1 Associate Professor of Computer and Infor-
mation Sciences (Tenured), The University of Alabama at Birmingham (1988-2001);
Associate Chair of Computer and Information Sciences, The University of Alabama
at Birmingham (since 1996); Professor of Computer and Information Sciences, The
University of Alabama at Birmingham (since 2001). He was also a Visiting Resear-
cher, Department of Information Science, Ibaraki University, Hitachi, Japan (1987);
Visiting Scientist, Advanced Systems Division, IBM Palo Alto Scientific Center and
Data Base Technology Institute, IBM Santa Teresa Laboratory (1991-1992); Rese-
arch Associate, Air Force Office of Scientific Research, Rome Laboratory, Rome,
New York (1993); Visiting Scientist, Army Research Laboratory, Software Techno-
logy Branch, Atlanta, Georgia (1995, 1997 and 1998); Visiting Faculty Researcher,
Oak Ridge National Laboratory, Oak Ridge, Tennessee (1996); Visiting Faculty Re-
searcher, NASA Marshall Space Flight Center, Huntsville, Alabama (1999); Visiting
Associate Professor, Department of Computer Science, Naval Postgraduate School,
Monterey, California (2000-2001); Visiting Professor, Department of Computer Sci-
ence, Asia University, Taichung, Taiwan (2006).

Barrett Bryant major research areas are Concepts and Implementation of Program-
ming Languages, Formal Language Definition, Grammar-based Systems, Compiler
Generators, Domain-Specific Languages, Formal Specification of Software Systems
and Automated Software Engineering.

INForum 2010 – 3

Ciência e Engenharia de Software

5

Distributed Work Stealing for
Constraint Solving

(Extended Abstract)

Vasco Pedro and Salvador Abreu

Departamento de Informática, Universidade de Évora and

CENTRIA FCT/UNL, Portugal

{vp,spa}@di.uevora.pt

Abstract. With the dissemination of affordable parallel and distributed
hardware, parallel and distributed constraint solving has lately been the
focus of some attention. To effectually apply the power of distributed
computational systems, there must be an effective sharing of the work
involved in the search for a solution to a Constraint Satisfaction Problem
(CSP) between all the participating agents, and it must happen dynami-
cally, since it is hard to predict the effort associated with the exploration
of some part of the search space. We describe and provide an experimen-
tal assessment of an implementation of a work stealing-based approach
to parallel CSP solving in a distributed setting.

1 Introduction

Constraints are used to model problems with no known polynomial algorithm,
but for which search techniques developed within the field of constraint program-
ming provide viable procedures. Besides classical applications, such as planning
and scheduling, constraints have recently been successfully applied in the con-
texts of bioinformatics and computer network monitoring [11, 12].

Notwithstanding their relative efficiency, constraint solving methods are com-
putationally demanding and good candidates to benefit from multiprocessing.
Moreover, the declarative style of constraint programming frees the programmer
from concerns usually entailed by parallel and distributed programming, such
as control, synchronisation, and communication issues. In fact, the programmer
may not even be aware that there is any parallelism involved in solving the prob-
lem. Given the increasing availability of parallel computational resources, in the
form of multiprocessors, clusters of computers, or both, there is a need for an
effective way to help incorporating that power into the constraint programming
setting.

Constraint solving involves exploring large search spaces. To perform search
using several agents in parallel, the search effort must be shared among them.
In distributed constraint solving, in the context of solving Distributed CSPs [17],
each agent does a part of the work and coordinates with the other agents in
order to find a solution. The present work follows the parallel constraint solving

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 7–18

approach [4, 15, 13, 7, 2], where the search space is partitioned and the search
for a solution is carried out in each of the sub-search spaces by one agent (or
worker), all agents working in parallel. Here the agents are mostly independent
from each other, performing their (non-overlapping) part of the work and hoping
that one of them will find a quicker path to an answer. While the first approach
typically requires significant inter-agent communication, not only for the search
to progress but also for termination detection, in the latter communication can be
limited to an initial dispatching of the agents and to an answer collecting phase
at the end of the procedure. In this case, however, the initial work distribution
may turn out to be quite unbalanced, leaving some agents to bear most of the
effort as others become idle and their contribution is wasted.

This article reports on preliminary results of our experiments in implementing
a work-stealing scheme for overcoming the effect described above. This is a two-
level scheme: work stealing occurs between co-located agents, but when distant
agents are involved, some cooperation is needed to redistribute the work still
left.

The remainder of this paper is structured as follows: we start by establishing
some terminology in the next section. Then, in Sections 3 and 4 we describe the
architecture of the implemented solver and report on some experimental results
obtained with it. Section 5 discusses related work and in Section 6 we conclude
and put forward possible continuation paths for this work.

2 Constraint Solving

A constraint satisfaction problem can be briefly defined as a set of variables
whose values, to be drawn from their domains, must satisfy a set of relations.

Definition 1 (CSP). A Constraint Satisfaction Problem (CSP) over finite do-
mains is a triple P = (X, D, C), where

– X = {x1, x2, . . . , xn} is an indexed set of variables;
– D = {D1, D2, . . . , Dn} is an indexed set of finite sets of values, with Di being

the domain of variable xi, for every i = 1, 2, . . . , n; and
– C = {c1, c2, . . . , cm} is a set of relations between variables, called the con-

straints.

The search space of a CSP consists of all the tuples from the cross product of
the domains, where each variable is assigned a value from its domain. Solving a
CSP amounts to finding some or all of those tuples which satisfy all constraints
of the problem.

Definition 2 (Solution). A solution to a CSP is an n-tuple (v1, v2, . . . , vn) ∈
D1 ×D2 × . . .×Dn such that all constraints are satisfied.

In parallel constraint solving, the problem is divided into subproblems. So-
lutions to these subproblems are also solutions to the original problem.

8 INForum 2010 Vasco Pedro, Salvador Abreu

Definition 3 (Subproblem). A subproblem of a CSP P = (X,D, C) is a
CSP P ′ = (X, D′, C) such that D′ = {D′1, D′2, . . . , D′n} and D′i ⊆ Di, for every
i = 1, 2, . . . , n.

To guarantee completeness of the search, the search spaces of the subproblems
must cover the search space of the original problem. In order to avoid redundant
work, they must also be pairwise disjoint.

Definition 4 (Partition). A set {P ′1, P ′2, . . . , P ′k} of subproblems of a CSP P ,
with P ′i = (X, {D′i1, D′i2, . . . , D′in}, C), is a partition of P if⋃

1≤i≤k

D′i1 ×D′i2 × · · · ×D′in = D1 ×D2 × · · · ×Dn

and (∀ i 6= j) D′i1 ×D′i2 × · · · ×D′in ∩D′j1 ×D′j2 × · · · ×D′jn = ∅.
A partition of a CSP may be dually regarded as a partition of its search

space, the search spaces of the subproblems being sub-search spaces of the orig-
inal problem. In this paper we will only deal with search space partitions that
correspond to some partition of a problem.

3 Solver Architecture

Our constraint solver consists of workers, grouped together as teams (Figure 1).
The search for one or all solutions is carried out by the workers, which implement
a propagator based constraint solving engine, following a domain consistency
oriented approach [1]. Each active worker has a pool of idle search spaces and a
current search space, the one it is currently exploring. In each team there is a
controller, which does not participate in the search, and one of the controllers,
the main controller, also coordinates the teams.

Team 1
Team 2

Team 3

Team 4

Fig. 1. Solver architecture

Structuring the workers this way serves two purposes: the first is that a
workers’ sole task becomes searching, as all communication with the environ-
ment required by the dynamic sharing of work among teams is handled by the

Distributed Work Stealing for Constraint Solving INForum 2010 – 9

controller. The second objective is the sharing of resources enabled by binding
the workers in a team close together. If all workers were on the same level, they
would either have to divide their attention between search and communication
or there would have to be one controller per worker, thereby increasing resource
usage. On the other hand, this structure matches naturally a two-level partition-
ing of the search space and we obtain receiver-initiated decentralised dynamic
load balancing [16].

At the outset of the search process, the problem to be solved is partitioned
and each team is entrusted with trying to solve one of the resulting subproblems.
The controller in each team then partitions the local problem and hands each
sub-search space over to a worker for exploration.

On finishing exploring its assigned search space, a worker tries to steal work
from another worker within its team. If unsuccessful, it then notifies the team
controller that it has become idle. When all the workers in a team are idle, the
controller asks the other teams for more work.

3.1 Partitioning Strategies

The strategy used to partition the search space has a decisive impact on the
number of steps needed to get to a solution, hence on performance.

Partitioning strategies may be designed either to lead to a balanced dis-
tribution of the search work, like the even strategy below and the prime and
greedy strategies from [14], or to produce some subproblems where the search
is expected to be quick (while others may be slow), such as eager partitioning.
In principle, the former strategies will be more suited to situations where all
solutions are requested and the whole search space must be visited, and the
latter will lend themselves better to when one solution is enough. In any case,
the splitting of the problem will introduce a breadth-first component into the
usual depth-first exploration of the search tree, which sometimes gives rise to
superlinear speedups.

In even partitioning, domains are split so as to obtain sub-search spaces of
similar dimensions. If we want to split a problem into k subproblems, then the
first variable with at least that many values in its domain is chosen and its
domain is split as evenly as possible among the subproblems: if the domain
of the chosen variable has d ≥ k values, then it will have bd/kc values in the
first k − d mod k subproblems and bd/kc + 1 values in the remaining d mod k
subproblems.

Eager partitioning corresponds roughly to a partial breadth-first expansion
of the search tree and it will mostly produce subproblems where at least one
of the variables has had its domain reduced to a single value. The splitting is
performed according to the algorithm depicted in Figure 2, whose inputs are
the number of subproblems to create and a sequence of problems from which to
create them. Initially, this sequence only contains the original problem.

The partitioning of the CSP may affect the behaviour of the search, even
to the point of defeating the variable and value selection heuristics which are
usually appropriate to a given problem, as has been noted in [7, Section 6]. This

10 INForum 2010 Vasco Pedro, Salvador Abreu

Notation If P is a CSP and D is a finite set, PDi stands for the CSP which
is identical to P except that the domain of the ith variable is D.

eager-split(k, (P1 P2 · · ·Pq))
(X,D,C)← P1

i← min {j | |Dj | > 1}
d← |Di|
{v1, v2, . . . , vd} ← Di

if k ≤ d then
(P1{v1}i P1{v2}i · · ·P1{vk, . . . , vd}i P2 · · ·Pq)

else
eager-split(k − d+ 1, (P2 · · ·Pq P1{v1}i P1{v2}i · · ·P1{vd}i))

Fig. 2. Eager partitioning algorithm

suggests that the partitioning strategy, introducing another degree of freedom
in the search strategy, needs to be adapted to the problem being solved and
matched with the search heuristics used, and that no overall ‘best’ partitioning
strategy exists. (Notice that, for the present, problem specific heuristics do not
inform problem partitioning.)

As problem partitioning takes place at two points in the process — to dis-
tribute work to all the teams, and, initially within every team, to assign work to
each worker — different splitting strategies can be used, a more balanced one to
allot similar amounts of work to the individual teams, and another to focus the
efforts of the agents. The latter strategy could be finer grained than the former,
the cost of local work stealing being much lower than that of network supported
work sharing.

3.2 Search

The search unfolds as a worker further splits the search space it is working on,
keeping one part as its current search space and adding the other to its pool of
idle search spaces. If the current search space is found to contain no solution,
the worker draws a new search space from the pool and starts exploring it, never
backtracking. Upon finding a solution, the worker communicates it to the team
controller which, in turn, forwards it to the main controller.

The state of a worker with two search spaces currently in the pool is shown
in Figure 3, where solid edges mean that the child search spaces form a partition
of the parent. Notice that the subtree to the left of the current search space
(corresponding to the tuples where both x1 and x2 take value 1) has already
been explored and discarded, and is not displayed.

Figure 4 depicts the main driver algorithm for workers. At each step of the
search process, a worker starts by looking within its current search space for
a variable whose domain is not a singleton (line 3). If none is found, then the
search space contains a single tuple which constitutes a solution to the problem,

Distributed Work Stealing for Constraint Solving INForum 2010 – 11

x1 1..4
x2 1..4
x3 1..4

past
search spaces

���
x1 1
x2 1..4
x3 1..4
�

�
x1 1
x2 2
x3 1..4

current
search space

H
H
x1 1
x2 3..4
x3 1..4

HHH
x1 2..4
x2 1..4
x3 1..4

'

&

$

%Pool

Fig. 3. Search spaces from a worker

and which is returned by the worker (line 10). Otherwise, one of the variables
with a non-singleton domain is selected and the current search space is split into
two subspaces (line 4):

– In the first, which will become the worker’s current search space, the selected
variable is set to an individual value picked from its domain.

– In the other, to be added to the pool of idle search spaces (line 5), that value
is removed from the domain of the variable.

The domains of the other variables remain unchanged in both search spaces.
Following the split, the new current search space goes through a propagation

phase (line 6). If it succeeds, another search step is performed. If the propaga-
tion fails, the worker tries to fetch an idle search space from the pool to become
the current search space (line 7). If this is not possible the worker fails (line 9),
otherwise the search resumes with the retrieved search space undergoing a prop-
agation phase, as the domain of one of its variables shrunk just prior to it being
stored in the idle pool.

1: WORKER(search-space)
2: current ← search-space
3: while var ← select-variable(current) do
4: (current, other) ← split-search-space(var, current)
5: pool-put(other, var)
6: while (current ← revise(var, current)) = FAIL do
7: (current, var) ← pool-get()
8: if current = FAIL then
9: return FAIL

10: return SOLUTION(current)

Fig. 4. Worker main driver algorithm

12 INForum 2010 Vasco Pedro, Salvador Abreu

3.3 Work Stealing

When a worker tries to fetch a new search space from its pool and finds it
empty, it will attempt to obtain one from one of its teammates. In order to
minimise the impact on the performance of the solver, this is achieved with as
little cooperation from the holder of the retrieved search space as possible. In
fact, the idle worker will effectively steal work from a teammate while the latter
continues its task, oblivious to what is being done to its work queue.

The intended discipline of a worker’s pool is that of a deque (double-ended
queue), as depicted in Figure 5. While the owner works on one end of its pool
(lines 2, 8, and 12), a worker whose pool is empty will remove an entry from the
other end (line 20). This way, the only penalty a worker incurs during normal
processing is the cost of an extra check on the size of its pool (line 6). The
protocol used to avoid interference during pool accesses is similar to the one in
[5]. Only when the number of entries in the pool is small, will it be necessary to
enforce mutual exclusion in the accesses to the pool, and even then only when
removing a search space. To reduce contention, work stealing is only allowed
from a pool when the number of entries in it reaches a given threshold (line 17).

1: pool-put(search-space, variable)
2: pool.append(search-space, variable)

3: pool-get()
4: if pool.size = 0 then
5: return steal-work()
6: else if pool.size < SAFE-SIZE then
7: lock(pool)
8: ss ← pool.remove-last()
9: unlock(pool)

10: return ss
11: else
12: return pool.remove-last()

13: steal-work()
14: lock(stealing)
15: v ← worker-with-biggest-pool()
16: lock(v.pool)
17: if v.pool.size < THRESHOLD then
18: ss ← FAIL
19: else
20: ss ← v.pool.remove-first()

21: unlock(v.pool)
22: unlock(stealing)
23: return ss

Fig. 5. Pool insertion and removal, and work stealing algorithm

Stolen work corresponds to locations nearer the root of a worker’s search tree.
The search within the worker’s search space proceeds according to the heuristics
deemed adequate to the problem until it either finds a solution or the work is
exhausted. Upon stealing work from a peer, a worker picks up the search at a
point that the worker it was stolen from would eventually reach, thus subverting
the problem’s search strategy and introducing in it a measure of randomness.
This may be either beneficial or detrimental, depending on the specific problem.

In the event of an idle worker failing to obtain work within its team, it notifies
the team controller and waits, either to be later restarted or to be terminated.
When all the agents in a team have become idle, the team controller broadcasts
a request for more work to the other teams.

Distributed Work Stealing for Constraint Solving INForum 2010 – 13

Inter-team work stealing follows along a simple plan: initially, one of the team
controllers is given the role of fulfilling requests for work. Upon receiving one,
and using the same protocol used by the workers, it tries to steal a search space
from the local pool to be forwarded to the requester, which splits it among its
workers and becomes the new work supplier. If the designated work supplier is
unable to spare a search space, the remaining teams are polled for work, as done
in [13]. When no team is able to supply additional work, the idle team notifies
the main controller and terminates.

3.4 Implementation Notes

One of the main goals behind this work was to build a constraint solver which
could take advantage of the advances in parallel architectures and in clustering
network technology. To better be able to handle the challenges inherent to mul-
tiprocessing, namely memory management and caching issues, C was our choice
for the implementation language, as it allows for very fine-grained control.

Teams are autonomous entities and each team corresponds to a distinct pro-
cess, usually residing on a dedicated machine. As communication, particularly
over a network, may have an adverse impact on system performance, care has
been taken to minimise the number of inter-team messages needed. Teams are
coordinated by way of an IPC library.

A team comprises active components which are the workers and the con-
troller. The controller is, most of the time, waiting for a worker or another team
controller to communicate with it, not disturbing the search process and allow-
ing workers to be mapped to processors. Workers are mostly independent from
each other, except where work stealing is concerned, as explained in Section 3.3.
A worker, to be able to steal work from another one without active cooperation
from the latter, must be able to access all the team pools. To make this possible,
pools are located in shared memory and workers, as well as the controller, are
implemented as lightweight processes (threads).

4 Experimental Results

In this Section, we present some performance results obtained with our solver
on two classic benchmark problems, namely the non attacking queens problem
and the Langford number problem [3, problem 024]. While the queens problem
has many solutions well spread out throughout the search space, the Langford
number problem either has no solution or it also has many solutions but not so
well distributed.

Measurements were made of the time taken to count all solutions for the
two problems and for generating the first solution in the second problem. These
measurements were made on a cluster of Q6600 Intel Core2 Quad CPUs, clocked
at 2.4GHz, with 2–4GB RAM, running Linux, and the code was compiled with
GCC 4.1.1 with the ‘-O3’ flag. The times presented are the average of 12 runs
of each program, with the worst and the best times excluded. When computing

14 INForum 2010 Vasco Pedro, Salvador Abreu

the relative performance with respect to the sequential case, we subtracted the
overhead associated with starting up and terminating the solver, which reached a
maximum of 0.3 seconds in the 6 teams configuration. Unless otherwise indicated,
teams are composed of 4 workers, mirroring the number of CPUs in the shared-
memory multiprocessor systems. For interprocess communication, the Open MPI
MPI-2 implementation [9] was used.

Absolute performance has not, so far, been the top priority goal of this work.
Nevertheless the sequential (1 team with 1 worker) version of our solver already
displays interesting times for solving these problems, as attested by Table 1,
where they are compared with those of Gecode 3.0.2 [6], although there clearly
remains some work to be done in that regard.

Table 1. Times comparison with Gecode (seconds)
Queens Langford

14 15 16 2 11 2 12 2 28 2 31 3 18

Our solver 13.89 86.05 580.36 1.07 8.00 67.56 1.26 2.44

Gecode 17.21 102.18 646.43 36.40 25.01 0.03 0.02 0.42

all solutions first solution

In the remainder of this section, we look at the results obtained with sev-
eral configurations of the solver and analyse them with respect to the speedups
induced by the parallelisation of the search, using the two partitioning strate-
gies. The use of the two strategies helps both to illustrate the consequences of
problem partitioning and to highlight the effect of work stealing.

In the non attacking queens problem, the first observation that can be made
in relation to the speedups obtained, depicted in Figure 6, is that they are fairly
insensitive to the partitioning strategy used. Given that in this problem the
work is very evenly distributed among the possible values from the domains of
the variables, this result is only possible due to effective work sharing.

 1

 22

 4

 8

 12

 16

 20

1/2 1/3 1/4 2/8 3/12 4/16 5/20 6/24

S
p

e
e

d
u

p

Teams/Total workers

Queens
14
15
16

Fig. 6. Speedups for the non attacking queens (all solutions)1

1 In these graphs, solid and dashed lines correspond, respectively, to even and eager
partitioning.

Distributed Work Stealing for Constraint Solving INForum 2010 – 15

The profile of the speedups evolution with the addition of more teams is
quasi-linear for the 16 queens problem, showing good scalability of the approach.
However, the smaller problem starts suffering from the weight of the implemen-
tation early on. Total running times for the three problems in the 6 team setting
are around 1.2, 4.6, and 27.5 seconds, for 14, 15, and 16 queens, respectively.

The Langford number problem, for which we measured both the speedups for
counting all solutions and for obtaining the first solution, is an example of a case
where domain partitioning interacts badly with the heuristics usually used for
guiding the search, as dividing a domain gives rise to more work than that needed
to solve the original problem. This is apparent in Figure 7a, which represents
the results observed in finding the first solution and where some instances of the
problem displayed a marked slowdown when partitioning the domain of the first
variable in two or three similarly sized parts. On the other hand, speedups of
more than 3000 were also obtained in one case.

 0.1

 1

 10

 100

 1000

 10000

1/2 1/3 1/4 2/8 3/12 4/16 5/20 6/24

S
p

e
e

d
u

p

Teams/Total workers

Sets x Size
2 x 28
2 x 31
3 x 18

(a) First solution

 1

 3

 5

 7

 9

 11

 13

1/2 1/3 1/4 2/8 3/12 4/16 5/20 6/24

S
p

e
e

d
u

p

Teams/Total workers

Sets x Size
2 x 11
2 x 12

(b) All solutions

Fig. 7. Speedups for the Langford number problem

Counting all solutions of the Langford problem (Figure 7b) exhibits a pro-
file common to the previous problem, but at some point the implementation
starts overwhelming the potential improvements due to the parallelisation on
the smaller instance. This effect requires further study to identify and solve its
causes.

5 Related Work

Recent years have seen an increase in the interest in parallel solving, as par-
allel architectures become more common. An early language sporting parallel
constraint solving was the CHIP parallel constraint logic programming lan-
guage [15]. It was implemented on top of the logic programming system PEPSys,
whose or-parallel resolution infrastructure was adapted to handle the domain op-
erations needed in parallel constraint solving.

More recent works rely on features of an underlying framework for program-
ming parallel search. The concurrent Oz language provides the basis for the

16 INForum 2010 Vasco Pedro, Salvador Abreu

implementation described in [13], where search is encapsulated into computa-
tion spaces and a distributed implementation allows the distribution of workers.
Work sharing is coordinated by a manager, which receives requests for work from
the workers and then tries to find one willing to share the work it has left. Search
strategies are user programmed and the work sharing strategy is implemented
by the workers.

A similar approach is taken in [7, 8] which show how to program parallel
search controllers in Comet. There, the pool is an active object which is queried
by the idle workers. In case the pool is empty, it asks another worker to generate
yet unexplored sub-search spaces, gives one away and stores the rest. It is not
explained, however, how the worker which supplies work is chosen.

A focus of research has been on the strategies for splitting the work between
workers. These strategies may be driven by the problem structure, such as the
size of the domains [14], or by the past behaviour of the solver, be it related with
properties of the solving process, such as the number of variables already instan-
tiated [10], or with the progress of the search, in what it affects the prospects of
finding a solution in the current subtree [18] or in the subtrees left to explore [2].
Here, a scheme is presented which uses the search heuristics to guide problem
splitting, dampened by a degree of confidence to distribute the workers across
the search tree while maintaining some bias towards the nodes favoured by the
heuristic. It shows good performance on multi-core hardware, and while it has
the drawback of working on a global view of the search process, it seems to point
in a promising direction of research, namely using the work done as a guide to
future search space splitting.

6 Conclusions and Future Work

In spite of the results obtained so far, there should be additional gains with a
more sophisticated work sharing protocol. Several possibilities should be stud-
ied, including having a different work stealing policy for inter-team sharing,
where candidate search spaces undergo a deeper examination to try to deter-
mine whether the cost of their sending is offset by the work saved locally.

Short term development plans comprise improving the internal representa-
tion of the domains, which currently only allows values between 0 and 63, the
inclusion of optimisation constraints, and the improvement of the scalability of
the implementation in two key aspects: the initial work distribution and the
sharing of work between teams, which could both profit from organising the
teams in some way.

We also plan on experimenting with different underlying models and libraries
for thread management and inter-process communication, namely to venture
beyond the present implementation which relies on Posix threads and MPI.

Acknowledgements

The authors wish to acknowledge the FCT/Pessoa grant ‘CONTEMP — CON-
Traintes Exécutées en MultiProcesseurs’ and the members of the partner IN-

Distributed Work Stealing for Constraint Solving INForum 2010 – 17

RIA/Bordeaux RUNTIME team, namely Olivier Aumage, Jérôme Clet-Ortega,
and Cédric Augonnet, for their cooperation and helpful suggestions. Thanks are
due to Miguel Avillez at Universidade de Évora for the valued offer of computa-
tional support. The authors would also like to thank the anonymous reviewers
for their comments and suggestions.

References

1. Bessière, C.: Constraint propagation. In: Rossi et al. [11], chap. 3, pp. 29–83
2. Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in parallel

constraint programming. In: Gent, I.P. (ed.) CP’09. LNCS, vol. 5732, pp. 226–241.
Springer, Lisboa, Portugal (Sep 2009)

3. CSPLib: A problem library for constraints. http://www.csplib.org/.
4. Ferreira, L.: Programação por Restrições Distribúıdas em Java. Ph.D. thesis, Uni-

versidade de Évora, Portugal (2004)
5. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-

tithreaded language. In: PLDI’98. pp. 212–223. ACM, Montreal, Quebec, Canada
(Jun 1998)

6. Gecode: Generic constraint development environment. http://www.gecode.org/.
7. Michel, L., See, A., Van Hentenryck, P.: Parallelizing constraint programs trans-

parently. In: Bessière, C. (ed.) CP’07. LNCS, vol. 4741, pp. 514–528. Springer,
Providence, RI, USA (Sep 2007)

8. Michel, L., See, A., Van Hentenryck, P.: Transparent parallelization of constraint
programming. INFORMS Journal on Computing 21(3), 363–382 (Dec 2008)

9. Open MPI Project: http://www.open-mpi.org/.
10. Rolf, C.C., Kuchcinski, K.: Load-balancing methods for parallel and distributed

constraint solving. In: 2008 IEEE Int. Conf. on Cluster Computing. pp. 304–309
(2008)

11. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Foundations of Artificial Intelligence, Elsevier (2006)

12. Salgueiro, P., Abreu, S.: Network monitoring with constraint programming: Pre-
liminary specification and analysis. In: Abreu, S., Seipel, D. (eds.) INAP2009. pp.
37–52. Évora, Portugal (Nov 2009)

13. Schulte, C.: Parallel search made simple. In: Beldiceanu, N., Harvey, W., Henz, M.,
Laburthe, F., Monfroy, E., Müller, T., Perron, L., Schulte, C. (eds.) TRICS-2000.
pp. 41–57. Singapore (Sep 2000)

14. Silaghi, M.C., Faltings, B.: Parallel proposals in asynchronous search. Tech. Rep.
TR-01/371, Swiss Federal Institute of Technology (EPFL), Lausanne (Aug 2001)

15. Van Hentenryck, P.: Parallel constraint satisfaction in logic programming: Prelim-
inary results of CHIP within PEPSys. In: Levi, G., Martelli, M. (eds.) ICLP’89.
pp. 165–180. The MIT Press, Lisboa, Portugal (Jun 1989)

16. Wilkinson, B., Allen, M.: Parallel Programming. Pearson, 2nd edn. (2005)
17. Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The distributed constraint

satisfaction problem: Formalization and algorithms. Trans. on Knowl. and Data
Eng. 10(5), 673–685 (1998)

18. Zivan, R., Meisels, A.: Concurrent search for distributed CSPs. Artificial Intelli-
gence 170(4–5), 440–461 (Apr 2006)

18 INForum 2010 Vasco Pedro, Salvador Abreu

JFly: A JML-Based Strategy for Incorporating
Formal Specifications into the Software

Development Process

Nestor Catano1, João Pestana2, and Ricardo Rodrigues2

1 The University of Madeira, M-ITI, CMU-Portugal
ncatano@m-iti.org

2 The University of Madeira, Portugal
{joao.pestana,ricardo.rodrigues}@max.uma.pt

Abstract. This paper presents JFly, a JML-based strategy for incor-
porating formal specifications into the software development of object
oriented programs. The strategy consists in evolving functional require-
ments into a semi-formal requirements form, and then expressing these
requirements as JML formal specifications. What makes our strategy
different from existing strategies is the particular use of JML we make
all along the way from requirements to validation-and-verification. We
validate our strategy with the formal development of a smart card ap-
plication for managing medical information.

1 Introduction

Although software engineering methods provide a disciplined approach to soft-
ware development, it is still quite common to find flawed software systems. A
way to construct correct programs is through the use of formal specifications as
part of a software engineering practice. In this paper, we propose JFly, a strat-
egy that incorporates formal specifications into the software development process
of object oriented programs by evolving informal functional requirements into
formal specifications (Section 2). Having informal functional requirements mod-
elled in a formal specification language allows for the use of formal methods tools
for checking program correctness. We use JML [11] as the formal specification
language for writing our specifications. Our strategy consists in evolving infor-
mal functional software requirements written in natural language (e.g. English
or Portuguese) into semi-formal requirements, i.e. requirements written in nat-
ural language, yet in a more mathematical style. Hence, informal requirements
are written as semi-formal functional requirements of the form if <event> then
<restriction>, or as semi-formal class and system invariants. Semi-formal require-
ments are then written as JML method specifications and JML class invariants
respectively. We validate our strategy with the development of a HealthCard
smart card application (Section 3). We used the JML Common tools [3] to check
the HealthCard for correctness. Neither using formal specifications to increase
confidence in a system implementation nor gradually transforming software re-
quirements from a high level of abstraction to a more concrete level are new

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 19–30

ideas [6, 8, 10]. What makes our strategy different from others is the particu-
lar use of JML specifications we make all along the way from requirements to
validation-and-verification.

L. Shaoying et al. in [15] propose the SOFL methodology for software devel-
opment. The SOFL language integrates Data Flow Diagrams, Petri Nets, and
VDM-SL. Likewise JFly, in SOFL, the process of writing formal specifications is
the result of a 3-step process that evolves informal specifications into an abstract
formal specification. The SOFL methodology has established a much more ma-
ture technique for developing formal design specifications for software systems
than the JFly strategy presented by us. Nonetheless, having formal specifications
expressed directly in JML, rather than using an abstract general form, allows the
direct use of JML tools, which implement various formal checking techniques.
JML is a formal specification language that uses a syntax close to Java syntax
and hence Java programmers find JML easy to use, which helps to bridge the
gap between mathematical formalisms and software engineering techniques [4].

Supplementary to our work, V. T. Vasconcelos et al. have implemented the
ConGu tool [16], which reduces the problem of checking algebraic specifications
to the run-time monitoring of contracts described in JML. Their work extend our
work in a way that further considers algebraic specifications to express correct
software components.

Finally, M. G. Ilieva and O. Ormandjieva have studied the automatic trans-
lation of software requirements written in natural language into formal specifi-
cations [9]. Our work is less ambitious, yet more practical.

1.1 The Java Modeling Language (JML)

JML is a behavioral interface specification language for Java, which means that
the only correct implementation of a JML class specification is a Java class im-
plementation with the specified behavior. JML is now an academic community
effort with many groups developing tools to support JML [3]. In JML, methods
are specified using requires, modifies, and ensures clauses, which give the pre-
condition, the frame (what locations may change from the pre- to the poststate),
and the postcondition respectively. A method specification can also include an
exsures or signals clause to specify conditions under which the method could
throw an exception. Class invariants can also be written to constrain the states
of objects. JML specifications use Java syntax and are embedded in Java code
between special comments /*@ ... @*/ or after //@. A simple JML specification
for a Java class consists of pre- and post-conditions added to its methods, and
class invariants restricting the possible states of class instances. Specifications
for method pre- and post-conditions are embedded as comments immediately be-
fore method declarations. JML predicates are first-order logic predicates formed
of side-effect free Java boolean expressions and several specification-only JML
constructs. Because of this side-effect restriction, Java operators like ++ and --
are not allowed in JML specifications. JML provides notations for forward and
backward logical implications, ==> and <==, for non-equivalence <=!=>, and for

20 INForum 2010 Nestor Catano, João Pestana, Ricardo Rodrigues

logical or and logical and, || and &&. The JML notations for the standard uni-
versal and existential quantifiers are (\forall T x; E) and (\exists T x; E),
where T x; declares a variable x of type T, and E is the expression that must
hold for every (some) value of type T. The expressions (\forall T x; P; Q) and
(\exists T x; P; Q) are equivalent to (\forall T x; P ==> Q) and (\exists
T x; P && Q) respectively.

1.2 The JML Common Tools

The JML common tools [3, 2] is a suite of tools providing support to run-time as-
sertion checking of JML-specified Java programs. The suite includes jml, jmlc,
jmlunit and jmlrac. The jml tool checks the JML specifications for syntax
errors. The jmlc tool compiles JML-specified Java programs into a Java byte-
code that includes instructions for checking JML specifications at run-time. The
jmlunit tool generates JUnit [12] unit tests code from JML specifications and
uses JML specifications processed by jmlc to determine whether the code being
tested is correct or not. Test drivers are run by using the jmlrac tool, a modi-
fied version of the java command that refers to appropriate run-time assertion
checking libraries.

The JML common tools make possible the automation of regression test-
ing from the precise, and correct JML characterisation of a software system.
The quality and the coverage of the testing carried out by JML depend on the
quality of the JML specifications. The run-time assertion checking with JML is
sound, i.e., no false reports are generated. The checking is however incomplete
cause users can write informal descriptions in JML specifications, e.g., (* x is
positive *). The completeness of the checking performed by JML depends on
the quality of the specifications and the test data provided.

2 JFly: the Proposed Strategy

We have developed a strategy for evolving informal functional requirements into
formal specifications, which can be employed as part of existing object-oriented
software development methodologies [14] (Chapter 28). Hence, software devel-
opers must define precise interface specifications for underlying software com-
ponents, based on data types and the conceptual metaphor of the design-by-
contract [13]. The strategy consists in incorporating informal, semi-formal, and
formal specifications all along an existing object-oriented software engineering
methodology. In Figure 1, we do not restrict any phase to occur before or af-
ter any other phase, so that arrows convey information on usage rather than
on precedence in time. Software development phases are iterative so that they
can be revisited at later phases to obtain a correct implementation of the sys-
tem. During the analysis phase, “informal” functional requirements are written
(functional requirements written in natural language). As informal functional
requirements are expressed in a natural language, inconsistencies can be in-
troduced during the analysis phase. Hence, informal functional requirements are

JFly: A JML-Based Strategy ... INForum 2010 – 21

Fig. 1. The Software Development Process

first evolved into “semi-formal” requirements (see Arrow 1), and then ported into
JML formal specifications (see Arrow 4). Having formal specifications expressed
in JML makes it possible to use JML-based formal methods tools to check for
flaws. The semi-formal requirements are divided into three parts, namely the
semi-formal functional requirements (ported into JML method specifications),
the class invariants, and the system invariants (these two are ported into JML
class invariant specifications). Evolving the informal functional requirements into
semi-formal ones involves expressing informal requirements into an if <event>
then <restriction> form (see Section 3.3 for details).

During the design phase, the requirements gathered from the analysis phase
are used to define the structure of the system (see Arrow 2), which is later used to
write classes, their attributes, their methods, and the relations among them (see
Arrow 3). These classes are specified with JML as described above. During the
implementation, we start by writing Java interfaces and Java abstract classes.
From the semi-formal requirements, JML functional specifications are written
for abstract methods in Java interfaces and abstract classes, and JML class
invariants are written, modelling global properties of the system. Finally, JML
abstract variables are defined to describe the distinct abstract data types used
in the application, and how they are manipulated through class inheritance (see
Section 3.5). JML specifications provide support to the writing of correct code
for concrete classes that implement the interfaces and the abstract Java classes.
JML specifications also provide support to a business contract programming
style of programming, in accordance with Bertrand Meyer’s design-by-contract
principles.

22 INForum 2010 Nestor Catano, João Pestana, Ricardo Rodrigues

During the validation-and-verification phase, the implementation is checked
against the JML specifications (Arrow 5), using the JML Common Tools [3]. If
they issue an error, then the implementation or the specifications are evolved
accordingly. Therefore, it is possible to go back to a previous phase and make
amendments to the JML specifications or the implementation itself. Notice that
inconsistencies can be detected before an implementation for the system is writ-
ten. For instance Java interfaces and Java abstract classes are checked against
JML specifications before writing an implementation for these classes and inter-
faces, or JML specifications can be validated in isolation [5].

3 A Running Example

3.1 The HealthCard Application

In the following, we describe the HealthCard smart card application we used
to validate our strategy. HealthCard stores people’s medical information. Smart
cards are pocket-sized plastic cards with embedded integrated circuits that pro-
cess data. A typical smart card application includes on-card applets (the applets
running on the card), a card reader-side, and off-card applications (e.g. a com-
puter program communicating with the card applets). HealthCard is written in
Java Card, a subset of Java used to program card applets. We used the Java
Card Remote Method Invocation (JCRMI) model for communication between
off-card applications and on-card applets. This model implements a client-server
setting with the HealthCard acting as server, and off-card applications as clients,
communicating via APDU (Application Protocol Data Unit) messages. Figure
2 shows the structure of the HealthCard. A patient can use his HealthCard to
furnish accurate medical information to general practitioners in medical centres
with the appropriate system to read it. The HealthCard manages the patient’s
personal details, his allergies, his historical record of vaccines, diagnosis, treat-
ments and prescribed medicines. The HealthCard is divided in several modules
for managing medical information. Each module has a remote interface and an
implementation class that serves the appropriate services. All the remote inter-
faces are referenced in a single remote interface named CardServices whereby an
external client can invoke services. Hence, if an external client calls the method
getApp() in CardServices, it gets a reference to the Appointments remote in-
terface. This reference is then used to invoke appropriate methods implementing
services.

3.2 Informal Functional Requirements

Informal functional requirements define, in an informal way, the inputs, the
behavior, and, in general, functional restrictions of the system to develop. In
the following, we present a small example from the HealthCard system that
shows how informal functional requirements are evolved into the three kind of
semi-formal requirements described in Section 2. We present below some of the
informal requirements of the HealthCard application.

JFly: A JML-Based Strategy ... INForum 2010 – 23

Fig. 2. The Health Card System Structure

IFR1 There must not exist duplicated entries for allergies with the same designa-
tion code.

IFR2 A fixed number of allergies can be introduced in the card only.
IFR3 All allergy designation codes must have a stipulated length.
IFR4 The prescription date of a medicine must be bigger than or equal to the date

of the appointment in which the medicine was prescribed.

The following sub-sections show how the informal requirements above are
evolved into semi-formal requirements. Evolving informal requirements into semi-
formal requirements is not a deterministic process, nonetheless it obeys general
guidelines that proved to be practical in the development of the HealthCard.
Informal requirements involving several domain concepts (e.g. medicine and ap-
pointment in IFR4) are evolved into system invariants; informal requirements
involving or restricting a single domain concept (e.g. allergy in IFR3) are evolved
into class invariants; informal requirements functionally restricting a single do-
main concepts under certain events (e.g. IFR1 and IFR2) are evolved into semi-
functional requirements that follow an if <event> then <restriction> mathemat-
ical form, which is close to a JML method specification style.

Because of the ambiguous essence of natural language, our guidelines to trans-
form informal requirements into semi-formal ones is neither sound nor complete,
nonetheless our experience shows that is useful in practice. We have implemented
a prototype script shell based tool doing the transformation automatically (see
Section 3.8).

3.3 Semi-Formal Functional Requirements

The informal functional requirement IFR1 is transformed into if <a new allergy
is to be added to the list of referenced allergies and the allergy designation has
already been referenced>, then <the new allergy is not inserted>. We show below
the semi-formal requirements obtained from the first two informal requirements
above.

24 INForum 2010 Nestor Catano, João Pestana, Ricardo Rodrigues

SFR1 From IFR1. If a new allergy is to be added to the list of referenced allergies
and the allergy designation has already been referenced, then the new allergy
is not inserted.

SFR2 From IFR2. If an allergy is to be added to the list of referenced allergies and
the limit of the number of referenced allergies has already been attained,
then the state of the card remains unchanged.

3.4 Class and System Invariants

Class invariants are written from informal requirements that describe limitations
or constraints on a small-scale, e.g. limitations of properties that eventually will
restrict or describe a certain domain concept only. Hence, the informal functional
requirement IFR3: “All allergy designation codes must have a stipulated length”,
restricts the length of the designation code of any “allergy”. To write this class
invariant (see CI1 below), we use a variable des to represent the designation code
of the allergy. This variable can be modelled as a JML abstract variable (see
Section 3.5). CI1 describes a property about the length of the code of an allergy,
so that eventually it will become a class and the code a static field of it.

CI1 invariant size(des) == CODE LENGTH

Unlike class invariants, system invariants describe invariant properties re-
lating several domain concepts. For instance, IFR4 describes a property on
medicines, managing information on prescribed medicines in appointments, and
appointments, managing information about appointments scheduling. IFR4 be-
comes the semi-formal system invariant requirement SI1 below.

SI1 For all object m of type medicine, and all object a of
type appointment such that appointment(m) is equals
to a, then date(m) is bigger than or equal to date(a).

3.5 Design and Implementation

During the design phase, the structure of the application is created from the
requirements. This structure encompasses class diagrams for interfaces, abstract
classes, and concrete classes. In parallel to this phase, semi-formal functional
requirements and class and system invariants are written (Sections 3.3 and 3.4).
Semi-formal specifications are later ported to JML specifications (Section 3.6).
During the implementation phase, from the structure of the application gener-
ated in the design phase, Java abstract classes, Java interfaces, and Java classes
are written. In a first stage, the implementation only contains code skeletons,
so no method in any concrete class is implemented. JML specifications are em-
bedded within the code. Hence, the JML Common Tools can be used to check
the code during early stages of the implementation (i.e. before fully implement-
ing concrete Java classes). Therefore, the Java code can be evolved so as to
conform to the JML specifications, or the specifications can be evolved so as

JFly: A JML-Based Strategy ... INForum 2010 – 25

to conform to an expected behavior. Checking that one conforms to another
is done automatically with the JML Common Tools. JML eliminates program-
mers’ responsibility of keeping track of how properties a program must respect
are affected by changes in the code.

Furthermore, to have a high level of abstraction in specifications, JML pro-
vides support to the use of abstract variables, which exist at the level of the
specification, but not in the implementation. Declarations of abstract variables
are preceded by the JML keyword model and are related to Java code by a
represents clause3. This clause specifies how the value of an abstract variable
is calculated from the values of concrete variables (see Section 3.6). Abstract
variables are useful in describing properties about interfaces because these are
not allowed to declare (concrete) variables in Java. Within an interface, an ab-
stract variable describes the state of the implementing classes. Abstract variable
specifications for interfaces and for abstract classes do not need to be written
down again in implementing classes or sub-classes, since JML specifications are
inherited. This ensures behavioral sub-typing through which a sub-class object
can always be used where a super-class object is expected.

3.6 JML Formal Specification

Semi-formal functional requirements SFR1 and SFR2 relate to method addAllergy
in interface Allergies (see below). In Java, interfaces cannot declare attributes,
hence Allergies declares an abstract JML variable as, modelling stored refer-
enced allergies. The JML JMLEqualsSequence type models a sequence of objects
that can be compared using the standard method equals. We declare two addi-
tional abstract variables, size and maxsize, modelling the number of referenced
allergies and the maximum number of referenced allergies. A normal behavior
specification expresses that if all the pre-conditions hold (clauses requires) in
the pre-state of the method, it will terminate in a state in which all the post-
conditions (clauses ensures) hold. SFR2 is expressed as the JML pre-condition
size < maxsize. SFR1 appears in two separated normal postconditions that
make use of the abstract method existsAllergy (not shown here) for check-
ing whether the designation of an allergy has already been stored in as or
not. Therefore, if the designation has already been stored, the list of allergies
remains unchanged, as.equals(\old(as)), otherwise the allergy designation is
stored at the end of the list, as.equals(\old(as).insertBack(desigRepr(-
designation))). JML abstract method desigRepr (not shown here) maps an
array of bytes to a unique value. JML only allows side-effects free methods within
specifications. This is enforced by using the JML keyword pure. All the meth-
ods used within specifications in our examples are pure, e.g. existsAllergy
and insertBack (which uses an auxiliary clone() method) in addAllergy.

//@ model instance JMLEqualsSequence as;

//@ model instance short size;

3 JML also provides ghost, a more limited variation of model variables.

26 INForum 2010 Nestor Catano, João Pestana, Ricardo Rodrigues

//@ model instance short maxsize;

/*@ public normal_behavior

@ requires size < maxsize;

@ requires designation != null && date != null;

@ requires existsAllergy(designation);

@ ensures as.equals(\old(as));

@ also

@ public normal_behavior

@ requires size < maxsize;

@ requires designation != null && date != null;

@ requires !existsAllergy(designation);

@ ensures as.equals(\old(as).insertBack(

@ desigRepr(designation)));

@*/

public abstract void addAllergy (byte[] designation,

byte[] date)

throws RemoteException, UserException;

Abstract specifications are related to actual Java code through the use of the
JML represents clause. Hence, as, declared in Allergies, is related to code in
the Allergies Imp, which implements Allergies. The abstract variable size
is represented as the concrete field nextFree, and maxsize as the static variable
MAX ITEMS. The pure method allergiesRepr represents as as a JMLEquals-
Sequence produced by the insertion of all the elements in allergies. In JML,
pure methods are side-effect free methods.

//@ represents size <- nextFree;

//@ represents maxsize <- MAX_ITEMS;

//@ represents as <- allergiesRepr();

/*@ pure model JMLEqualsSequence allergiesRepr() {

@ JMLEqualsSequence r = new JMLEqualsSequence();

@ for (short i=0; i < nextFree; i++) {

@ r = r.insertBack((Object)(allergies[i]));

@ }

@ return r;

@ }

@*/

JML Class and System Invariants The Class invariant CI1 is expressed as the
JML invariant below. This invariant is declared in class Allergy.

//@ instance invariant des.size == CODE_LENGTH;

The System invariant SI1 is expressed as the JML invariant below. This
invariant suggests that a global access to medicines and appointments in the
card must exist. Following the Java Card Remote Method invocation (JCRMI)

JFly: A JML-Based Strategy ... INForum 2010 – 27

approach for communication, in which the Java Card applet is the server, the
HealthCard application defines an interface CardServices that declares all the
services available for remote objects. Class CardServices Imp, an implementa-
tion of this interface in Java, accesses the information and the state of any re-
mote object in the card. CardServices Imp declares two variables med and app
for keeping track of medicines and medical appointments respectively. Method
getData() returns an array of objects of type Medicine. Method getApp()
returns an array of objects of type Appointment.

/*@ invariant

@ (\forall int i; i<med.getData().length & i>=0;

@ (\forall int k; k<app.getApp().length & k>=0;

@ med.getData()[i].getAppID() ==

@ app.getApp()[k].getID()

@ ==>

@ med.getData()[i].getDate() >=

@ app.getApp()[k].getDate()))

@*/

3.7 Validation and Verification

We used the JML Common Tools suite [3] to check our implementation of the
HealthCard. This suite provides support to the run-time assertion checking of
JML specifications. Checking an application with this suite is an iterative process
of checking the implementation with respect to the JML specifications, and then
evolving either the specification or the implementation (or both) when a run-
time error is produced. Errors can be detected before a concrete implementation
for the application is written. For instance, Java interfaces and Java abstract
classes are checked against JML specifications before writing full implementa-
tions for those interfaces and abstract classes. At this point, programmers can go
back to an earlier development phase, e.g. modifying some informal functional
requirements; thereafter JML specifications are evolved accordingly.

3.8 A JFly Prototype Tool

We have built a prototype tool that automates the process of writing JML formal
specifications from simple semi-formal specifications. The prototype tool builds
on the idea that semi-formal specifications can be written as requirements of
the form if <event> then <restriction>. Therefore, after if and before end, a
method precondition exists; and after then a method postcondition occurs. The
tool can be reached at http://www.knowmydream.com/Projects/jfly/. This is
just a prototype tool; it demonstrates how our ideas on JML-based strategy for
incorporating formal specifications to the software development of programs can
be automated. For instance, the prototype tool transforms the specification if
<date is NOT EQUAL TO null AND date’s length is EQUAL TO date model’s
length> then <date is EQUAL TO date model>.

28 INForum 2010 Nestor Catano, João Pestana, Ricardo Rodrigues

/*@ public normal_behavior

@ requires date != null &&

@ date.length == date_model.length;

@ ensures date == date_model;

@*/

4 Conclusion

We propose a strategy for evolving informal requirements into formal specifica-
tions as part of a software engineering methodology. However, evolving informal
requirements into formal specifications is not a linear process: it requires great
ingenuity and experience. Although we presented our ideas through the devel-
opment of a smart card application, we consider that our strategy is suitable
for developing correct applications that implement a client-server architecture
with a need of a light-weight server specification in general. In this client-server
setting, validations of methods’ pre-conditions are not carried out within meth-
ods’ implementations. It is the client’s responsibility to ensure that methods are
called with the right parameters. This reduces the size of implemented methods.
This is particularly important for smart cards whose generated byte-code can-
not be bigger than a certain limit to be installed on the smart card. We used
JML tool machinery to check that the methods are always called with the right
parameters throughout the whole application. This prevents programmers from
making validations both inside and outside methods, a common programming
mistake. Yet, we chose JML as the formal specification language, our ideas can
also be adapted to the development of C++ programs, with formal specifications
written in the ACSL (ANSI/ISO C Specification Language) [1] language instead,
and the verification work accomplished with the Frama-C Tool [7].

We want to emphasise the importance of thinking of invariant properties
when developing software. Thinking about invariants prior to writing code is a
practice to which programmers do not easily adhere. Having a formal specifi-
cation of an application and systematically using a tool, i.e. the JML Common
Tools, for checking the correctness of the code as it is written forces programmers
to think about how the written code affects the consistency and the correctness
of the whole program. It is our experience that invariants are the key notion in
formal software development that makes a difference with respect to traditional
(non formal methods based) software engineering methodologies [4]. In general,
programmers feel intimidated by the idea of coming up with an invariant. Often,
they design code that can make their programs be in an inconsistent state. We
strongly believe JML helps in this sense, from furnishing a friendly Java-like syn-
tax, to making it possible to use first-order logic predicates in JML specifications
naturally.

Finally, the HealthCard application consists of 20 interfaces, 16 concrete
classes, and 174 KB in total, with about 4300 lines of code, of which 50% are
specifications, 42% are code, and 8% include both specifications and code. The
whole development can be reached at https://sourceforge.net/projects/-
healthcard/. It took about 4 months time to the second and third authors to

JFly: A JML-Based Strategy ... INForum 2010 – 29

write the HealthCard, supervised by the first author, who has a large experience
with JML.

References

1. P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto.
ACSL: ANSI/ISO C specification language. http://frama-c.cea.fr/download/-
plug-in development guide.pdf.

2. C. Breunesse, N. Catano, M. Huisman, and B. Jacobs. Formal methods for smart
cards: An experience report. Science of Computer Programming, 55(1-3):53–80,
March 2005.

3. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino,
and E. Poll. An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer (STTT), 7(3):212–232, June 2005.

4. N. Catano, F. Barraza, D.Garćıa, P. Ortega, and C. Rueda. A case study in JML-
assisted software development. In P. Machado, A. Andrade, and A. Duran, editors,
Brazilian Symposium on Formal Methods (SBMF), pages 5–21, August 2008.

5. N. Catano and T. Wahls. Executing JML specifications of java card applications: A
case study. In 24th ACM Symposium on Applied Computing, Software Engineering
Trac (SAC), Waikiki Beach, Honolulu, Hawaii, March 8-12 2009.

6. E. W. Dijkstra. A Discipline of Programming. Series in Automatic Computation.
Prentice Hall, Englewood Cliffs, New Jersey 07632, 1976.

7. The Frama-C Tool. http://frama-c.cea.fr.
8. M. Fraser, K. Kumar, and V. K. Vaishnavi. Strategies for incorporating formal

specifications in software development. Communincations of ACM, 37(10):74–86,
1994.

9. M. G. Ilieva and O. Ormandjieva. Automatic transition of natural language soft-
ware requirements specification into formal presentation. In Applications of Natural
Language to Information Systems (NLDB), pages 392–397, 2005.

10. R. A. Kemmerer. Integrating formal methods into the development process. IEEE
Software, 7(5):37–50, 1990.

11. G. Leavens, A. Baker, and C. Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. ACM SIGSOFT Software Engineering
Notes, 31(3):1–38, 2006.

12. J. Link. Unit Testing in Java. Morgan Kaufmann, 2003.
13. B. Meyer. Applying “design by contract”. Computer, 25(10):40–51, October 1992.
14. B. Meyer. Object Oriented Software Construction. Prentice Hall PTR, 1997.
15. L. Shaoying, A. Offutt, C. Ho-Stuart, Y. Sun, and M. Ohba. SOFL: a formal

engineering methodology for industrial applications. IEE Transactions on Software
Engineering, 24, 1998.

16. V. T. Vasconcelos, I. Nunes, and A. Lopes. Monitoring java code using ConGu.
In 19th International Workshop on Algebraic Development Techniques (WADT).
Universit di Pisa, 2008.

30 INForum 2010 Nestor Catano, João Pestana, Ricardo Rodrigues

Snapshot Isolation Anomalies Detection
in Software Transactional Memory

Ricardo J. Dias, João Costa Seco, and João M. Lourenço?

CITI — Departamento de Informática,
Universidade Nova de Lisboa, Portugal

{rjfd,joao.seco,joao.lourenco}@di.fct.unl.pt

Abstract. Some performance issues of transactional memory are caused
by unnecessary abort situations where non serializable and yet non con-
flicting transactions are scheduled to execute concurrently.
Smartly relaxing the isolation properties of transactions may overcome
these issues and attain considerable performance improvements. How-
ever, it is known that relaxing isolation restrictions may lead to runtime
anomalies. In some situations, like database management systems, devel-
opers may choose that compromise, hence avoiding anomalies explicitly.
Memory transactions protect the state of the program, therefore execu-
tion anomalies may have more severe consequences in the semantics of
programs. So, the compromise between a relaxed isolation strategy and
enforcing the necessary program correctness is harder to setup.
The solution we devise is to statically analyse programs to detect the kind
of anomalies that emerge under snapshot isolation. Our approach allows
a compiler to either warn the developer about the possible snapshot
isolation anomalies in a given program, or possibly inform automatic
correctness strategies to ensure Serializability.

Keywords: Snapshot Isolation, Serializable Anomalies, Software Trans-
actional Memory, Static Analysis

1 Introduction

Concurrent programming is becoming mainstream due to the widespread use of
multicore processors. Locks are an effective but low-level mechanism to control
concurrent threads of execution in such systems, and there is a clear demand for
more abstract programming mechanisms.

Concurrency control in Database Systems is achieved by using transactions,
that usually comply with the standard properties of atomicity, consistency, iso-
lation and durability (ACID). To achieve increased performance, transactional
? This work was partially supported by Sun Microsystems and Sun Microsystems
Portugal under the “Sun Worldwide Marketing Loaner Agreement #11497”, by the
Centro de Informática e Tecnologias da Informação (CITI), and by the Fundação
para a Ciência e Tecnologia (FCT/MCTES) in the Byzantium research project PT-
DC/EIA/74325/2006, research grant SFRH/BD/41765/2007, and the Streamline
research project PTDC/EIA-CCO/104583/2008.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 31–42

frameworks sometimes relax those properties and allow transactions to execute
under more relaxed isolation levels [17,1]. In particular, databases frequently
provide the developer the ability to choose among different isolation levels.

More relaxed isolation levels naturally lead to increased overall performance
of the transactional system, but also to the triggering of transactional anoma-
lies, such as dirty and unrepeatable reads. Serializability is the strongest isolation
level. Snapshot Isolation (SI) is a relaxed isolation level that also avoids anoma-
lies such as unrepeatable and dirt reads. However, SI still allows some other
transactional anomalies such as write skew and SI read-only [7]. Many database
applications are known to execute correctly under SI, thus making it a good
compromise between correction—which concurrency anomalies are admitted and
how do they affect the applications—and performance.

Transactional Memory (TM) was proposed as an alternative programming
abstraction for concurrency control in multithreaded programs [16,11]. TM frame-
works typically operate in full serializable mode and do not allow one to relax
the isolation level. Thus, the potential of Snapshot Isolation for performance
improvement, a de facto standard for the database world, has been neglected in
TM programming until now. Figure 1 illustrates the potential of such improve-
ment by means of a small experiment with a transactional memory benchmark
executed in a Sun Fire x4600 with 16 cores. The benchmark operates over a
linked list, executing insert, delete and lookup operations. In this example, one
can observe that while the Serializable version does not scale under the increas-
ing number of processors/threads, while the Snapshot Isolation version scales
almost linearly with the number of processors/threads (note that the scale in
the X-axis is logarithmic).

0

5000

10000

15000

20000

25000

30000

 1 2 4 8 16

T
ra

n
s
a
c
ti
o
n
s
/s

e
c
o
n
d

Number of threads

Ordered Linked List / 10000 keys / 50% updates

Serializable

Snapshot Isolation

Fig. 1. Snapshot Isolation vs. Serializability in Transactional Memory

The above example is a strong motivation to further study how to use relaxed
isolation levels, and in particular Snapshot Isolation, in the transactional memory
setting. Unlike the database approaches where a domain specific language (SQL)

32 INForum 2010 Ricardo J. Dias, João Costa Seco, João M. Lourenço

is used to model database accesses, TM programs are usually defined in a general
purpose programming language, and there is no evidence that there exists a large
set of applications that will also execute correctly under weaker TM isolation
levels without serious rewriting.

This work aims at asserting that a multithreaded transactional memory pro-
gram will not trigger the well known SI anomalies when executing under Snap-
shot Isolation, thus leading to non-serializable executions. In this case, the ap-
plication will execute as if under Serializable isolation level. Our work grounds
in previous work in static detection of SI anomalies in databases [7], but our
approach targets the very different domain of Transactional Memory.

As a testbed for our work, we defined a simple imperative language, with no
support for pointers. Each transaction is an instance of a program written in
this language. We perform a data-flow analysis over each program, extracting
the information necessary to detect if the concurrent execution of a set of trans-
actions will generate a serializable anomaly. If the analysis detects no serializable
anomalies, than the application will execute correctly. In the opposite, if seri-
alization anomalies are found, they should be considered as possible anomalies
and confirmed by other means, as our analysis allow for false positives.

The main contributions of this work include:

– A new data-flow analysis to extract information from transactional pro-
grams. This analysis will extract compact read- and write-sets in order to
define static dependencies between programs.

– The definition of static dependency between transactional programs using
the information retrieved from the static analysis.

– A version of the algorithm proposed in [7] to detect SI anomalies, adapted
and optimized for the TM setting. The algorithm will operate over a graph
of static dependencies between programs, and will determine if the execution
of such programs under SI will be serializable.

The rest of the paper is organized as follows: Section 2 describes the Snapshot
Isolation model and the definition of serializable anomalies using static depen-
dencies between programs. Section 3 describes the data-flow static method to
gather information about read and write accesses in transactional programs,
the procedure to generate the static dependencies using this information, and
the algorithm to detect serializable anomalies in the static dependency graph.
Section 4 discusses the relations among our work and the related ones. Finally,
Section 5 presents some concluding remarks and discusses our plans of evolution
of this work.

2 Snapshot Isolation

Snapshot Isolation [1] is a weaker isolation level than Serializable where each
transaction performs its read operations in a private snapshot of the state, taken
in the beginning of the transaction. All write operations performed by the trans-
action are stored in a local buffer. All read operations on data items previously
written by the transaction are performed from its local buffer.

JSnapshot Isolation Anomalies ... INForum 2010 – 33

Considering that the lifetime of a successful transaction is the time span
that goes from the moment it starts start(Ti) until the moment it commits
commit(Ti). Two successful transactions T1 and T2 are said to be concurrent if:

[start(T1), commit(T1)] ∩ [start(T2), commit(T2)] 6= ∅ (1)

The write operations of a transaction Ti are not visible to the remaining
concurrent transactions. When a transaction Ti is ready to commit, it obeys the
First-Commiter-Wins rule, which states that it can successfully commit only
if there is not a concurrent transaction Tk (i 6= k) which has committed write
operations to some item that Ti is also changing. This means that if there are
two concurrent transactions updating the same data item, only the first one to
commit will succeed.

Snapshot Isolation has some advantages over the Serializable isolation level.
By always reading from a snapshot, read-only transactions will never abort.
A read-only transaction Ti only sees committed results before start(Ti). Also,
read-only transactions will never make read-write transactions to abort.

Snapshot Isolation sounds very appealing, however its application may lead
to non serializable executions. These executions result in consistency anomalies
that may happen when using Snapshot Isolation [7], namely the write-skew and
SI read-only anomalies.

2.1 Static Isolation Anomalies

Other works have defined serializable anomalies under Snapshot Isolation in
terms of database program dependencies [7]. In this work we use the same static
dependency definition and adapt it for software transactional memory programs.

The SI anomalies can be described formally using static dependencies be-
tween transactional programs. Two transactional programs have a static depen-
dency between them if both programs access the same data item and at least one
of them performs a write access. Four types of static dependencies are defined
in [7]:

– Pi
x−ww−−−−→ Pj : The transaction resulting from the execution of program Pi

writes data item x and commits, and the transaction resulting from the
execution of program Pj also writes data item x and commits.

– Pi
x−wr−−−−→ Pj : The transaction resulting from the execution of program Pi

writes data item x and commits, and the transaction resulting from the
execution of program Pj reads data item x, written by Pi, and commits.

– Pi
x−rw−−−−→ Pj : The transaction resulting from the execution of program Pi

reads data item x and commits, and the transaction resulting from the ex-
ecution of program Pj writes data item x, read by Pi, and commits, and
programs Pi and Pj are not concurrent.

– Pi
x−rw⇒ Pj : The transaction resulting from the execution of program Pi reads

data item x and commits, and the transaction resulting from the execution
of program Pj writes data item x, read by Pi, and commits, and programs
Pi and Pj are concurrent.

34 INForum 2010 Ricardo J. Dias, João Costa Seco, João M. Lourenço

The first three dependencies are said to be non-vulnerable dependencies and the
last one is said to be a vulnerable dependency. Using these dependencies we can
build a Static Dependency Graph [7] (SDG) where programs correspond to nodes
and static dependencies correspond to edges.

The relation between the unsatisfiability of the Serializable property and
static dependencies between programs can be signalled by the existence of certain
kinds of dangerous structures in the SDG of an application.

Fekete et al. [7] defines the concept of dangerous structure in a static de-
pendency graph. He shows that if some SDG(A) has a dangerous structure
then there are executions of application A which may be not serializable, and
that if a SDG(A) does not have any dangerous structure then all executions of
application A are serializable.

Definition 1 (Dangerous structures) We say that a SDG(A) has a dan-
gerous structure if it contains nodes P , Q and R (not necessarily distinct) such
that:

– There is a vulnerable edge from R to P .
– There is a vulnerable edge from P to Q.
– Either Q = R or there is a path in the graph from Q to R; that is, (Q,R) is

in the reflexive transitive closure of the edge relationship.

The detection of dangerous structures in a SDG can be performed algorith-
mically.

We next show how to build an SDG by analyzing the source code of an appli-
cation and how to detect dangerous structures that point to possible anomalies.

3 Static Analysis

In this section we define a new static analysis procedure for a small impera-
tive language and describe how to build a Static Dependency Graph [7] with
the information given by the analysis. We next define how to detect execution
anomalies.

The following grammar defines the abstract syntax of an imperative lan-
guage:

〈E〉 ::= x | n | 〈E〉 op 〈E〉 | true | false | not 〈E〉
〈S〉 ::= x := 〈E〉 | skip | 〈S〉 ; 〈S〉

| if 〈E〉 then 〈S〉 else 〈S〉 | while 〈E〉 do 〈S〉
〈P 〉 ::= 〈S〉

This language has integer (n), boolean literals (true and false), and variables
(x). It contains the usual binary arithmetic, logic, and relational operations
(E1 op E2). The statements of the language include the conditional and loop
statement as well as the variable assignment. We consider that an application
is a set of programs defined over a set of shared variables, and each program
corresponds to a single memory transaction. We apply the analysis separately
to each program.

JSnapshot Isolation Anomalies ... INForum 2010 – 35

3.1 Read-Write Analysis

In order to define static dependencies between programs we need to know which
data items are read or written by each program that comprises an application.
Thus, we use a standard data-flow static analysis to obtain the set of variables
read or written by a program. For that purpose we have defined a custom lattice
and the appropriate transfer functions.

We establish a state for each shared variables for each node in the control-
flow graph of a program. The state of a shared variable is a pair of values of
the set Γ = {?,M,m,>}. The first component of the pair indicates if a variable
was read—its read state—and the second component of the pair indicates its
write state. A “?” value in the read/write state for a variable x means that x
is not read/written by the program. A “M ” value in the read/write state for a
variable x means that x is indeed read/written by the program. A “m” value in
the read/write state for a variable x means that x may be read/written by the
program (it is read/written in at least one possible execution path, but not in
all). In Figure 2 is depicted the relation order of the lattice Γ .

6 Ricardo J. Dias, João Costa Seco, and João M. Lourenço

(E1 op E2). The statements of the language include the conditional and loop
statement as well as the variable assignment. We consider that an application
is a set of programs defined over a set of shared variables, and each program
corresponds to a single memory transaction. We apply the analysis separately
to each program.

3.1 Read-Write Analysis

In order to define static dependencies between programs we need to know which
data items are read or written by each program that comprises an application.
Thus, we use a standard data-flow static analysis to obtain the set of shared
variables read or written by a program. For that purpose we have defined a
custom lattice and the appropriate transfer functions.

We establish a state for each shared variables for each node in the control-
flow graph of a program. The state of a shared variable is a pair of values of
the set Γ = {?, M, m,�}. The first component of the pair indicates if a variable
was read—its read state—and the second component of the pair indicates its
write state. A “?” value in the read/write state for a variable x means that x
is not read/written by the program. A “M ” value in the read/write state for a
variable x means that x is indeed read/written by the program. A “m” value in
the read/write state for a variable x means that x may be read/written by the
program (it is read/written in at least one possible execution path, but not in
all). In Figure ?? is depicted the relation order of the lattice Γ .

�

? M

m

Fig. 2. Lattice Γ order relation diagram.

We now define the data-flow transfer functions over a lattice defined over the
set Υ = Γ ×Γ ×V ar. The elements of the tuples denote the read state the write
state and a shared variable (V ar). An element of set Υ of the form (M,m)x

means that variable x is read in every possible execution of the program and is
written at least in one possible execution of the program (but not all).
The transfer functions Zen and Zex map the labels of a control flow to Υ :
Zen, Zex : Label −→ Υ .

Labels are identifiers of the program nodes in the control flow graph (CFG).
Each node in the CFG as an entry and an exit point, and functions Zen and Zex

correspond to the entry and exit points respectively.

Fig. 2. Lattice Γ order relation diagram.

We now define the data-flow transfer functions over a lattice defined over the
set Υ = Γ ×Γ ×V ar. The elements of the tuples denote the read state the write
state and a shared variable (V ar). An element of set Υ of the form (M,m)x

means that variable x is read in every possible execution of the program and is
written at least in one possible execution of the program (but not all).
The transfer functions Zen and Zex map the labels of a control flow to Υ :
Zen, Zex : Label −→ Υ .

Labels are identifiers of the program nodes in the control flow graph (CFG).
Each node in the CFG as an entry and an exit point, and functions Zen and Zex

correspond to the entry and exit points respectively.
We define the analysis as a backward procedure by the following functions

Zen and Zex:

Definition 2 (Exit function)

Zex(l) =

{{
(?, ?)x |x ∈ FV (P)

}
if l = final(P)

u{Zen(l′) | (l′, l) ∈ flowR(P)
}

otherwise
(2)

36 INForum 2010 Ricardo J. Dias, João Costa Seco, João M. Lourenço

where P represents the program we are analyzing, and final(P) denotes the
final label that program. flowR(P) denotes the set of reversed edges of the
CFG. The operator u denotes the greatest lower bound of the sets given by
Zen. In the beginning of the analysis, the subset of Υ is initialized with all
variables belonging to the set of Free Variables and their state is set to (?, ?)
(not read nor written). The second entry of this function uses the greatest lower
bound operator u to join the information from more than one node, e.g., the
then and else branches. Because we are using backward analysis, the beginning
corresponds to the final label of the program.

Before we present the definition of the Zen function we need to define a
binary operator ⊕ which is used to modify the read/write state of a variable in
a subset of Υ , (⊕ : Υ × Υ −→ Υ): For all sets U, V ⊆ Υ , U ⊕ V = U \ {(t, s)x :
(t, s)x ∈ U ∧x ∈ V ars(V)

}∪V . Where V ars(V) denotes the set of the variables
present in V . The intuition of the operator ⊕ is: given U ⊆ Υ , which corresponds
to the original set, and V ⊆ Υ which corresponds to the set with the modified
elements, the U ⊕ V operation will remove the elements of U which are also in
V that have the same variable, and will return the set of the unmodified values
of U with the values of V . This operator is used to override the read/write state
of a variable by removing the previous information (in U) and adding the new
information (in V). Now we will define the Zen function:

Definition 3 (Entry Function)

Zen(l) =

Zex(l)⊕ {(M, σ̂y(Zex(l))
)
y

: ∀y ∈ FV (E)
}

⊕{(σ̄x(Zex(l)),M
)
x

} if Bl = [x := E], where
Bl ∈ blocks(P)

Zex(l)⊕ {(M, σ̂y(Zex(l))
)
y

: ∀y ∈ FV (E)
} if Bl = [E], where

Bl is an elementary
block with label l

Zex(l) otherwise
(3)

Functions σ̄/σ̂ denote the value of the read/write state of a single variable
(σ̄, σ̂ : V ar× Υ −→ Γ). The FV (P) function represents the set of free variables
in program P .

The first case of Definition 3 introduces the modifications to the read/write
state caused by an assignment block, where we change the write state of the
assigned variable to M . We also change the read state of all free variables on
the right side of the assignment to value M . The second case of the definition
treats the evaluation of an expression where we change the read state of all the
expression’s free variables to valueM . The last case in the definition corresponds
to the unmodified propagation of the read/write state.

JSnapshot Isolation Anomalies ... INForum 2010 – 37

3.2 Generating Static Dependencies

If we consider an application as a set of programs that maybe launched in paral-
lel, and given the read/write set analysis for all those programs, as described in
Sect. 3.1, we can compare the set of read and write states of each program with
all the other programs and create a Static Dependency Graph (SDG). Since
we do not know a priori what programs will execute in parallel we pessimisti-
cally assume that all programs are concurrent even with several instances of
themselves. Building a SGD graph requires

(
n
2

)
+ n comparisons. If we consider

a large number of programs running in parallel, this may become unbearable.
Other techniques can be used, such as the May-Happen-in-Parallel Analysis by
Duesterwald and Soffa [5], to determine which programs will execute in parallel
and hence help reducing the complexity of the graph construction procedure.

For all pair of programs (Pi, Pj) we compare the two corresponding read-
/write states (subsets of Υ resulting from the R/W analysis) and produce a
static dependency in the graph. The kind of dependency created depends on the
read/write state and also varies if the two programs are concurrent or not. We
say that two programs Pi and Pj are not concurrent if they have a write state
M for the same variable. By the First-Commiter-Wins rule the execution of
these two programs is always synchronized and if they run in parallel, one will
necessarily abort.

There is a dependency relation between two programs if both access at least
one shared data item that is modified by at least one of those programs. Static
dependencies are defined from the analysis as follows:

Definition 4 [Static Dependencies]
For all programs Pi, Pj in an application, and with the read/write states

Ui, Uj ⊆ Υ where Ui is the read/write state of Pi and Uj is the read/write state
of Pj. If there is a variable x such that (_, w)x ∈ Ui and (r,_)x ∈ Uj where
w 6= ? and r 6= ? then:

1. if (_, α)x ∈ Ui and (_, β)x ∈ Uj where α 6= ? and β 6= ? then Pi
ww−−→ Pj

2. if (_, α)x ∈ Ui and (β,_)x ∈ Uj where α 6= ? and β 6= ? then Pi
wr−−→ Pj

3. if (α,_)x ∈ Ui and (_, β)x ∈ Uj where α 6= ? and β 6= ?, and Pi and Pj

are not concurrent then Pi
rw−−→ Pj

4. if (α,_)x ∈ Ui and (_, β)x ∈ Uj where α 6= ? and β 6= ?, and Pi and Pj

are concurrent then Pi
rw⇒ Pj

It is important to note that comparing two programs P1 and P2 implies
comparing them in both directions. Most of the times this comparison generates
dependencies in both ways. For instance, if we consider programs P1 and P2 such
that U1 = {(M,m)x} and U2 = {(m,M)x}, if we compare U1 with U2 there is
a dependency P1

wr−−→ P2 because P1 may write variable x that is later read by
P2, and there is also a dependency P2

wr−−→ P1 because P2 may write variable x
which may be read by P1.

38 INForum 2010 Ricardo J. Dias, João Costa Seco, João M. Lourenço

P1 P2x-rw
x-rw

Fig. 3. An SDG with a cycle of read-write dependencies for the same variable.

Note that we generate non-vulnerable dependencies if we know that programs
Pi and Pj are not concurrent. Otherwise we generate vulnerable dependencies
between them.

As an example, consider the program P with state U = {(M,m)x, (?,m)y}
resulting from its data flow analysis. If we compare program P with itself the
dependencies generated according to Definition 4 are:

– P
ww−−→ P : several instances of P write variable x or y.

– P
wr−−→ P : P may write variable x, which is read by another instance of P .

– P
rw⇒ P : P reads variable x which may be written by another instance of P .

Filtering False Positives When traversing the edges in a SDG, consider
the situation presented in Figure 3 where there are two vulnerable read-write
dependencies for the same variable x forming a cycle between P1 and P2. In
this case, the application of Definition 1 would identify this as a dangerous
structure. Note that P1 has an incoming vulnerable edge from P2 and has an
outgoing vulnerable edge to P2, and there is (null length) path cyclic from P2

to itself.
Now, consider an execution H with two transactions T1 and T2, result of

the execution of P1 and P2 respectively. We argue that is not possible to define
an execution H under Snapshot Isolation if there is a transactional dependency
T1

x−rw−−−−→ T2 and a transactional dependency T2
x−rw−−−−→ T1. Consider that T1 is

executing concurrently with T2 and there is a dependency T1
x−rw−−−−→ T2 which

states that T1 reads variable x and T2 writes variable x, and there is also a
dependency T2

x−rw−−−−→ T1 which states that T2 reads variable x and T1 writes
variable x. This means that T1 and T2 are concurrent, that both write to variable
x, and that both commit. However, by the First-Committer-Wins rule, one of
the two transactions should have aborted, hence it is not possible to define such
an execution. This incompatibility between edges also applies to the other kind
of dependencies.

Given these observations, if we apply the definition of dangerous structures
(Definition 1) to the SDG of Figure 3 and follow the edge P1

rw⇒ P2 then we can
ignore the edge of the same kind for the same variable in the opposite direction,
the edge P2

rw⇒ P1.
An extension to Definition 1 was made to enable the check for incompatible

edges. Algorithm 1 presents the pseudo-code to detect dangerous structures. The
compatible function will test if an edge e is compatible with the history of edges
already visited.

JSnapshot Isolation Anomalies ... INForum 2010 – 39

Algorithm 1: Dangerous Structure detection algorithm with incompati-
bility check.

Data: nodes[], edges[], visited[]
Result: true or false
initialization;
foreach Node n : nodes do

foreach Edge in : incoming(n, edges) do
if vulnerable(in) then

add(visited, in);
foreach Edge out : outgoing(n, edges) do

if vulnerable(out) and compatible(out, visited) then
add(visited, out);
if existsPath(target(out), source(in), visited) then

return true;
end

end
end

end
end
clear(visited);

end
return false;

4 Related Work

Software Transactional Memory (STM) [16,11] (TM) is a new approach to con-
current programming, promising both, an efficient usage of parallelism and a
powerful semantics for concurrency constraint. STM applies the concept of trans-
actions, widely known from the Databases community, into the management of
data in main memory. STM promises to ease the development of scalable parallel
applications with performance close to finer grain locking but with the simplicity
of coarse grain locking.

Memory transactions must only ensure two of the ACID properties: Atomic-
ity and Isolation. The Consistency property is more relaxed as volatile memory
does not have a fixed logical structure, like a database system does, over which
one can make referential consistency assertions. And the Durability property
may be dropped, as memory transactions operate in volatile memory (RAM), a
non-persistent data storage.

In the past few years, several STM frameworks have been developed. Most
of the STM frameworks take the form of software libraries, providing an API
to export the transactional interface to the application [4,2,11,13]. This library-
based approach allows the rapid prototyping of algorithms and their performance
evaluation. Some other STM frameworks extend existing programming languages
with transactional constructs supported directly by the compiler [10,8,14]. Most
of these frameworks focus in managed languages such as Java, C#, and Haskell,
while some other target unmanaged languages like C and C++.

40 INForum 2010 Ricardo J. Dias, João Costa Seco, João M. Lourenço

All the above referenced works implement Serializable isolation to guarantee
the correct execution of transactional memory programs. Only [15] implements
a STM using Snapshot Isolation called SI-STM. In this work, the authors also
proposed a SI safe version where SI anomalies were automatically avoided by
the algorithm. Our approach is different since we do not require modifications
to existing SI algorithms and we perform a static analysis to assert if a program
will execute correctly under SI. To our best knowledge there is no other work
in software transactional memory that follows this static approach to detect
Serializable anomalies.

The use of Snapshot Isolation in databases is a common place, and there
are some works related to the detection do SI anomalies. Our work is clearly
inspired in [7]. This work proposes a static analysis methodology for database
applications aiming at detecting SI anomalies. Their static analysis was described
informally and was applied ad-hoc to the database benchmark TPC-C. The
work presented in [12] describe a prototype which was already able to analyze
database applications automatically, and also presented some solutions to reduce
the number of false positives, but shared the theoretical base with [7]. There is
another work described in [3] that detect and prevent SI anomalies dynamically
with runtime information in database applications.

5 Concluding Remarks

Although static verification of Snapshot Isolation anomalies is not a new topic
in database applications, in software transactional memory the use of Snapshot
Isolation is much unexplored. The transactional anomalies triggered by the use
of SI in transactional memory programs have strong impact in the execution
correctness of such programs and is a major drawback to its widespread.

With this preliminary work we show that it may be possible to give stronger
guarantees of correct execution under SI which allows to further explore SI al-
gorithms in the context of STMs. We presented a simple data-flow analysis to
extract the information of read and write accesses to variables in transactional
programs. It gives good results as it does not allow any false negatives but allows
some false positives which requires the programmer to verify by hand. Future
work will target more complex language with pointers, and also towards tech-
niques to correct programs that are detected to have Serializable anomalies,
without changing its semantics and with low impact in their performance.

References

1. Hal Berenson, Phil Bernstein, Jim N. Gray, Jim Melton, Elizabeth O’Neil, and
Patrick O’Neil. A critique of ansi sql isolation levels. In SIGMOD ’95: Proceedings
of the 1995 ACM SIGMOD international conference on Management of data, pages
1–10, New York, NY, USA, 1995. ACM.

2. João Cachopo and António Rito-Silva. Versioned boxes as the basis for memory
transactions. Sci. Comput. Program., 63(2):172–185, 2006.

JSnapshot Isolation Anomalies ... INForum 2010 – 41

3. Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. Serializable isolation for snap-
shot databases. ACM Trans. Database Syst., 34(4):1–42, 2009.

4. Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In Distributed
Computing, volume 4167, pages 194–208. Springer Berlin / Heidelberg, October
2006.

5. Evelyn Duesterwald and Mary Lou Soffa. Concurrency analysis in the presence of
procedures using a data-flow framework. In TAV4: Proceedings of the symposium
on Testing, analysis, and verification, pages 36–48, New York, NY, USA, 1991.
ACM.

6. K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of consistency
and predicate locks in a database system. Commun. ACM, 19(11):624–633, 1976.

7. Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Den-
nis Shasha. Making snapshot isolation serializable. ACM Trans. Database Syst.,
30(2):492–528, 2005.

8. Pascal Felber, Christof Fetzer, Ulrich Müller, Torvald Riegel, Martin Süßkraut, and
Heiko Sturzrehm. Transactifying applications using an open compiler framework.
In Proceedings of the 2nd ACM SIGPLAN Workshop on Transactional Computing,
August 2007.

9. Tim Harris and Keir Fraser. Language support for lightweight transactions. In
OOPSLA ’03: Proceedings of the 18th annual ACM SIGPLAN conference on
Object-oriented programing, systems, languages, and applications, pages 388–402,
New York, NY, USA, 2003. ACM.

10. Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Compos-
able memory transactions. In PPoPP ’05: Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel programming, pages 48–60, New
York, NY, USA, 2005. ACM.

11. Maurice Herlihy, Victor Luchangco, Mark Moir, and III William N. Scherer. Soft-
ware transactional memory for dynamic-sized data structures. In PODC ’03: Pro-
ceedings of the twenty-second annual symposium on Principles of distributed com-
puting, pages 92–101, New York, NY, USA, 2003. ACM.

12. Sudhir Jorwekar, Alan Fekete, Krithi Ramamritham, and S. Sudarshan. Automat-
ing the detection of snapshot isolation anomalies. In VLDB ’07: Proceedings of the
33rd international conference on Very large data bases, pages 1263–1274. VLDB
Endowment, 2007.

13. Dalessandro Luke, Virendra J. Marathe, Michael F. Spear, and Michael L. Scott.
Capabilities and limitations of library-based software transactional memory in
c++. In Proceedings of the 2nd ACM SIGPLAN Workshop on Transactional Com-
puting, Portland, OR, August 2007.

14. Yang Ni, AdamWelc, Ali-Reza Adl-Tabatabai, Moshe Bach, Sion Berkowits, James
Cownie, Robert Geva, Sergey Kozhukow, Ravi Narayanaswamy, Jeffrey Olivier,
Serguei Preis, Bratin Saha, Ady Tal, and Xinmin Tian. Design and implementation
of transactional constructs for c/c++. SIGPLAN Not., 43(10):195–212, 2008.

15. Torvald Riegel, Christof Fetzer, and Pascal Felber. Snapshot isolation for software
transactional memory. In TRANSACT06, Jun 2006.

16. Nir Shavit and Dan Touitou. Software transactional memory. In PODC ’95:
Proceedings of the fourteenth annual ACM symposium on Principles of distributed
computing, pages 204–213, New York, NY, USA, 1995. ACM.

17. Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System Con-
cepts. McGraw-Hill, fifth edition, 2006.

42 INForum 2010 Ricardo J. Dias, João Costa Seco, João M. Lourenço

Lightweight Type-Like Hoare-Separation
Specs for Java

Tiago Santos

Departamento de Informática FCT/UNL, Lisboa, Portugal
tiago.santos@fct.unl.pt

Abstract. Type systems are effective but not very precise, while pro-
gram logics tend to be very precise, but undecidable. The aim of this
work is extend the expressiveness of more familiar type-based verifica-
tion towards more informative logical reasoning, without compromising
soundness and completeness. We thus investigate a lightweight speci-
fication language based on propositional logic for Java and describe a
prototype implementation on top of Polyglot. The verification process is
modular and based on Dijkstra’s weakest precondition calculus, which
we extend to a large fragment of the Java object-oriented language. A
distinguishing aspect of our approach is a novel “dual” separation logic
formulation, which combines Hoare logic with separation logic reasoning
in a unified way, allowing us to handle aliasing through a separation of
pure from linear properties.

Keywords: Lightweight Specifications, Static Analysis, Verifying Com-
piler, Hoare Logic, Separation Logic, Weakest Precondition Calculus

1 Introduction

Over the past decades, specification, verification and validation of software present
a very important role in software development, since they guarantee correctness
and the absence of runtime errors statically, reducing maintenance and devel-
opment costs. Last year marked the fortieth anniversary of Hoare’s article that
contributed to the revolution of this subject [1, 2].

The use of formal methods for verifying program properties has witnessed
an impulse recently, with tools and programming languages (e.g. ESC/Java2 [3],
JACK [4], Spec# [5]) that have great expressiveness power and allow static
verification of programs. However, most of them require user interaction and
have very complex specification language, which are obstacles for their use.

Lightweight specification languages, on the other hand, thought presenting
less expressiveness, still allow reasoning about interesting properties of a system
with less effort, thus making its usage compelling in software development.

Figure 1 illustrates a simple example of how to specify the absolute value of
a number, ensuring that the result is never negative (ensures !return:neg).
Other motivating examples are the specification of a buffer, where one can write
only if there are free positions and read if the buffer has data; protocols that

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 43–54

public int abs(int x)

ensures !return:neg

{

if (x > 0) return x;

else return -x;

}

Fig. 1. Specification – Absolute Value of a Number

follow a similar approach, such as specifying an FTP session; and simpler situa-
tions, like ensuring that a given variable is not null, avoiding invalid dereferences.
With our solution, these checks can be specified in a simple way and with little
impact on the compilation process.

This paper presents a lightweight specification language and its integration
into the Java programming language, by extending its type system and creating
a verifying compiler. This extension, called SpecJava, allows the use of assertions
in the Java language, providing developers a way to write correct programs ac-
cording to their specifications. The specifications can be expressed in a simple
way when compared to existing tools and the verification process is fully auto-
matic. The main contributions of this paper are:

– a lightweight specification language for Java and the underlying logic (Sect. 2);
– the technique used to verify a SpecJava program (Sect. 3);
– the implementation of SpecJava (Sect. 4).

2 Lightweight Specification Language

SpecJava’s specification language is similar to JML [6] and Spec# [5], but is
lightweight and based on a monadic dual logic. It is simpler, not presenting, for
example, quantifiers and reference to the value of an expression in its precondi-
tion and uses a novel approach to handle aliasing by separating pure from linear
properties. Like JML and Spec#, we use the reserved keywords requires and
ensures to describe, respectively, pre and postconditions of a procedure. As for
class and loop invariants, we use also the keyword invariant.

2.1 Dual Hoare-Separation Logic

In this section we present the underlying logic of the developed specification
language denoted dual logic. The purpose of defining a new logic comes from
the need of having aliasing control on our specification language, since we are
extending an object-oriented language where alias can occur. The original Hoare
Logic was designed for an imperative programming language with only simple
values, where therefore aliasing does not cause any problems.

As the name suggests, a dual logic formula is composed by two components
(Fig. 2): the left side (φ), named pure formula, composed by a single formula in
propositional logic, states properties of immutable objects, or objects that cannot

44 INForum 2010 Tiago Santos

ψ ::= φ+ ϕ (Dual Formula)
ϕ ::= ∅ | φ | φ ∗ ϕ (Linear Formula)
φ ::= (Classic Formula)

⊥ (Bottom)
| φ lc φ (Binary Formula)
| ¬φ (Negation)
| (φ) (Parenthesized Formula)
| P (t1, t2, · · · , tn) (Predicate Symbols)

lc ::= ∨ | ∧ | ⇒ | ⇔ (Logical Connectives)
t ::= (Terms)

c (Constants)
| x (Variables)
| f(t1, t2, · · · , tn) (Function Symbols)

Fig. 2. Dual Logic Syntax

be aliased (e.g. primitive types of Java) and the right side (ϕ), named linear
formula, composed by a set of classic formulas in propositional logic, models the
linear part of the heap (inspired by separation logic [7]). The formulas in the
linear side are disjoint, in the sense that two formulas can not refer to a same
linear object, and each formula only talks about a single linear object. Note
the existence of predicates and functions that allow, respectively, to express
properties (such as relations between two terms for e.g. >(2, 3)) and compose
constants and variables with operators to do certain computations (e.g. −(2, 3)).

We can also state specific zones of the heap on which we want to mention
properties by using heap restriction, defined as follows.

Definition 1 (Heap Restriction). Let ϕ be a linear formula and x1, x2, · · · , xn

linear variables, then ϕ ↓ {x1, x2, · · · , xn} is named restricted linear formula to
x1, x2, · · · , xn, that is, the subset of formulas contained in ϕ that correspond to
the variables x1, x2, · · · , xn.

In addition to this definition, we can exclude parts of the heap over which we
do not intend to refer properties.

Definition 2 (Heap Exclusion). Let ϕ be a linear formula and x1, x2, · · · , xn

linear variables, then ϕ − {x1, x2, · · · , xn} is named linear formula excluding
x1, x2, · · · , xn, that is, the subset of formulas contained in ϕ that do not contain
information of variables x1, x2, · · · , xn.

As an example, in Fig. 3, we define a linear formula (ϕ) and apply the two
previous definitions.

ϕ ≡ P1(x) ∗ P2(y) ∗ P3(z)
ϕ↓{x, z} = P1(x) ∗ P3(z)

ϕ− {x, z} = P2(y)

Fig. 3. Heap Restriction and Exclusion Example

Lightweight Type-Like Hoare-Separation INForum 2010 – 45

2.2 Assertions

In this section we present the abstract syntax of SpecJava’s assertions. As we can
see in Fig. 4, this allows to describe the state in which certain objects or primi-
tive types are, specifically, fields (fn), procedures parameters (pn) and methods
return (return), or the state of the class itself (this). States are composed
by a set of basic states, which apply to primitive types. For primitive boolean
variables, we associate the states true and false and for numeric variables, we
associate pos, neg or zero. With regard to object references, these can be null
references (null), or refer to states defined in the class of the object type (sn).

D ::= CF + SLF (Dual Formula)
SLF ::= CF | CF * SLF (Sep. Formula)
CF ::= true | false | CF bop CF | !CF | b : S (Classic Formula)
bop ::= && | || | => | <=> (Logical Connectives)
b ::= fn | this | return | pn (Properties/States – Target)
S ::= true | false | pos | neg | zero | null | sn (Properties/States)

pn, sn, fn ∈ parameter/state/field names

Fig. 4. Abstract Syntax – Assertions

2.3 Classes

In this section we present the abstract syntax for classes. As we can see in Fig. 5
the novelty is the class specification. An invariant declared as invariant D
express a property that all classes instances must satisfy. A class preserves its
invariants if all methods preserve those invariants. However, contrarily to Spec#,
where we can only temporarily break invariants via an explicit statement, in our
solution invariants can be broken during a method’s execution, as long as they
are restored at the end. The constructors must guarantee also, in addition to
their postconditions, the invariants of the class.

In addition to class invariants, class level specifications are composed by two
other constructions, to define states/properties associated to the class. These can

classDecl ::= class cn { classMember∗ } (Class Declaration)
classMember ::= . . . | field | method | constructor | classSpec (Class Member)
classSpec ::= (Class Specification)

define sn; (Abstract Definition)
| define sn = D; (Concrete Definition)
| invariant D; (Class Invariant)

field ::= T fn (= E)? ; (Instance Variable)

mn, cn, sn, fn ∈ method/class/state/field names

Fig. 5. Abstract Syntax – Classes

46 INForum 2010 Tiago Santos

be concrete or abstract, and are declared as define sn = D and define sn, re-
spectively. Concrete definitions are built based on states/properties observed in
class instance variables and/or other definitions at class level (abstract or con-
crete). Abstract definitions represent class abstract states/properties, without
using other definitions and/or states observed in class instance variables.

2.4 Procedures

In this section we present the abstract syntax for procedures. Methods and
constructors specification consists of two formulas concerning to preconditions
and postconditions, declared as requires D, ensures D, respectively (Fig. 6).

method ::= modifier T mn(arg) spec { ST } (Method Declaration)
constructor ::= modifier cn(arg) spec { ST } (Constructor Declaration)
modifier ::= static | . . . | pure (Modifiers)
spec ::= (Procedure Specification)

requires D (Precondition)
| ensures D (Postcondition)

ST ::= ... (Statement)
| assume D (Assume)
| sassert D (Static Assert)

mn, cn ∈ method/class names

Fig. 6. Abstract Syntax – Procedures

The preconditions of a procedure specify conditions that must be true at the
beginning of its execution. In these conditions we can refer to properties from
the class, fields, and method parameters. With respect to postconditions, they
designate the object state after performing the operation, and may involve, in
their conditions method’s return state.

In addition to these specifications, assume and assert statements are also
supported, with the usual meaning of assuming or verifying a condition at a
given point by using assume D and sassert D, respectively. Last but not least,
to specify that a procedure do not change the state of an object, Java modifiers
are extended with the keyword pure.

As an example, in Fig. 7 we create a buffer class with the states full and
empty (Fig. 7a) and the respective constructor with a specification to ensure
that the buffer is created empty (Fig. 7b).

3 Program Verification

This section presents the verification process of a SpecJava program. Our ap-
proach is based on the weakest precondition calculus (wp-calculus, Definition 3),
initially proposed by Dijkstra [8, 9], that extended Hoare Logic [1] by creating

Lightweight Type-Like Hoare-Separation INForum 2010 – 47

public class Buffer {

define empty = count:zero;

define full;

private int buffer[];

invariant + !buffer:null;

...

private int count;

invariant !count:neg;

...

}
(a) Class Specification

public Buffer(int size)

requires size:pos

ensures + empty && !full

...

{ ...

assume + empty && !full;

}

public pure int dataSize()

ensures return:zero

|| return:pos

{ sassert !count:neg;

return count;

}
(b) Procedures Specification

Fig. 7. SpecJava – Buffer Specification Example

a method to define the semantics of an imperative programming language, as-
signing to each statement a predicate transformer, allowing validity verification
of a Hoare Triple. In this work, we propose an extension to that calculus, for an
object-oriented language, in this case Java. According to the properties referred
in [9, pp. 18:19], to prove that a SpecJava program is correct against its specifi-
cation, it is necessary to associate to each statement its predicate transformer.

Definition 3 (Weakest Precondition). Let S be a sequence of statements
and R its postcondition, then, the corresponding weakest precondition is repre-
sented as:

wp (S, R)

Figures 8 and 9 illustrate the more relevant weakest preconditions rules,
which concern to loops, object creation and non-void method invocation.

Figure 8 presents wp-calculus for pure statements. In loops, the loop con-
dition (ε) must be pure, composed only by constants or variables of primitive
types. Regarding to object creation, these have to be immutable or pure. In this
approach an object is considered pure if all methods of the object class are pure.
For non-void method invocation the return value is also pure. We can see that
the weakest precondition rule for loop is quite simple and corresponds to its
invariant, since the invariant must hold in every iteration of the loop and it also
must be valid at the beginning of the loop, corresponding to the premises of the
rule.

Concerning to object creation, it is necessary to have as its weakest precon-
dition, on the pure side of the result, in respect to a postcondition C + S the
class constructor precondition of the object that we are instantiating, and also
that we end in a state whose constructor postcondition implies C. For the linear
part of the result, since we can have linear arguments we must assure as weakest
precondition the constructor precondition, remaining all the facts of elements

48 INForum 2010 Tiago Santos

[loop]

(I ∧ ¬ε)⇒ R (I ∧ ε)⇒ wp(ST, I)

wp

(
while (ε)

invariant I
ST

, R

)
= I

[pure creation]

S↓{z} = ∅

wp(x = new cn(y, z), C+S) =

QcnA

[p1/y]
∧ f 6= null

∧
RcnA

[this/f, p1/y]

⇒ C[x/f]

+

(
QcnB

[p2/z]
∗

S − {z}

)

[pure non-void call]

S↓{z} = ∅

wp(x = k.mn(y, z), C+S) =

k 6= null ∧QmnA

[this/k, p1/y]
∧ k 6= null

∧
RmnA

[this/k, p1/y, return/f]

⇒ C[x/f]

+

(
QmnB

[p2/z]
∗

S − {z}

)

Qmn/Qcn ∈ method/constructor precondition
Rmn/Rcn ∈ method/constructor postcondition

ε ∈ pure expression
p1/y ∈ pure formal/concrete parameters
p2/z ∈ linear formal/concrete parameters

f ∈ fresh name

Fig. 8. WP Calculus – Pure Rules

that are not affected by the procedure call on the heap, through heap exclusion
(cf. Definition 2) of the constructor linear parameters. For non-void method in-
vocation the weakest precondition is similar to object creation, but in addition
we must guarantee that we are not doing a null reference invocation (k 6= null).
We can see also that we replace x and the return variable by a fresh name f
in the pure side, because the result is pure and we are assigning a new value
to the variable x that corresponds to the newly created object or the result of
the method. Last but not least, we also need to have the auxiliary condition in
the premise, which allow us to check that the postcondition S does not refer to
states of the linear parameters, assuring the linearity of our calculus.

Figure 9 shows weakest precondition calculus for linear statements. As we can
see these rules are quite similar to pure statements weakest precondition calculus.
For procedures we must exclude variable x from the heap (cf. Definition 2)
because now x is linear and we are assigning it a new value that does not exist
at the precondition state. For methods we must also guarantee that we exclude
information about the object where we are calling the method because since the
call is not pure we assume that the state of the object changes. In respect to
linear assignment, this is similar to Hoare assignment rule and we must guarantee
as precondition that variable y acquire x properties by replacing all occurrences
of x by y.

As for the auxiliary conditions in the premises, we must check in object
creation and method call that after the invocation we end in a state where the

Lightweight Type-Like Hoare-Separation INForum 2010 – 49

[linear assign]

S↓{y} = ∅
wp(x = y, C+S) = C+S[x/y]

[linear creation]

S↓{z} = ∅ true+

((
x 6= null ∧ RcnB

[this/f]
)
⇒ S↓{x, z}[x/f]

)

wp(x = new cn(y, z), C+S) =

(
QcnA

[p1/y] ∧(
RcnA

[p1/y]⇒ C
))+

(
QcnB

[p2/z] ∗ S−{x, z}
)

[linear non-void call]

S↓{z} = ∅ true+

((
k 6= null ∧ RmnB

[this/k, return/f]
)
⇒ S↓{k, x, z}[x/f]

)

wp(x = k.mn(y, z), C+S) =

(
QmnA

[p1/y] ∧(
RmnA

[p1/y]⇒ C
))+

((
k 6= null ∧QmnB

[this/k, p2/z]
)
∗

S − {k, x, z}

)
Qmn/Qcn ∈ method/constructor precondition
Rmn/Rcn ∈ method/constructor postcondition

p1/y ∈ pure formal/concrete parameters
p2/z ∈ linear formal/concrete parameters

f ∈ fresh name

Fig. 9. WP Calculus – Linear Rules

procedure’s postcondition implies the linear zone of the heap modified by the
procedure, by restricting the heap (cf. Definition 1) and that the postcondition
S does not refer to states of the linear parameters. It is still necessary to verify,
in linear assignment that we do not have information of variable y on the linear
side of the heap, since our calculus is linear and the state of y is transfered to x
after the assignment, removing all the facts of y from the heap.

To verify that a program is correct according to its specification, the following
Hoare Triples must be valid:

∀mn : { Qmn ∧ Ic } ST { Rmn ∧ Ic }
∀cn : { Qcn } ST { Rcn ∧ Ic } ,

where ST is the procedure body, composed by a sequence of statements and
Ic corresponds to class invariants. Thus, methods must preserve class invariants
and constructors in addition to its postconditions must assure also the class
invariants.

Supposing that we have a SpecJava program, we want to verify that it is
valid against its specification using the above mentioned weakest precondition
calculus. The verification process is modular, that is, only one procedure at a
time is verified. Considering the body of a procedure of this language as the
statements sequence s1, s2, . . . , sn with precondition { Q } and postcondition
{ R }, by applying wp-calculus rules, we obtain as a final result the more general
precondition ({ Q0 }). After this process, for the program to be valid according
to its specification, the precondition of the procedure has to imply the more
general one (Q⇒ Q0).

50 INForum 2010 Tiago Santos

The formulas obtained in the verification conditions generation process are
formulas in propositional logic, unlike other situations where are generated for-
mulas in first order logic, due to quantifiers, which are not present in the devel-
oped specification language, therefore reducing them to a propositional calculus.
A formula in propositional logic is said to be satisfiable if we can assign logical
values to its variables so that the formula is true. This boolean satisfiability
problem is NP-complete, thought is decidable and can be solved using a SAT-
Solver. However, the formulas obtained by our calculus contain, uninterpreted
predicates and functions that require specific background theories to be solved.
For obtaining solutions to these problems, is common to use SMT-Solvers [10].

Despite of an NP-complete problem, there are finite algorithms for obtaining
solutions to these problems. However these algorithms execution time may be
too high due to the size of the formulas to be verified. Although, we think that
this is not a problem to this solution, since it is modular, procedure by procedure,
and the size of the formulas is not very high.

4 Implementation

This section presents some implementation details of our system. The extension
of the Java language was implemented using the Polyglot tool [11], which im-
plements an extensible compiler for Java 1.4. This tool is also implemented in
Java and, in its simplest form only, performs semantics verification of Java. How-
ever, it can be extended in order to define changes in the compilation process,
including changes in the abstract syntax tree (AST) and semantic analysis.

Polyglot has been used in several projects and has proved to be quite useful
when developing compiler extensions to Java-like languages. This work’s speci-
fication language was fully integrated in the Java compiler, extending the Java
syntax with the language proposed in Sect. 2.

The verification process of a program was integrated into Polyglot compila-
tion passes. In addition we extended the semantics verification and typification
with new conditions, like not allowing to state a linear property on a pure for-
mula, properties that are not declared, assuring that primitive types only refer to
base properties, etc. We developed an internal representation for propositional
and dual logic formulas aiming an independent format that can be used by
any SMT-Solver. We have also implemented a visiting architecture over formu-
las to perform operations needed by wp-calculus, such as variable substitution,
conversion to conjunctive normal form, obtaining pure and linear variables of
a formula, etc. As for the wp-calculus, it is realized in a new pass, after type
checking, that goes through each procedure generating the corresponding verifi-
cation conditions. After this step another pass translates the generic formulas to
the SMT-Solver representation and submits it for validity proof. Thus by using
this architecture the verification process is independent from a particular SMT-
Solver until the submission point, allowing further extensions to any SMT-Solver
just by adding a class that translates the generic formulas to the solver’s input
format or the recently used SMT-lib format. The current SMT-Solver used is

Lightweight Type-Like Hoare-Separation INForum 2010 – 51

SpecJava
Source
Code

SpecJava
AST

Java AST
+

Serialized
Type Information

Bytecode
+

Serialized
Type Information

SpecJava
Parser

Compiler
Passes

Code
Generation

Type Builder, Imports,
Type Checking, Exceptions

Checking, VC Generation, etc

Fig. 10. SpecJava Compiler Architecture

CVC3, it is efficient and has the necessary built-in theories (equality over unin-
terpreted function and predicate symbols, real and integer linear arithmetic) to
prove our verification conditions.

We illustrate the compiler architecture of the developed language in Fig. 10.
First, the source code is parsed, generating the corresponding AST. Next, sev-
eral passes are performed over the AST, including the passes described above. In
these passes, if any error occurs (e.g. typing, invalid specification), the compila-
tion process terminates showing the cause of the error, the location in the source
code and a counter-example, in case of invalid specification. In a next stage, the
AST is translated into a Java AST with type information serialized, preserving
new types created by the extension. Finally, the Java code obtained from the
previous pass is compiled to bytecode by a standard Java code compiler (e.g.
javac).

5 Related Work

There are lots of tools and programming languages that support program verifi-
cation according to its specification (e.g. ESC/Java2 [3], Eiffel [12], Spec# [5]).
Some of them, like Eiffel, transform program specification into executable code
and perform those verifications at runtime, while others also support formal veri-
fication of a program with static analysis (e.g. Spec#). There are four properties
that characterize these tools: specification language used, programming language
coverage, verification techniques and verification mode.

Regarding the specification language used, tools like ESC/Java2, LOOP [13],
JACK [4] and Forge [14] use JML. In KeY [15] specifications are written in OCL.
Spec# programming language and jStar [16] tool, have their own specification
language. Spec#’s specification language is similar to JML and jStar’s is far-
most different from the others. In our approach, the specification language is
closer to Spec# and JML, but with the novelty of separating pure from linear
properties, modeling the heap on the linear side of a formula to track aliasing
problems, that cannot be expressed on those languages. Spec#, instead, uses a
ownership model to deal with aliasing and specifies frame conditions explicitly
by using a modifies clause denoting which pieces of the program state a method
is allowed to modify.

As for programming language coverage, Spec# and ESC/Java2 cover most of
their respective target languages’ constructions. In ESC/Java2 it is also possible

52 INForum 2010 Tiago Santos

to detect synchronization errors such as race conditions and deadlock situations
at compile time. Certain tools do not support some features of Java such as
dynamic class loading or multithreading (e.g. KeY, Forge, LOOP). In this ver-
sion of our solution some features of Java are not supported, like inheritance,
exceptions, break, continue and switch statements, interface specifications.

With regard to verification techniques, there are several approaches. ESC/-
Java2, LOOP, JACK and Spec# use Dijkstra weakest precondition calculus or
variants to generate verification conditions. KeY tool uses dynamic logic, where
deduction is based on symbolic execution of the program. Forge uses a tech-
nique named limited verification that uses symbolic execution and reduces the
problem to boolean variables satisfiability. As for jStar, it combines abstract
predicate family with symbolic execution and abstraction using separation logic.
LOOP defines a denotational semantics in PVS, in contrast to the approaches
followed by ESC/Java2, JACK and Spec# that depend directly on an axiomatic
semantics. Our approach is based on a variant of Dijkstra wp-calculus to object-
oriented languages resembling ESC/Java2, JACK and Spec# and also depends
on an axiomatic semantics.

Finally, with regard to verification mode, in ESC/Java2, Forge, jStar and
Spec# the verification process is fully automatic, as our SpecJava. LOOP tool
needs user intervention. KeY and JACK support both modes.

With these tools we can verify a program against its specification. They have
high expressiveness level and allow very complex specification. However, this is
the main reason for its rejection by developers, who in general do not have high
expertise in logic, nor intend to deal with all the complex mechanisms that are
associated with most of these tools. Another point is the fact that most tools
are not native to the respective programming language, which forces the use of
separated tools in the software development process. On the other hand, our
work has less expressive power, but still allows interesting specifications to be
written, and its simplicity is appealing to developers.

6 Concluding Remarks and Future Work

In this paper we presented a lightweight specification language for Java, its inte-
gration in the compilation process, extending the checks carried out by the type
system, and the underlying calculus of the verification process of a SpecJava
program. The lightweight specification language developed is closer to JML and
Spec#, it is based on propositional logic and is quite intuitive, allowing devel-
opers to specify their programs easily and check them automatically at compile
time.

This work contributes for a better and easier integration of program verifica-
tion during its development by augmenting the programming language design.
For future work we highlight the following points:

– extend wp-calculus to support inheritance and exception mechanisms;
– support specification at interface level and in separated files, allowing core

Java classes specification;

Lightweight Type-Like Hoare-Separation INForum 2010 – 53

– support break and continue statements, that change the execution flow of
a program.

Acknowledgments. I would like first to thank Prof. Lúıs Caires for his guid-
ance throughout the development of this work. I thank to Mario Pires and Lúısa
Lourenço for their comments on previous versions of this paper.

References

1. C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communications
of the ACM, 12(10):576–580, October 1969.

2. C. A. R. Hoare. Retrospective: An Axiomatic Basis for Computer Programming.
Communications of the ACM, 52(10):30–32, 2009.

3. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, et al. Extended Static
Checking for Java. In PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Confer-
ence on Programming language design and implementation, pages 234–245. ACM,
New York, NY, USA, 2002.

4. G. Barthe, L. Burdy, J. Charles, et al. JACK – a tool for validation of security
and behaviour of Java applications. Lecture Notes in Computer Science, 4709:152,
2008.

5. Mike Barnett, Leino, and Wolfram Schulte. The Spec# Programming System: An
Overview, volume 3362/2005 of Lecture Notes in Computer Science, pages 49–69.
Springer, Berlin / Heidelberg, January 2005.

6. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A Notation for Detailed
Design, 1999.

7. John C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures.
Logic in Computer Science, Symposium on, 0:55–74, 2002.

8. Edsger W. Dijkstra. Guarded Commands, Nondeterminacy and Formal Derivation
of Programs. Communications of the ACM, 18(8):453–457, August 1975.

9. Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Inc., October
1976.

10. L. De Moura and N. Bjørner. Satisfiability Modulo Theories: An Appetizer. Formal
Methods: Foundations and Applications, pages 23–36, 2009.

11. Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: An
Extensible Compiler Framework for Java. In 12th International Conference on
Compiler Construction, pages 138–152. Springer-Verlag, 2003.

12. Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall PTR, sec-
ond edition, March 2000.

13. B. Jacobs and E. Poll. Java Program Verification at Nijmegen: Developments and
Perspective. Lecture Notes in Computer Science, pages 134–153, 2004.

14. G.D. Dennis. A Relational Framework for Bounded Program Verification. PhD
thesis, Massachusetts Institute of Technology, 2009.

15. Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, et al. The KeY tool. Software
and Systems Modeling, pages 32–54, April 2004.

16. Dino Distefano and Matthew. jStar: Towards practical verification for Java. SIG-
PLAN Not., 43(10):213–226, 2008.

54 INForum 2010 Tiago Santos

Monitorização da Correcção de Classes Genéricas ?

Pedro Crispim, Antónia Lopes, and Vasco T. Vasconcelos

Faculdade de Ciências, Universidade de Lisboa,
Campo Grande, 1749–016 Lisboa, Portugal,

{pedro.crispim,mal,vv}@di.fc.ul.pt

Resumo Dado que os genéricos se tornaram muito populares nas linguagens de
programação OO, o facto de um método formal não suportar genéricos limita ex-
traordinariamente a sua utilidade e eficácia. De forma a ultrapassar este problema
no CONGU, uma abordagem à monitorização da correcção de programas Java
face a especificações algébricas, propusemos recentemente uma noção de mapa
de refinamento que permite definir uma correspondência entre especificações pa-
ramétricas e classes genéricas. Baseados nestes mapas, definimos uma noção de
correcção de programas face a especificações. Neste artigo, propomos uma forma
de monitorizar, em tempo de execução, esta noção de correcção e apresentamos a
solução de desenho que suporta este processo na versão 2 da ferramenta CONGU.

1 Introdução

A especificação formal é uma actividade importante no processo de desenvolvimento
de software já que, por um lado, auxilia a compreensão e promove a reutilização e, por
outro, possibilita a utilização de ferramentas que analisam automaticamente a correcção
das implementações face ao especificado. Uma das formas de proceder à analise auto-
mática da fiabilidade de componentes de software é através da verificação em tempo
de execução (runtime verification). Esta abordagem envolve a monitorização e análise
das execuções do sistema; à medida que o sistema executa é testada a correcção do
comportamento dos componentes relativamente ao que foi especificado.

Apesar dos genéricos se terem tornado muito populares em linguagens como o Java
e o C#, as técnicas e ferramentas disponíveis para verificar a correcção de implemen-
tações face a especificações não são utilizáveis quando há classes genéricas envolvi-
das. Este era também o caso do CONGU, uma abordagem à monitorização da correc-
ção de programas Java face a especificações algébricas que temos vindo a desenvolver
[7,13]. A ferramenta CONGU que apoia esta abordagem é, há vários anos, intensiva-
mente usada pelos nossos alunos na disciplina de Algoritmos e Estruturas de Dados. Os
alunos recebem especificações formais dos tipos de dados que têm de implementar e
recorrem à ferramenta para ganhar confiança relativamente à correcção das classes que
produzem. Uma vez que os genéricos são extremamente úteis na implementação de ti-
pos de dados em Java, a partir do momento em que passámos a fazer uso dos genéricos
na disciplina, o facto do CONGU não suportar genéricos tornou-se um problema. Deci-
didos a ultrapassá-lo, começámos por desenvolver uma noção de mapa de refinamento
? Este trabalho foi financiado parcialmente pela FCT através do projecto QUEST, PTDC/EIA-

EIA/103103/2008.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 55–66

que permite definir uma correspondência entre especificações paramétricas e classes
genéricas [12]. Baseados nestes mapas, definimos uma noção de correcção de imple-
mentações face a especificações mais abrangente. Este trabalho preparou o terreno para
a extensão da abordagem CONGU que se apresenta neste artigo. Discute-se ainda a
forma como foi concretizada esta extensão na nova versão da ferramenta.

A solução para o problema da monitorização de programas Java que foi desenvol-
vida de forma a acomodar os genéricos, e que é descrita neste artigo, é substancialmente
diferente da usada anteriormente no CONGU [13]. Anteriormente, a estratégia passava
por trocar as classes originais por classes proxy que usavam classes geradas automati-
camente, anotadas com contractos monitorizáveis, escritos em JML [10]. Os principais
aspectos inovadores da solução adoptada no CONGU2 são: (i) a introdução de meca-
nismos que permitem lidar com as classes genéricas e os seus parâmetros e verificar
que estão correctas face ao especificado; (ii) o facto de se ter abandonado a geração de
classes proxy (que traziam problemas quando as classes originais faziam uso de certas
primitivas da linguagem Java, como classes internas ou anotações) e se ter passado a
utilizar a instrumentação dos binários Java; (iii) o facto de se ter abandonado o JML (o
qual não suporta genéricos) e se ter passado a gerar código que, recorrendo a asserções
Java, trata directamente da monitorização das propriedades especificadas.

O artigo está estruturado da seguinte forma. A secção 2 fornece uma visão abran-
gente do CONGU. A secção 3 apresenta a noção de correcção de programas e discute
a forma como as propriedades de objectos induzidas pelas especificações podem ser
monitorizadas. A solução que foi concretizada no CONGU2 é apresentada na secção 4.
O artigo termina apresentando as conclusões na secção 5.

2 Visão geral da abordagem CONGU

O CONGU suporta a monitorização da correcção de programas Java face a especifica-
ções algébricas. Nesta secção, recorrendo a um exemplo simples, fornece-se uma visão
geral da abordagem, focada essencialmente em aspectos que são visíveis aos seus utili-
zadores: as especificações, os módulos e os mapas de refinamento.

O exemplo escolhido foram as listas com fusão, um tipo de listas (i) cujos elementos
são “fundíveis” e (ii) que têm uma operação — mergeInRange — que funde os elemen-
tos da lista num determinado intervalo de posições i...j. A figura 1 mostra os três ele-
mentos envolvidos na especificação deste tipo de dados: ListWM, Mergeable e LWM.
ListWM é um exemplo de uma especificação paramétrica, enquanto que Mergeable é
um exemplo de uma especificação simples (usada como parâmetro na primeira).

Cada especificação introduz um único género. No exemplo, Mergeable define o gé-
nero simples com o mesmo nome enquanto que ListWM introduz um género composto
ListMW[Mergeable]. O género int é primitivo na linguagem.

Cada especificação declara um conjunto de operações e predicados, classificando-os
como constructors, observers ou others. As operações classificadas como constructors
são aquelas com as quais se podem construir todos os valores do género. As restan-
tes operações e predicados permitem obter informação adicional acerca de valores do
género ou oferecem formas alternativas de os construir e, portanto, recebem como argu-
mento um valor do género (por convenção, no primeiro). A classificação das operações

56 INForum 2010 Pedro Crispim, Antónia Lopes, Vasco T. Vasconcelos

Figura1. Os três elementos envolvidos na especificação do tipo de dados listas com fusão.

como observers ou others apenas se reflecte na estrutura sintáctica dos axiomas que
podem ser usados para definir as suas propriedades. As propriedades dos observers têm
de ser expressas usando construtores no primeiro argumento e variáveis nos restantes,
enquanto que no caso dos others podem ser usados variáveis em todos os argumentos.

Porque as operações podem ser parciais, cada especificação define as situações em
que operação parcial tem de estar definida — a chamada condição de domínio. Por
exemplo, em ListWM, a operação get é declarada como sendo parcial e é definido que
get(L, I) tem de estar definida se I é um índice da lista L.

A ligação entre diferentes especificações é realizada através de um elemento adi-
cional — os módulos (LWM, no nosso exemplo). Nestes módulos, as especificações
identificadas como core definem os tipos de dados que têm de ser implementados en-

Monitorização da Correcção de Classes Genéricas INForum 2010 – 57

Figura2. The interface Mergeable<E> e an excerpt of the Java class MyListWMerge<E>.

quanto que as parameter não carecem de implementação; servem apenas para impor
limitações à instanciação de certos tipos.

Suponha-se que temos uma implementação candidata para o módulo LWM e que
gostaríamos de verificar a sua correcção. Primeiro, é necessário estabelecer uma cor-
respondência entre o género definido por cada especificação core S de LWM e um tipo
Java T definido por uma das nossas classes. Mais ainda, precisamos de estabelecer
uma correspondência entre as operações e predicados de S e os métodos e construtores
de T . No CONGU, esta correspondência é definida através de um mapa de refinamento.
Este permite ainda ligar as especificações parâmetro com as variáveis de tipo das clas-
ses genéricas: cada género definido por uma especificação parâmetro S é ligada a uma
variável de tipo E e cada operação/predicado de S é ligada a uma assinatura de método.

Suponha-se que a implementação candidata para o módulo LWM consiste na classe
MyListWMerge e no interface Mergeable apresentados na figura 2. Na figura 3 é esta-
belecida uma correspondência entre LWM e esta implementação. Esta faz corresponder
o género ListWM[Mergeable] ao tipo definido por MyListWMerge e as operações e pre-
dicados do primeiro aos métodos e construtores do segundo. Por exemplo, o make é en-
viado para o construtor MyListWMerge() e o add é enviado para o método addFirst.

O primeiro argumento de uma operação corresponde sempre ao objecto this e,
portanto, uma operação é enviada sempre para um método com menos um argumento.
Apenas as operações declaradas como constructors podem ser enviadas em construc-
tores Java. Os predicados são sempre enviados para métodos cujo tipo de retorno é
boolean. As operações que produzem elementos do género definido pela especifica-
ção são enviadas para métodos que tanto podem ser void como retornar um elemento
do tipo correspondente. Desta forma é possível considerar tanto implementações com
objectos mutáveis como imutáveis. No nosso exemplo, a classe MyListWMerge for-

58 INForum 2010 Pedro Crispim, Antónia Lopes, Vasco T. Vasconcelos

Figura3. Um mapa de refinamento de LWM para {MyListWMerge<E>, Mergeable<E>}.
nece uma implementação de listas mutáveis e, portanto, as operações que produzem
valores do género ListWMerge[Mergeable] são todas enviadas para métodos void.

O refinamento apresentado na figura 3 também estabelece a correspondência entre
o género Mergeable e a variável de tipo E e define que a operação merge corresponde a
um método com assinatura E merge(E e).

Uma vez definido o refinamento, o CONGU instrumenta MyListWMerge.class de
forma a que, durante a execução de qualquer programa que use a classe MyListWMerge,
a correcção do comportamento da classe seja verificada. Adicionalmente, o comporta-
mento das classes que no programa instanciam MyListWMerge<E> é também veri-
ficado face ao especificado em Mergeable. Por exemplo, se o nosso programa inclui
a classe Color que implementa Mergeable<Color> e, uma outra classe que cria e
manipula objectos do tipo MyListWMerge<Color>, o comportamento de Color é ve-
rificado face ao especificado em Mergeable.

3 Correcção de Programas face a Especificações

Nesta secção apresentamos a noção de correcção de programas que é considerada no
CONGU2 e discutimos os aspectos mais importantes da abordagem CONGU à monito-
rização desta correcção.

3.1 Propriedades de objectos induzidas por especificações

A correcção de um programa Java face a um módulo é definida tendo por base um mapa
de refinamento estabelecendo uma ligação entre os dois lados. Na secção anterior foram
mencionadas algumas das condições que a ligação de operações e predicados a métodos
e construtores Java tem de obedecer. A ligação entre especificações e classes Java está
sujeita a outras condições, capturadas na definição de mapa de refinamento.

Monitorização da Correcção de Classes Genéricas INForum 2010 – 59

Um mapa de refinamento consiste num conjunto V (variáveis de tipo) equipadas
com uma pre-ordem < e uma funçãoR que envia: (1) cada especificação simples e core
numa classe não genérica; (2) cada especificação paramétrica e core numa classe gené-
rica com a mesma aridade; (3) cada especificação core que define um género s < s′,
para uma subclasse de R(S′), onde S′ é a especificação que define s′; (4) cada es-
pecificação parâmetro numa variável de tipo V ; (5) cada operação de uma especifica-
ção core num método da correspondente classe; (6) cada operação de uma especifica-
ção parâmetro numa assinatura de um método. Adicionalmente, (7) se uma especifica-
ção parâmetro S′ define um sub-género do género definido na especificação S, então
R(S′) < R(S); (8) se S é uma especificação paramétrica com parâmetro S′, então tem
de ser possível assegurar que qualquer tipo C que possa ser usado para instanciarR(S)
tem métodos com as assinaturas definidas por R para a variável de tipo R(S′) depois
de trocar todas as ocorrências deR(S′) por C.

Note-se que, no nosso exemplo, a condição (8) verifica-se porque MyListWMerge
impõe que E extends Mergeable<E>. Uma vez que o interface Mergeable declara
o método E merge(E e), E só pode ser instanciado com classes C que implementem
Mergeable<C> e, portanto, está assegurado que C tem o método C merge(C e).

SejaR um mapa de refinamento entre um móduloM e um programa Java J . Para
J estar correcto face a M, (i) as propriedades especificadas em M e (ii) as proprie-
dades algébricas da noção de igualdade têm de ser verdadeiras em todas as possíveis
execuções de J .

As propriedades de uma especificação core S restringem o comportamento dos ob-
jectos do tipo TS = R(S), enquanto que as propriedades de uma especificação S que é
parâmetro, por exemplo S′[S], restringem o comportamento dos objectos dos tipos TS

em J que sejam usadas para instanciar a variável de tipoR(S′). As restrições impostas
por axiomas e condições de domínio são diferentes:
Axiomas. Cada axioma de uma especificaçãoS define uma propriedadespara os objec-

tos do tipo TS que tem de ser verdadeira em todos os estados do objecto que sejam
visíveis para o cliente.
Considere-se, por exemplo, o primeiro axioma do get em ListWM[Mergeable]. Se
lwm é um objecto do tipo MyListWMerge<C>, está sujeito à seguinte propriedade:
para todo o e de tipo C, se e!=null, então após a execução de lwm.addFirst(e),
lwm.get(0).equals(e) é verdadeira.

Domínios. Cada condição de domínio φ de uma operação op de uma especificação S
define que, para todo o objecto do tipo TS , sempre que φ é verdadeiro, a invocação
deR(op) tem de retornar normalmente, sem levantar qualquer excepção.

As propriedade de objectos induzidas pelos axiomas e domínios que foram apresentadas
definem uma noção de correcção. O CONGU usa, por omissão, uma noção mais forte
que também impõe restrições aos clientes da classe TS , quando invocam o método
R(op). É exigido a estas classes que não passem o valor null como argumento aR(op)
e que só invoquem o método quando a sua condição de domínio é verdadeira.

3.2 Monitorização das propriedades dos objectos
A estratégia usada no CONGU para monitorizar a correcção de um programa consiste
em verificar os invariantes induzidos pelos axiomas no final de métodos específicos, de-

60 INForum 2010 Pedro Crispim, Antónia Lopes, Vasco T. Vasconcelos

terminados pela estrutura dos axiomas. No caso dos axiomas em que a operação/predi-
cado tem como primeiro argumento uma operação construtora, o invariante é verificado
no final do método que refina a referida operação construtora. Por exemplo, o invariante
induzido pelo primeiro axioma de get é verificado no final de void addFirst(E e)

através da execução do seguinte código, onde eOld é uma cópia de e obtida à entrada
do método.
if (eOld != null) {

E e2 = this.clone().get(0);
assert(e2 != null && e2.equals(eOld));

}

Note-se que todas as invocações que são realizadas de forma a verificar uma pro-
priedade são realizadas sobre clones, se possível. De outra forma, os efeitos colate-
rais destes métodos afectariam os objectos monitorizados. Se o clone não é suportado,
assume-se que os objectos da classe são imutáveis. De forma semelhante, o segundo
axioma de get é verificado pelo seguinte código:
if (eOld ! = null)

for (int i: rangeOfInt)
if (i>0 && i<this.clone().size()) {

E e2 = this.clone().get(i);
assert((i-1)>=0 && (i-1)<thisOld.clone().size());
E e3 = thisOld.clone().get(i-1);
assert(e2!=null && e3!=null && e2.equals(e3));

}

onde rangeOfInt, de tipo Collection<Integer>, é preenchido com os inteiros que
são usados como argumento ou valores de retorno de algum dos métodos da classe.
Apesar de neste caso, por se tratar de um tipo de dados primitivo, ser fácil arranjar
outras formas de obter os valores do domínio alvo da quantificação universal, isto não
acontece em geral. A estratégia adoptada, que passa por coleccionar os elementos do
domínio que atravessam a fronteira da classe, é uma forma relativamente simples e leve
de ter uma população representativa do domínio em causa.

Por outro lado, as propriedades induzidas por axiomas que têm uma variável como
primeiro argumento da operação são verificadas no final do método que refina essa
operação. Por exemplo, o último axioma de ListWM, que descreve uma propriedade de
isEmpty, é verificado no final do método boolean isEmpty() pelo seguinte código,
onde result é o valor de retorno de boolean isEmpty().

if (result) assert(thisOld.clone().size()==0);

A igualdade entre inteiros é convertida em comparações com == enquanto que a
igualdade de um género não primitivo, s, é convertida na invocação do método equals
da classe TS . É assim essencial que todas as classes envolvidas definam uma imple-
mentação apropriada deste método que, em particular, deve considerar dois objectos
iguais apenas se têm comportamentos equivalentes quando se consideram os métodos
que refinam alguma das operações de s (i.e., são equivalentes do ponto de vista do seu
comportamento).

A correcção do equals é monitorizada no final deste método. Por exemplo, a mo-
nitorização de boolean equals(Object other) em MyListWMerge envolve:

Monitorização da Correcção de Classes Genéricas INForum 2010 – 61

Module
Analyser

Specification
Analyser

Refinement
Analyser

Bytecode
Analyser

Módulo
.module

Especificações
.spc*

Classes
Originais
.class*

Refinamento
.rfn

Assertion
Generator

MP Classes
Generator !"#"$%

Classes
Resultado

.class*

B
lackboard

Legenda

Ficheiro

Componente

Fluxo Dados

Executa antes

Bytecode
Manipulator

Figura4. A arquitectura do CONGU2.

if (result)
for (int i: rangeOfInt)

if (i>=0 && i<thisOld.clone().size()
&& i<otherOld.clone().size()) {

E e1 = thisOld.clone().get(i);
E e2 = otherOld.clone().get(i);
assert(e1!=null && e2!=null && e1.equals(e2));

}

Finalmente, a verificação de que as classes clientes não invocam um método que
refina uma operação quando a condição de domínio é falsa, nem passam o valor null
como argumento, pode ser facilmente realizada no início do método. Por exemplo, no
caso do método void set(int i,E e), isto é verificado por:

assert(e != null && i >= 0 && i < this.clone().size());

4 CONGU2

A versão 2 da ferramenta CONGU implementa a monitorização da correcção de pro-
gramas Java descrita na secção anterior. Como mostrado na Figura 4, a ferramenta
recebe um módulo, especificações, um mapa de refinamento e os binários de um pro-
grama Java. O programa é então transformado de forma a que, quando é executado
com o CONGU, seja monitorizada a sua correcção. Isto é alcançado através da inter-
cepção de todas as chamadas a métodos que refinam alguma operação/predicado, e
redireccionado-as para classes monitoras de propriedades.

A ferramenta executa duas tarefas principais: a análise das diferentes fontes de input
e a geração das classes de output. Na tarefa de análise, os maiores desafios colocados
pela extensão da abordagem a especificações paramétricas e classes genéricas surge
na análise dos refinamentos. Em 4.1 discute-se como foram endereçados estes desafios.

62 INForum 2010 Pedro Crispim, Antónia Lopes, Vasco T. Vasconcelos

Apresentam-se depois os aspectos chaves da tarefa de geração: em 4.2, a instrumentação
dos binários e, em 4.3, a geração das classes monitoras das propriedades.

4.1 Análise do mapa de refinamentos

A extensão do CONGU levanta vários desafios ao nível da análise dos refinamentos
já que a verificação de várias condições a que os refinamentos têm de obedecer exige
investigar os binários das classes referidas. Isto é alcançado recorrendo às capacidades
de reflexão oferecidas pelo pacote java.lang.reflection do API do Java.

O processo de análise dos refinamentos tem duas fases: a primeira focada nas classes
que refinam os géneros das especificações core e a segunda na verificação de condições
relacionados com os géneros das especificações parâmetro.

A verificação de que um tipo não genérico tem os métodos mencionados no refina-
mento é bastante simples, já que basta obter o método especificado e depois verificar
que o seu tipo de retorno é o esperado. A situação complica-se no caso de tipos ge-
néricos por causa do mecanismo conhecido como type erasure, o qual torna um tipo
genérico num raw type (substituindo todas as ocorrências das variáveis de tipo pelos
seus limites superiores [8]). Por esta razão, é preciso uma estratégia mais sofisticada
para verificar que uma classe genérica tem os métodos mencionados num refinamento:
primeiro é preciso obter todos os métodos da classe e, para cada um destes, obter os
seus tipos de parâmetros e o seu tipo de retorno genéricos e, depois, é preciso verifi-
car se algum destes métodos é o esperado (um processo que tem de ser recursivo na
estrutura dos tipos).

Na segunda fase da análise dos refinamentos são endereçadas as condições relaci-
onadas com os géneros das especificações parâmetro. Recorde-se que, neste caso, os
géneros não são refinados em tipos concretos e o que é preciso é assegurar que as clas-
ses que podem instanciar a correspondente variável de tipo têm os métodos necessários.
Por exemplo, no nosso caso, nesta fase é verificado que toda a classe C que pode instan-
ciar E em MyListWMerge<E> tem um método com a assinatura C merge(C e). Isto é
conseguido recorrendo aos limites superiores de E em MyListWMerge (no nosso caso
há só um, mas em geral podem ser vários). Os métodos cuja assinatura envolve o E só
precisam de ser pesquisados nos limites que também dependem de E (no nosso caso, o
método E merge(E e) é procurado em Mergeable<E>).

4.2 Instrumentação dos binários

A monitorização dos programas Java assenta na intercepção das chamadas aos méto-
dos relevantes por classes clientes. No CONGU2, esta intercepção é realizada através
da instrumentação dos binários. As chamadas interceptadas são traduzidas em chama-
das de um método correspondente numa classe monitora de propriedades, gerada pela
ferramenta. Os principais desafios que este processo coloca são os seguintes:

Chamadas Internas. Como interceptar apenas as chamadas externas? As chamadas
internas não podem ser monitorizadas, caso contrário o programa não termina.

Chamadas de super-classes. As chamadas de dentro de super-classes também não po-
dem ser interceptadas.

Construtores. Como interceptar e redireccionar as chamadas aos construtores?

Monitorização da Correcção de Classes Genéricas INForum 2010 – 63

Clone e equals. O que fazer quando estes métodos não são redefinidos na classe?

A estratégia adoptada foi renomear todo o método m que precisa de ser intercep-
tado (passa a chamar-se m_Original) e substituí-lo por um método com o mesmo in-
terface, que redirecciona a chamada para ClassPMonitoring.m(this, ...). Por
outro lado, as chamadas internas são trocadas por chamadas ao método na sua forma
renomeada. De forma semelhante, as chamadas a este método nas super-classes são
também trocadas por chamadas ao método renomeado, o qual também é acrescentado
nestas classes. Relativamente aos construtores, a sua intercepção é realizada de uma
forma idêntica à dos métodos, apenas com a salvaguarda de que os construtores exigem
chamadas de inicialização, as quais são removidas do método renomeado e inseridas
no método que o substitui. O mesmo é feito para o equals e clone. Se a classe não
redefine o equals, então é primeiro criado este método, o qual delega a chamada na
super-classe. Se a classe não anuncia implementar Cloneable ou não redefine o mé-
todo como público, então é gerado um método clone_Original que simplesmente
retorna this (recorde-se que neste caso se assume que os objectos da classe são imu-
táveis). O método gerado é para exclusivo uso do processo de monitorização.

A implementação desta estratégia para instrumentação dos binários recorre à bibli-
oteca de manipulação de bytecode ASM [4]. O ASM é uma biblioteca leve e eficiente,
que, disponibilizando um API simples e bem documentado, suporta completamente o
Java 6 e é distribuído sob uma licença open-source que possibilita a conveniente inclu-
são no pacote da ferramenta CONGU2.

4.3 Geração das Classes Monitoras de Propriedades

A monitorização das propriedades de objectos descrita na sub-secção 3.2 é executada
por classes geradas pela ferramenta, a que chamámos classes-MP. Para cada classe C
cujo comportamento precisa de ser monitorizado é gerada uma classe-MP, cujo nome
resulta de juntar o sufixo PMonitoring ao nome de C.

Cada método que é interceptado tem um equivalente na respectiva classe-MP, na
forma de um método de classe com o mesmo nome e tipo de retorno e cujos argumentos
são os do método original mais um argumento callee com o tipo C (uma referência do
objecto alvo da invocação original) e outro flag com o tipo Booleano (indicando se deve
ser realizada a monitorização de propriedades).

A estrutura do corpo destes métodos segue o seguinte padrão: (1) guardar à entrada
do método os valores dos vários argumentos; (2) verificar que a condição de domínio é
verdadeira (apenas no caso da noção de correcção forte) e os argumentos não são null;
(3) chamar o método original sobre o callee e guardar o valor de retorno, (4) verificar
as propriedades requeridas e (5) retornar o valor de retorno original. Os passos (2) e (4),
que são apenas executados se a flag é verdadeira, usam dois métodos de classe auxilia-
res, respectivamente, mPre e mPos. Estes testam as propriedades do objecto callee de
acordo com o descrito em 3.2 mas, em vez de chamarem os métodos originais, chamam
os equivalentes na respectiva MP-classe, com a flag a falso (ver figura 5).

No passo (3), além de ser invocado o método original, é verificado que se a con-
dição de domínio é verdadeira, então o método retorna normalmente. A chamada ao
método original é envolvida por um try-catch, de forma a poder assinalar uma violação

64 INForum 2010 Pedro Crispim, Antónia Lopes, Vasco T. Vasconcelos

:Client :MyListWMerge :MyListWMergePMonitoring

mergeInRange(i, j)
mergeInRange(this, i, j, true)

clone_Original()
thisOld = clone(this, false)

mergeInRangePre(this, i, j, false)
mergeInRange_Original(i, j)

mergeInRangePos(this, thisOld, i, j, false)

Figura5. Processo desencadeado por uma chamada externa a mergeInRange(int,int).

da correcção do programa sempre que a condição do domínio é verdadeira e o método
original levantar uma excepção. Se, pelo contrário, a condição de domínio for falsa,
qualquer excepção apanhada é relançada.

Tudo o que foi até aqui descrito aplica-se a classes que refinam géneros core ou são
usadas para instanciar uma classe genérica que refina um género core. No entanto, a
monitorização das propriedades das especificações parâmetro exige um nível adicional
de indirecção. Seja C uma classe genérica com parâmetro E que refina uma especifica-
ção S[S′]. Apesar de uma classe usada para instanciar E em C ter uma correspondente
classe-MP, o código gerado para monitorizar as propriedades de S que envolve invocar
um método de E, não se pode comprometer com uma classe-MP específica. A solução
adoptada foi gerar uma classe dispatcher para cada variável de tipo do mapa de refi-
namento. Esta classe, com os mesmos métodos que uma classe-MP, apenas serve para
resolver a que classe-MP deve ser entregue cada chamada de um método, baseando-se
para isso no tipo concreto do objecto callee. Na classe-MP de C, sempre que a verifi-
cação de uma propriedade exigir invocar um método de E, a chamada é feita sobre o
correspodente dispatcher.

5 Conclusões

A importância de ferramentas que suportam a verificação da correcção de implementa-
ções face a especificações formais tem sido largamente reconhecida. Na última década,
várias abordagens foram desenvolvidas que permitem monitorizar a fiabilidade de im-
plementações em linguagens OO (ex., [1,3,5,6,9,11]). No entanto, e apesar da populari-
dade dos genéricos nestas linguagens, as abordagens existentes ainda não os suportam.
Esta era também uma limitação do CONGU que foi superado com o CONGU2.

Neste artigo mostramos como a abordagem e a ferramenta CONGU foram estendi-
das de forma a apoiar a especificação de tipos de dados genéricos e sua implementação
em termos de classes genéricas. A extensão da linguagem de especificação de forma a
permitir a descrição de tipos de dados genéricos foi relativamente simples. Dado que
o CONGU depende especificações baseadas em propriedades, essencialmente foram
adoptadas especificações paramétricas semelhantes às disponíveis em várias linguagens

Monitorização da Correcção de Classes Genéricas INForum 2010 – 65

de especificação algébricas. A fim de colmatar o fosso entre especificações paramétri-
cas e classes genéricas propusemos uma nova noção de mapa de refinamento em torno
da qual foi definida uma nova noção de correcção de programas face a especificações.
Tanto quanto sabemos, este aspecto não foi endereçado noutros contextos. Existem ou-
tras abordagens que lidam com especificações arquitectónicas envolvendo especifica-
ções paramétricas, como por exemplo [2], mas têm como alvo programas ML. Por
outro lado, as relações entre especificações algébricas e programas OO de que temos
conhecimento consideram exclusivamente especificações simples e sem estrutura.

O CONGU2 assegura a monitorização desta noção de correcção mais abrangente,
que, no caso dos tipos de dados genéricos, envolve verificar que tanto a classe que
implementa o tipo de dados como as classes usadas para instanciá-lo estão em confor-
midade com o que foi especificado. Com o CONGU2, a verificação da correcção de um
programa em tempo de execução passa a ser aplicável a um conjunto de situações em
que o suporte automático para a detecção de erros é ainda relevante: os genéricos são
reconhecidamente complicados de dominar e, portanto, a correcção de implementações
com genéricos mais difícil de atingir.

Referências
1. S. Antoy and R. Hamlet. Automatically checking an implementation against its formal spe-

cification. IEEE Transactions on Software Engineering, 26(1):55–69, 2000.
2. D. Aspinall and D. Sannella. From specifications to code in CASL. In Proc. Algebraic

Methodology and Software Technology (AMAST) 2002, volume 2422 of LNCS, pages 1–14.
Springer, 2002.

3. M. Barnett and W. Schulte. Runtime verification of .NET contracts. Journal of Systems and
Software, 65(3):199–208, 2003.

4. E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code manipulation tool to implement
adaptable systems. In Proc. ACM SIGOPS France Journées Composants 2002: Systemes a
composants adaptables et extensibles (Adaptable and extensible component systems), 2002.

5. F. Chen and G. Rosu. Java-MOP: A monitoring oriented programming environment for Java.
In Proc. Tools and Algorithms for the Construction and Analysis of Systems (TACAS) 2005,
volume 3440 of LNCS, pages 546–550, 2005.

6. Y. Cheon and G.T. Leavens. A runtime assertion checker for the Java Modeling Language
(JML). In Proc. International Conference on Software Engineering Research and Practice
(SERP 2002), pages 322–328, 2002.

7. Contract Based System Development. http://gloss.di.fc.ul.pt/congu/.
8. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification, Third Edition.

Prentice Hall, 06 2005.
9. J. Henkel and A. Diwan. Discovering algebraic specifications from Java classes. In Proc.

ECOOP 2003, volume 2743 of LNCS, pages 431–456, 2003.
10. G.T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D.R. Cok. How the design of JML ac-

commodates both runtime assertion checking and formal verification. Science of Computer
Programming, 55(1–3):185–208, 2005.

11. B. Meyer. Object-Oriented Software Construction. Prentice-Hall PTR, 2nd edition, 1997.
12. I. Nunes, A. Lopes, and V. Vasconcelos. Bridging the gap between algebraic specification

and object-oriented generic programming. In Runtime Verification, pages 115–131, 2009.
13. I. Nunes, A. Lopes, V. Vasconcelos, J. Abreu, and L.S. Reis. Checking the conformance of

Java classes against algebraic specifications. In ICFEM’06, volume 4260 of LNCS, pages
494–513. Springer, 2006.

66 INForum 2010 Pedro Crispim, Antónia Lopes, Vasco T. Vasconcelos

Separation of Concerns in Parallel Applications
with Class Refinement

Matheus Almeida and João Lúıs Sobral

Departamento de Informática
Universidade do Minho,

Braga, Portugal

Abstract. Parallel programming is becoming increasingly important
since the popularization of multi-core processors. Traditional program-
ming techniques that take advantage of these processors lack structure
in the sense that the parallelization artefacts are mixed with the base
code. This leads to problems in reusing, debugging and maintaining both
the base code and the parallelization code. This paper presents and com-
pares a new approach to separate those concerns. This approach is based
on the concept of Object-Oriented Programming inheritance and it is
called Class Refinement. Since the concepts and abstractions are similar
to those on Object-Oriented, the learning curve is much smaller than
using, for instance, the Aspect Oriented (AOP) approach.
We show that the performance overhead of using Class Refinement is
close to the AOP approach and minimal compared to the traditional
programming style.

1 Introduction

The solution adopted to overcome the problems of the increase of frequency in
processors [1] is to integrate into a single CPU a set of independent processing
units (cores). With this approach, processor designers no longer need to raise
clock frequencies to increase computational power. The trend is the continue
increase of the number of cores.

The older variant of parallel computing but still very important today is
related to distributed computing (eg.: Cluster) where the computation is per-
formed across a number of nodes connected by a network. The most important
benefits of this approach are the large number of nodes that can be intercon-
nected and the fact that each node can be composed by commodity hardware
making it a low cost solution.

Both multi-core and cluster computing require a different programming style
from sequential programming, as programmers need to specify parallel activi-
ties within applications. Thus, the development of parallel applications requires
knowledge of traditional programming and expertise in parallel execution con-
cerns (eg.: data partition, thread/process communication and synchronization).
Generally, these two concerns are mixed because the code that supports the
parallel execution is injected into the core functionality (coded sequentially),

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 67–78

resulting in tangled code. The lack of structure of this approach also leads to
scattered code since the code to enable parallel execution is spread over different
classes/modules of the base/domain code. The main drawbacks of that approach
are mostly noticed in the greater effort that is necessary to understand both the
parallel structure of the program and the base algorithm and in the difficulty to
reuse or debug functionalities.

Previous studies [2,3] argue the separation of the core functionality from the
parallelization structure which allows :

1. better maintenance and reuse of the core functionality, reducing or eliminat-
ing the problem of code tangling and scattering ;

2. easier understanding of the parallel structure and better reuse of the parallel
code;

3. enhancement of the parallelization structure by promoting incremental de-
velopment.

Aspect Oriented Programming [4] aims to separate and modularize crosscut-
ting concerns that are not well captured by the Object-Oriented (OO) approach.
It was already used successfully to separate the parallelization structure from
the base/domain code [2, 3, 5]. The experience gained led us to investigate the
use of Class Refinement to achieve a similar goal. The main purpose is to ease
the migration of programmers since the rules and abstractions are similar to the
ones found in Object-Oriented programming (OOP).

The remainder of this document is structured as follows. Section 2 gives an
overview and a comparison of the techniques studied in this paper to separate
concerns in parallel applications. The next section shows the implementation
of a case study and the overhead caused by the separation of concerns. The
conclusion and the future work are presented in Section 4.

2 Tangled, AOP and Class Refinements

This section introduces the problems with the traditional approach for the par-
allelization of applications and compares two other approaches that allow sep-
aration of concerns. AOP and Class Refinement allow the separation of the
parallelization into well defined modules promoting modularization [6–8]. Both
approaches need that the base code exposes entry points where additional code
can be appended. In other words, some functionalities in the base code have to
be separated into methods to support the attachment of code in the new units
of modularity. When those entry points are not available, code refactoring is
needed.

2.1 Traditional Approach

Traditional techniques to parallelize applications are invasive. Program 1 illus-
trates the problem of invasive modification by showing the simplified cluster

68 INForum 2010 Matheus Almeida, João Sobral

oriented parallelization of a molecular dynamics simulation [9] that will be de-
tailed in section 3. In black it can be seen the base code and in red (italic) the
parallelization statements.

Once the domain code is populated with artefacts regarding the paralleliza-
tion concerns, modularity is lost. This doesn’t allow, for instance, to change
the parallelization to match other target platforms (eg.: Shared Memory) or to
perform incremental development to enhance the parallelization or the domain
code. Both codes are glued and dependent on each other.

public class MD {
Particle [] one; // Vector with all particles

int mdsize; // Problem size (number of particles)

int movemx; // Number of interactions

//Declare auxiliary variables to MPI parallelization

double [] tmp_xforce;

double [] tmp_yforce;

double [] tmp_zforce;

...

public void runiters throws MPIException {

for (move = 0; move < movemx; move++) { // Main loop

for (i = 0; i < mdsize; i++) {
one[i].domove(side); // move the particles and

} // update velocities

...

MPI.COMM_WORLD.Barrier();

computeForces(MPI.COMM_WORLD.Rank(),MPI.COMM_WORLD.Size());

MPI.COMM_WORLD.Barrier();

for (i = 0; i < mdsize; i++) { //Copy forces to temp vector

tmp_xforce[i] = one[i].xforce; // to use in MPI operation

tmp_yforce[i] = one[i].yforce;

tmp_zforce[i] = one[i].zforce;

}
//Global reduction

MPI.Allreduce(tmp_xforce,0,tmp_xforce,0,mdsize,MPI.DOUBLE,MPI.SUM);

MPI.Allreduce(tmp_yforce,0,tmp_yforce,0,mdsize,MPI.DOUBLE,MPI.SUM);

MPI.Allreduce(tmp_zforce,0,tmp_zforce,0,mdsize,MPI.DOUBLE,MPI.SUM);

//Update forces based in reducted values

//Scale forces and calculate velocity

Program 1: MD cluster based parallelization.

Separation of Concerns in Parallel Applications ... INForum 2010 – 69

2.2 AOP Technique

Aspect Oriented Programming [4] aims to separate and modularize crosscutting
concerns that are not well captured by the Object-Oriented (OO) approach.
Aspects are units of modularization that encapsulate code that otherwise would
be scattered and tangled with the base code.

Crosscutting concerns can be either static or dynamic. Static crosscutting
allows the redefinition of the static structure of a type hierarchy. For instance,
fields of a class can be added or an arbitrary interface can be implemented. For
dynamic crosscutting, AOP introduces the concepts of join point and advice. Join
point is a well defined place in the base code where arbitrary behaviour can be
attached and advice is the piece of code to execute when a join point is reached.
A set of join points can be defined by the use of the pointcut designator that
allows the use of logical operators to define an arbitrary point in the program
flow.

In program 2 an Aspect example is shown. This aspect traces all calls to the
method Deposit defined in Bank class that have one argument of type int (line
3). Before that method being called (line 5), a piece of advice is executed. Lines
6 and 7 correspond to the advice.

Weaving is the mechanism responsible to compile the aspects. It merges
both the aspects and the base classes. This process can be done either in the
compilation phase or during class loading.

In the remainder of this paper whenever we’ll use the term AOP we will be
referring to the most mature and complete AOP implementation, AspectJ [10].

1 public aspect Logging {

2 int call = 0;

3 pointcut deposit() : call (void Bank.Deposit(int));

4

5 before() : deposit() {

6 Logger.log(...);

7 call ++;

8 }

9 }

Program 2: AOP logging example. AspectJ syntax.

2.3 Class Refinement Technique

Object-Oriented languages allow the extension of classes by means of inheritance.
The new class (subclass) inherits a subset or the complete set of the superclass
state and behaviour. The subclass has the ability to override that behaviour or
introduce a new one. This mechanism can be seen as a layer where additional,

70 INForum 2010 Matheus Almeida, João Sobral

more specific behaviour can be attached. Thus, the fact that the subclass needs
to be instantiated does not solve entirely the problem of separation of concerns.
The access of the new behaviour or state defined in the subclass has to be done
explicitly by using, for instance, the name of the subclass. Clearly, this solution
does not scale if we want to encapsulate others parallelization mechanisms, each
in its own module (eg.: subclass) because it is required to make changes to client
modules to compose them.

Batory [11] proposed that refinement “is a functionality addition to a pro-
gram, which introduces a conceptually new service, capability, or feature, and
may affect multiple implementation entities”. Others definitions are more re-
strictive and thus specific to a particular area1.

In this study, we define Class Refinement as the ability to extend a class by
means of inheritance but instead of creating a new scope (subclass), the refined
class takes the name of the original class. In terms of implementation, the original
class is rewritten to include the modifications defined in the refinements. Com-
position order becomes important since refinements are class rewritings (note:
the composition order is also important in traditional OO inheritance, although
it is implicitly specified by the inheritance chain and method lookup).

1 public class Logging refines Bank {

2 int call = 0;

3 @Override

4 public void Deposit(int value){

5 Logger.log(...);

6 call ++;

7 super.Deposit(value);

8 }

9 }

Program 3: Class Refinement example.

In program 3 the same example is given but using the Class Refinement
approach. The similarities with Object-Oriented inheritance are huge and besides
the word refines in Line 1, this piece of code could belong to a Bank’s subclass.
The main difference is that the class Logging does not need to be explicitly
instantiated because it will rewrite the class Bank. This means that calls to the
Deposit method in a Bank object will trigger the execution of lines 5 and 6 when
the refinement is applied to the base code.

For the rest of this paper, we’ll present Class Refinements implemented with
GluonJ [12] (although, we do not strictly follow GluonJ’s syntax). GluonJ sup-
ports refinements by means of inheritance using Java annotations. This allows
the use of a standard Java compiler (eg.: javac) to compile both the base code

1 One example belongs to formal methods (eg.: Refinement Calculus)

Separation of Concerns in Parallel Applications ... INForum 2010 – 71

and the refinements. When more than one refinement is applied, it is necessary
to define an order of composition because different refinements can be applied to
the same class (eg.: two refinements can override the same method). Refinements
are applied in load-time by the GluonJ mechanism [13] using the order defined
in a specific container called Glue class.

2.4 Comparison

In this section we present a comparison among the approaches previously dis-
cussed to separate concerns against the traditional (tangled) parallel program-
ming approach. We compare each approach using a set of properties that we
think are fundamental to a major acceptance by the community and to build
better and modular applications.

ClassRefinement AOP (AspectJ) Traditional

OO − Like Y es No Y es
Modularity Good Good Poor
Context V eryGood V eryGood Excellent

Composition Good Average Poor
Reusability Average V eryGood Poor
Usability V eryGood Hard Excellent

Performance V eryGood V eryGood Excellent
UnanticipatedEvolutions Y es Y es No

Table 1: Comparison of Approaches.

Being OO-Like is important for a major acceptance from the community.
The AOP approach is the weaker in this case because programmers need to learn
new concepts different from Object-Oriented Programming and it also requires
an Aspect compiler (eg.: ajc). Class Refinement, on the other hand, shares the
same concepts with the Object-Oriented approach and it can be compiled with
a standard compiler like javac.

Class Refinement and AOP allow improvements in modularity since new
concerns are localized in new units of modularity (Refinement and Aspect).
Traditional parallel programming techniques present poor modularity due to
the mentioned code tangling.

Context information is the ability to access behaviour or information defined
in the base code. Since method overriding is the finest grain to change the base
class, Class Refinements can access almost everything except local information
in methods. For instance, method overriding doest not allow to reuse parts of
the overridden method. The same situation happens with AOP but with the
difference that some context information can be retrieved using reflection (eg.:
thisJoinPoint) bringing performance penalties. On the other hand, the tangled

72 INForum 2010 Matheus Almeida, João Sobral

approach, where code can be inserted anywhere, has excellent context informa-
tion access.

In terms of composition, the order in which the refinements and the aspects
are applied plays an important rule and can be tricky. Nevertheless, both ap-
proaches are superior to the tangled version, as it is not possible to compose code
that is not made in a modular manner. Composition using Class Refinements
is better than with AOP since we explicitly specify which refinements must be
applied to the base code. For instance, in GluonJ, a specific Glue class specifies
the set and order of refinements. AOP lacks such kind of explicit composition
step and clear composition rules.

Re-usability is a topic still in research in the case of Class Refinements. First
implementations of reusable mechanisms using Class Refinement share the prob-
lem of explicitly defining the name of the class to refine making it an average
solution. There are reusable implementations of concurrency mechanisms imple-
mented using AOP [14] and the base code can be reused as well. In the tangled
approach, the base code and the parallelization structure cannot be reused be-
cause they are intrinsically glued.

The tangled version is the easiest to use because it is the simplest approach.
Class Refinement, since it is OO-like and based on inheritance, borrows most of
its concepts in Object-Oriented Programming, making it easier to learn and use.
AOP is the hardest because it introduces new concepts (eg.: join-point model,
pointcuts) and it even changes some Object-Oriented properties (eg.: methods
with body in Interfaces).

The change of the parallelization to match a new target platform can be
seen as an unanticipated evolution. The tangled version is the weakest because
its hard to reuse the base code. The same does not happen to the other two
approaches as we have been seen.

In terms of performance, in section 3.2 we’ll compare the approaches in more
detail.

3 Case Study

We present the parallelization of a Molecular Dynamics (MD) algorithm that
makes part of the Java Grande Forum [9] benchmark suite. Molecular Dynamics
are important algorithms to simulate the interaction of microscopical particles
(eg.: atoms) in a great variety of fields (eg.: Physics, Biology or Medicine).

Figure 1 shows the main steps of a generic MD algorithm. The first step is
to assign particles its initial position. The algorithm then iterates until some
condition is met (eg.: number of iterations). At each iteration, it is calculated
the force on each particle due to the interaction with all others particles (main
computational cost). The next step is to determine the new position of each
particle and increment the time step.

Separation of Concerns in Parallel Applications ... INForum 2010 – 73

Fig. 1: Typical MD Algorithm [15]

3.1 Implementation

Figure 2 shows a simplified class diagram. The class MD contains all the infor-
mation about the simulation including references to all particles. The method
runiters implements the iterations of the simulation. The class Particle con-
tains 9 variables representing the position, velocity and force for all coordinates
in 3 dimensional space. The method force calculates the force for that specific
particle with all others particles in the simulation.

Fig. 2: Simplified MD class diagram.

To implement the shared memory parallelization using Class Refinement,
the refinements listed in program 4 and 5 were created. The parallel algorithm
implemented is based on the idea that the computation of the forces can be
done in parallel, where each computation unit (Thread) calculates the forces for
a subset of the total number of particles. When all of these computation units
end, the result is merged (reduce operation).

The refinement of the MD class introduces a new data structure that will
save temporary calculations before the reduce operation in the method compute-
Forces.

The refinement of the class Particle is needed to use the new data structure
created in the refinement RefMD that saves temporary computation of the forces.

74 INForum 2010 Matheus Almeida, João Sobral

public class RefMD refines MD {
public static double[][] lforcex;
...//same structure to forcey and forcez

@Override
public void runiters(){

//initialise new data structures
//call original runiters to initialise data structures
//of the original simulation
super.runinters();

}

@Override
public void computeForces(...){

//Spawn threads to compute forces in parallel
//Join threads and reduce the values calculated in parallel

}

Program 4: MD refinement.

public class RefParticle refines Particle {

@Override
public void setForceX(...){

//save in a new data structure created in RefMD
}

//Same to other components of the Force (y and z)
}

Program 5: Particle refinement.

To implement the distributed memory version, the Message Passing Interface
(MPI) library was used to handle the creation, communication and synchroniza-
tion of processes. Since the MPI parallelization is based in the Single Process
Multiple Data (SPMD) methodology, only one refinement was needed and is
presented in program 6.

The algorithm is the same as the shared memory version but instead of
threads, the computational units are processes that have their own memory
space and communicate through messages. The refinement RefMPI overrides
the method computeForces to allow partitioning the computation. When each
process ends, information is interchanged to continue the algorithm with updated
values.

To take advantages of modern clusters that have hundreds or thousands of
nodes where each node is composed by multi-core processors, a Hybrid ver-
sion can be seen as the computation using Distributed and Shared memory
parallelization. The creation of an Hybrid is just a matter of composing the re-
finements in the right order as shown in program 7. The first refinement being
applied is RefMD and the last RefMPI. Thereafter, the behaviour defined in
the refinement of the distributed memory version is the first being executed and
then the behaviour in RefMD.

Separation of Concerns in Parallel Applications ... INForum 2010 – 75

public class RefMPI refines MD {
@Override

public void computeForces(int init, int inc){
super.computeForces(mpiRank,mpiSize);

//Interchange information with MPI_AllReduce
//Update state

}
}

Program 6: MD refinement for MPI.

applyRefinement
RefMD,
RefParticle,
RefMPI

Program 7: Composition of Refinements.

3.2 Benchmarks

The benchmarks measure the execution time of three implementations of the
algorithm explained in section 2 in both shared memory (Figure 3a) using multi-
threads and distributed memory (Figure 3b) using MPI. As we expected because

(a) Shared memory (b) Distributed memory

Fig. 3: Benchmarks

the mechanism of class rewriting, the overhead caused by the Class Refinement
mechanism is virtually zero and similar to the AOP approach. The difference
for 8 threads can be explained by the use of concurrency mechanisms presented
in Java 1.6 that perform better for high number of threads compared to the
implementation used in the JGF benchmark (Java1.2) (executors with thread
pool). Similar results were obtained for the distributed memory parallelization.
The differences in execution time are minimal in the 3 approaches.

76 INForum 2010 Matheus Almeida, João Sobral

4 Conclusion

This paper presented a new approach to solve the problem of separation of
concerns in the parallelization of applications. It is based in Object-Oriented
inheritance to ease the migration of programmers and to be compatible with
standard compilers.

We presented a comparison among different approaches to identify the ad-
vantages and disadvantages of each methodology. There is no clear winner but
the conclusions are important to understand what are the main important prop-
erties that must be presented in a system to allow a better and most complete
separation of concerns. AOP and Class Refinement allow the creation of a new
unit of modularity, thus allowing to deal with the inclusion of new concerns or
with unanticipated changes in a modular way. Both of the approaches showed
similar performance.

The main drawbacks of AOP are the need to learn new concepts and the
fact that the compilation is done by a specific compiler. The Class Refinement
approach is better in this case because it shares the same concepts with Object-
Oriented inheritance and the compilation is done with a standard compiler.

The case study illustrated the use of Class Refinement and the benefits from
its use compared to regular OO inheritance. The ability to compose the refine-
ments and to choose what refinements must be applied in load-time is a great
advantage compared to other approaches. The benchmarks showed that the over-
head of using Class Refinement and AOP is little compared to traditional and
invasive approaches.

Current work includes the implementation of larger case studies and opti-
mized reusable mechanisms for parallel computing based on Class Refinement.

In the longer term, the creation of a new tool or the optimization of an
existent one [12] that implements the concept of Class Refinement is an option.

5 Acknowledgements

This work was supported by the project Parallel Refinements for Irregular Appli-
cations (UTAustin/CA/0056/2008) funded by Portuguese FCT and European
funds.

References

1. G. Koch, “Discovering multi-core : Extending the benefits of moore’s law,” Tech-
nology@Intel Magazine, 2005.

2. R. C. Gonçalves and a. L. Sobral, Jo “Pluggable parallelisation,” in HPDC ’09:
Proceedings of the 18th ACM international symposium on High performance dis-
tributed computing, (New York, NY, USA), pp. 11–20, ACM, 2009.

3. J. Sobral, “Incrementally developing parallel applications with aspectj,” in Parallel
and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International,
pp. 10 pp.–, April 2006.

Separation of Concerns in Parallel Applications ... INForum 2010 – 77

4. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin, “Aspect-oriented programming,” in ECOOP’97 - Object-Oriented
Programming - 11th European Conference, vol. 1241, pp. 220–242, June 1997.

5. B. Harbulot and J. R. Gurd, “Using aspectj to separate concerns in parallel scien-
tific java code,” in AOSD 2004 Conference, 2004.

6. D. L. Parnas, “On the criteria to be used in decomposing systems into modules,”
Commun. ACM, vol. 15, no. 12, pp. 1053–1058, 1972.

7. D. L. Parnas, “Designing software for ease of extension and contraction,” Software
Engineering, IEEE Transactions on, vol. SE-5, no. 2, pp. 128–138, 1979.

8. E. W. Dijkstra, A Discipline of Programming. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 1978.

9. L. A. Smith, J. M. Bull, and J. Obdrzálek, “A parallel java grande benchmark
suite,” in Supercomputing ’01: Proceedings of the 2001 ACM/IEEE conference on
Supercomputing (CDROM), (New York, NY, USA), pp. 8–8, ACM, 2001.

10. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold,
“Getting started with aspectj,” Commun. ACM, vol. 44, no. 10, pp. 59–65, 2001.

11. Y. Smaragdakis and D. Batory, “Mixin layers: An object-oriented implementation
technique for refinements and collaboration-based designs,” ACM Transactions on
Software Engineering and Methodology, vol. 11, no. 2, pp. 215–255, 2002.

12. M. Nishizawa and S. Chiba, “A small extension to java for class refinement,” in
SAC ’08: Proceedings of the 2008 ACM symposium on Applied computing, (New
York, NY, USA), pp. 160–165, ACM, 2008.

13. S. Chiba and M. Nishizawa, “An easy-to-use toolkit for efficient java bytecode
translators,” in GPCE ’03: Proceedings of the 2nd international conference on Gen-
erative programming and component engineering, (New York, NY, USA), pp. 364–
376, Springer-Verlag New York, Inc., 2003.

14. C. A. Cunha, J. a. L. Sobral, and M. P. Monteiro, “Reusable aspect-oriented imple-
mentations of concurrency patterns and mechanisms,” in AOSD ’06: Proceedings
of the 5th international conference on Aspect-oriented software development, (New
York, NY, USA), pp. 134–145, ACM, 2006.

15. K. Nordlund, “Md algorithm.” ”http://en.wikipedia.org/wiki/File:Mdalgorithm.PNG”.

78 INForum 2010 Matheus Almeida, João Sobral

Uma Estrutura de Dados Métrica Genérica,
Dinâmica, em Memória Secundária

Ângelo Sarmento e Margarida Mamede

CITI, Departamento de Informática
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

2829–516 Caparica, Portugal
amlsarmento@gmail.com, mm@di.fct.unl.pt

http://di.fct.unl.pt

Resumo Apresenta-se uma adaptação da estrutura de dados métrica
RLC a memória secundária. A RLC é genérica, dinâmica e eficiente
quando comparada com outras estruturas de dados métricas implemen-
tadas em memória central, onde apenas se contabiliza o número de
distâncias calculadas. Neste trabalho, os testes experimentais compa-
ram a RLC com três estruturas de dados implementadas em memória
secundária, abrangem dicionários e conjuntos de imagens e medem, quer
o número de distâncias calculadas, quer o número de operações de en-
trada e de sáıda efectuadas. Os resultados mostram que a RLC é muito
eficiente em pesquisas por proximidade e muito competitiva em inserções.

Abstract We introduce an adaptation of the RLC metric data structure
to secondary memory. RLC is generic, dynamic, and efficient when com-
pared with other metric data structures implemented in main memory,
where performance is analysed only in terms of the number of distance
computations. In this work, the experimental study compares RLC with
three data structures implemented in secondary memory, comprises two
dictionaries and two sets of images, and evaluates both the number of
distance computations and the number of I/O operations performed.
The results show that RLC is very efficient for range queries and very
competitive for insertions.

Keywords: Algorithms, data structures, metric spaces, range search.

1 Introdução

Em muitas áreas (como, por exemplo, biologia computacional, sistemas de in-
formação geográfica ou multimédia), é necessário encontrar os objectos que mais
se assemelham a um dado objecto. Essa semelhança é traduzida por uma função
que calcula a distância entre dois objectos, com base nas suas caracteŕısticas.
Assume-se que, quanto menor for a distância, mais semelhantes são os objectos.

Devido aos formatos complexos dos dados (e.g. v́ıdeos, imagens, sons, im-
pressões digitais ou sequências de ADN) e à elevada quantidade de informação,

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 79–90

é crucial que não se calcule a distância entre cada objecto da base de dados e o
objecto fornecido na pesquisa, sempre que uma procura é realizada. O objectivo
das estruturas de dados métricas é minimizar o número de cálculos de distâncias
entre objectos efectuados nas operações sobre a base de dados.

Não obstante nos últimos anos terem sido propostas muitas estruturas de
dados métricas [10,17], a maioria é para ser implementada em memória cen-
tral, sofrendo das limitações inerentes ao espaço dispońıvel. Se nos cingirmos às
estruturas de dados métricas implementadas em memória secundária, as alter-
nativas existentes são classificadas como genéricas, quando suportam qualquer
tipo de objectos e qualquer função de distância, ou como não genéricas, no caso
contrário. As estruturas OP-tree [13] e SDI-tree [14] são exemplos do segundo
grupo, aceitando apenas dados vectoriais. Todas as estruturas de dados métricas
genéricas e implementadas em memória secundária são dinâmicas, ou seja, per-
mitem realizar actualizações ao seu conteúdo após o carregamento inicial dos
dados. No entanto, algumas, como a M-tree [2], a Slim-tree [15] e a DF-tree [16],
só suportam a operação de inserção de um novo objecto. É posśıvel efectuar
inserções e remoções na SM-tree [12] e na D-Index [4].

Este trabalho aborda o problema da pesquisa por proximidade em estruturas
de dados métricas genéricas, dinâmicas e implementadas em memória secundária,
estudando uma adaptação da estrutura de dados RLC a memória secundária.
A RLC, cujo nome por extenso é Recursive Lists of Clusters, é uma estrutura
de dados métrica genérica, dinâmica (suportando inserções e remoções) e imple-
mentada em memória central. Foi proposta em [6], mas a sua definição inicial
foi simplificada (para depender de menos um parâmetro) e os novos algoritmos
foram analisados em [7], tendo-se provado que o número médio de distâncias
calculadas no carregamento de uma base de dados com n objectos é O(n log n),
numa inserção é O(log n) e numa remoção é O(log2 n). Em todos os estudos
comparativos efectuados, quer com dados gerados aleatoriamente [6,7], quer com
dados reais (dicionários de ĺınguas naturais [8], imagens de rostos [1] e excertos
de música [3]), a RLC mostrou ter um óptimo desempenho.

A adaptação da RLC a memória secundária foi um desafio. Por um lado, as
estruturas de dados em memória secundária são muito diferentes das implemen-
tadas em memória central. A RLC é uma excepção. Portanto, o bom desempenho
comparativo da RLC, obtido em trabalhos anteriores, poderia não se manter. Por
outro lado, como a avaliação das estruturas de dados métricas em memória se-
cundária também depende do número de leituras e do número de escritas em
ficheiro, para além do número de distâncias calculadas, era necessário alterar o
desenho da implementação e os resultados poderiam não ser satisfatórios.

O artigo está organizado da seguinte forma. Na Secção 2, introduzem-se as
definições básicas e, na Secção 3, descreve-se brevemente a RLC e a sua adapta-
ção para memória secundária. Depois, na Secção 4, caracterizam-se os espaços
métricos usados nos testes experimentais, que são baseados em dicionários e
conjuntos de imagens. Na Secção 5, analisam-se os resultados experimentais, que
comparam a RLC com três estruturas de dados. Finalmente, a Secção 6 contém
alguns comentários ao trabalho desenvolvido e tópicos para trabalho futuro.

80 INForum 2010 Ângelo Sarmento, Margarida Mamede

2 Definições Básicas

A noção de semelhança ou proximidade entre objectos baseia-se no conceito
formal de espaço métrico.

Seja (U , d) um espaço métrico. Ou seja, U é o universo dos pontos ou objectos
e d : U ×U → IR é uma função real, chamada distância ou métrica, que satisfaz
as seguintes propriedades, para quaisquer x, y, z ∈ U :

– (não negatividade) d(x, y) ≥ 0;
– (identidade) d(x, y) = 0⇔ x = y;
– (simetria) d(x, y) = d(y, x); e
– (desigualdade triangular) d(x, y) ≤ d(x, z) + d(z, y).

Uma base de dados sobre (U , d) é um conjunto finito B ⊆ U .
Por exemplo, para qualquer k ≥ 1, os pares (IRk, d1) e (IRk, d2) são espaços

métricos, onde d1 é a distância de Manhattan e d2 é a distância euclidiana:

d1((p1, p2, . . . , pk), (q1, q2, . . . , qk)) =
k∑
i=1

|pi − qi| , (1)

d2((p1, p2, . . . , pk), (q1, q2, . . . , qk)) =

√√√√ k∑
i=1

(pi − qi)2 . (2)

Quando o universo é composto por palavras (i.e., sequências de caracteres), é
frequente recorrer-se à distância de Levenshtein, que indica o número mı́nimo
de operações de edição necessárias para transformar uma palavra na outra.
Cada operação de edição pode ser a inserção de um carácter, a remoção de
um carácter ou a substituição de um carácter por outro. Formalmente, sejam
X = x1 x2 · · · xm e Y = y1 y2 · · · yn duas palavras (com m,n ≥ 1). A distância
entre X e Y é dada por dL(X,Y) = dX,Y (m,n), sendo a segunda função defi-
nida recursivamente da seguinte forma, onde dif(a, b) é uma função que vale 0,
quando a = b, e vale 1, no caso contrário.

dX,Y (i, j) =

i, se i ≥ 0 e j = 0;
j, se i = 0 e j > 0;
min(dX,Y (i− 1, j − 1) + dif(xi, yj),

1 + dX,Y (i, j − 1),
1 + dX,Y (i− 1, j)), se i > 0 e j > 0.

(3)

Dadas uma base de dados B, sobre um espaço métrico (U , d), e uma inter-
rogação (q, r), onde q ∈ U e r ≥ 0, o problema da pesquisa por proximidade
consiste em encontrar todos os objectos de B cujas distâncias a q não excedem
r, i.e., {x ∈ B | d(x, q) ≤ r}. Chama-se a q o ponto da interrogação e a r o raio
da interrogação.

O principal objectivo das estruturas de dados métricas [10,17] é minimizar
o número de cálculos de distâncias entre objectos executados durante as pes-
quisas. Apesar das suas muitas diferenças, todas elas se baseiam na simetria e

Uma Estrutura de Dados ... INForum 2010 – 81

na desigualdade triangular para incluir e excluir do conjunto resposta alguns
objectos da base de dados, sem calcular as respectivas distâncias ao ponto da
interrogação.

3 Recursive Lists of Clusters

Nesta secção define-se a RLC, apresentam-se resumidamente os algoritmos de
inserção e de pesquisa (por proximidade) e descrevem-se os aspectos mais im-
portantes da sua implementação em memória secundária.

3.1 Definição da RLC

Basicamente, a RLC (Recursive Lists of Clusters) guarda os objectos da base de
dados numa lista (ou sequência) de agrupamentos. Cada agrupamento (cluster)
possui:
– um centro c, que é um objecto da base de dados;
– um raio r, que é um número real não negativo; e
– um interior I, que contém um conjunto de objectos da base de dados cujas

distâncias a c pertencem ao intervalo]0, r]. (Note que a exclusão de zero
impede que o centro pertença ao interior do agrupamento.)

A lista de agrupamentos satisfaz uma propriedade fundamental: cada objecto x
da base de dados está guardado no primeiro agrupamento que o pode conter,
ou seja, se a lista for iterada, x pertence ao primeiro agrupamento (c, r, I) que
verificar d(x, c) ≤ r. Para completar a definição de RLC [7], é necessário espe-
cificar dois parâmetros: um real positivo ρ e um inteiro positivo α. O primeiro
determina o raio de todos os agrupamentos da lista e o segundo permite definir
a implementação dos interiores. Sempre que o número de objectos no interior de
um agrupamento não exceder α, o interior é designado por folha e está imple-
mentado num vector. Nos restantes casos, o interior é uma RLC (com raio ρ e
folhas com capacidade α).

Repare que, como o interior de um agrupamento pode ser uma lista de agru-
pamentos, um objecto pode pertencer a vários agrupamentos, organizados hie-
rarquicamente, aos quais se atribui uma profundidade. Considera-se que os agru-
pamentos da lista principal têm profundidade zero.

Para minimizar o número de distâncias calculadas nas pesquisas (como vere-
mos a seguir), guarda-se, para cada objecto, uma sequência com as distâncias do
objecto aos centros dos agrupamentos a que ele pertence, chamada a sequência
de distâncias do objecto. Portanto, o centro de um agrupamento de profundi-
dade p está associado a p distâncias e cada objecto de uma folha que é o interior
de um agrupamento de profundidade p tem uma sequência com p+ 1 distâncias.

A Fig. 1 esquematiza uma RLC com raio 3 e folhas com capacidade 5. Os
śımbolos c, r, p, |I| e I denotam, respectivamente, o centro, o raio, a profundi-
dade, o número de objectos no interior e o interior do agrupamento. Por exemplo,
um objecto w no interior do agrupamento de centro z1 pertence a três agrupa-
mentos, cujos centros são x1, y2 e z1. A sequência de distâncias de w é constitúıda
por d(w, x1), d(w, y2) e d(w, z1).

82 INForum 2010 Ângelo Sarmento, Margarida Mamede

c

x1

r

3

p

0

|I|
16

I

?

-

c
y1

r

3

p

1

|I|
5

I

?

- �s sc
y2

r

3

p

1

|I|
9

I

?
c

z1

r

3

p

2

|I|
4

I

?

- �s sc

z2

r

3

p

2

|I|
3

I

?

c

x2

r

3

p

0

|I|
4

I

?

- �s sc

x3

r

3

p

0

|I|
2

I

?

Figura 1. Exemplo de RLC com raio 3 e folhas com capacidade 5. Indica-se o raio e a
profundidade de cada agrupamento para clarificar estas noções. Mas, para simplificar
a figura, omitem-se todas as sequências de distâncias.

3.2 Descrição Sucinta dos Algoritmos

O próximo objectivo é descrever os grandes passos dos algoritmos sobre a RLC,
estando os detalhes especificados em [7].

O carregamento inicial da RLC é feito inserindo sucessivamente cada um
dos objectos. Para inserir um objecto x (que, para simplificar, se assume não se
encontra na RLC), a lista é iterada até se encontrar um agrupamento (c, ρ, I)
que possa conter x (i.e., tal que d(x, c) ≤ ρ).

– Se nenhum agrupamento for encontrado, cria-se um novo agrupamento (com
centro x e interior vazio), que é adicionado à cauda da lista.

– No caso contrário, x é inserido em I.
• Quando I é uma folha, se há espaço no vector para mais um elemento,
x é áı inserido. Se o vector está cheio, transforma-se I numa RLC, cri-
ando uma lista de agrupamentos vazia, onde se insere x e cada um dos
elementos presentes na folha.

• Se I é uma lista de agrupamentos, insere-se (recursivamente) x em I.

A remoção é semelhante. Mas não será explicada, por falta de espaço, uma vez
que os testes experimentais aqui descritos não envolvem remoções.

Na pesquisas por proximidade, itera-se a lista, identificando-se a relação entre
cada agrupamento (c, ρ, I) e a interrogação (q, r), com base na distância entre c
e q e no valor dos raios ρ e r. Escusado será dizer que c pertence ao conjunto
resposta se d(c, q) ≤ r. Existem basicamente quatro situações distintas.

– Se a região da interrogação está contida na região do agrupamento, a pesquisa
prossegue pelo interior do agrupamento e a iteração pára.

– Se a região da interrogação contém a região do agrupamento, todos os objec-
tos do interior do agrupamento são imediatamente adicionados ao conjunto
resposta e a iteração continua.

Uma Estrutura de Dados ... INForum 2010 – 83

– Se as regiões da interrogação e do agrupamento se intersectam (mas nenhuma
contém a outra), a pesquisa prossegue pelo interior do agrupamento e a
iteração continua.

– Se as regiões da interrogação e do agrupamento são disjuntas, o interior do
agrupamento é ignorado e a iteração continua.

Repare que se podem incluir ou excluir do conjunto resposta todos os objectos
do interior de um agrupamento, sem se ter calculado qualquer distância entre
eles e o ponto da interrogação. Quando a pesquisa chega a uma folha, também é
posśıvel concluir que um objecto x deve, ou não deve, ser colocado no conjunto
resposta, sem se calcular a sua distância a q. Para isso, usam-se as distâncias
d(c, q) e d(x, c), onde c é o centro de um agrupamento ao qual x pertence. Fazendo
m = d(c, q)− r, prova-se que:

– se d(x, c) < m, então d(x, q) > r (e x não pertence à resposta);
– se d(x, c) ≤ −m, então d(x, q) ≤ r (e x pertence à resposta).

Note que d(c, q) teve de ser calculado para se entrar no interior do agrupamento
e que d(x, c) é um dos elementos da sequência de distâncias de x. A distância
entre x e q só é calculada quando, para todo o agrupamento a que x pertence,
nenhuma das duas regras pode ser aplicada.

3.3 Implementação em Memória Secundária

A RLC foi implementada em C++.1 Para reduzir o número de acessos a ficheiro,
a informação está guardada em páginas de dimensão fixa (por exemplo, com 4 096
ou 8 192 bytes). Há, basicamente, três tipos de páginas.

– O cabeçalho tem informação global da estrutura e do tipo de objectos.
– As páginas de agrupamentos permitem implementar as listas de agrupamen-

tos através de listas ligadas de vectores de agrupamentos. Por cada agrupa-
mento, guarda-se o centro, a sequência das distâncias do centro, o número de
pontos no interior do agrupamento e o apontador para a (primeira) página
onde se encontra o interior do agrupamento.

– De modo semelhante, as páginas de folhas permitem implementar cada folha
através de uma lista ligada de vectores de pares, cuja primeira coordenada
é um objecto e a segunda é a respectiva sequência de distâncias.

Existem três restrições adicionais: não há vectores (de agrupamentos ou de pares)
vazios; não existem posições vazias entre os elementos presentes num vector; e
nenhum elemento de um vector pode ocupar mais do que uma página.

Esta última restrição impediu que se usassem páginas de dimensão razoável
com algumas bases de dados, porque a RLC atingia profundidades tão elevadas
que os pares das folhas mais profundas ocupavam demasiada memória. A grande
profundidade da RLC deve-se aos raios dos agrupamentos serem todos iguais,
como se ilustra na Fig. 2, com pontos no plano e a distância euclidiana.
1 A primeira implementação da RLC em memória secundária, que só aceitava pontos

em IRn com a distância euclidiana, foi realizada por Carlos Rodrigues [9].

84 INForum 2010 Ângelo Sarmento, Margarida Mamede

Figura 2. Interior de um agrupamento com centro c. (Esquerda) O raio dos agrupa-
mentos é fixo. (Direita) O raio dos agrupamentos diminui com a profundidade.

Quando um agrupamento tem muitos pontos, o seu interior I é uma lista de
agrupamentos. Ora, quaisquer que sejam os centros dos primeiros agrupamentos
dessa lista (c1 e c2, do lado esquerdo da Fig. 2), as regiões que eles definem são
tão grandes que contêm quase todos os objectos de I. De facto, quando o raio dos
agrupamentos é fixo, as listas de agrupamentos (de profundidade positiva) têm
um comprimento muito reduzido e a estrutura tem uma profundidade elevada.
A ideia da segunda implementação da RLC em memória secundária [11] consiste
na redução progressiva do raio dos agrupamentos, à medida que a profundidade
aumenta (como exemplificado do lado direito da Fig. 2). Mais precisamente, a
RLC continua a ter apenas dois parâmetros, o raio ρ e a capacidade α das folhas,
mas o raio de cada agrupamento depende da profundidade p do agrupamento,
sendo dado por ρ

p+1 . Nesta variante, a distribuição dos objectos de um inte-
rior pelos agrupamentos do ńıvel seguinte, não só envolve mais agrupamentos,
como também é bastante mais equilibrada. Consequentemente, a RLC cresce
significativamente em largura, mantendo profundidades muito baixas.

4 Espaços Métricos

O maior desafio das estruturas de dados métricas é terem bons desempenhos
com qualquer espaço métrico. O problema é que as distâncias entre os objectos
de um universo podem ter distribuições muito diferentes e essa distribuição tem
impacto na forma das estruturas de dados e na eficiência dos algoritmos.

Foram seleccionados quatro espaços métricos com dados reais. Dois universos
são dicionários2, tendo sido usada a distância de Levenshtein (3). O dicionário
de alemão tem 74 916 palavras, cujos comprimentos variam entre um e trinta e
três, e o dicionário de inglês tem 69 069 palavras com comprimentos entre um e
vinte e um. O terceiro espaço métrico é composto por histogramas de imagens3 e
pela distância euclidiana (2). Cada um dos 112 543 histogramas é uma sequência
de cento e doze números reais. O último universo (cedido por Pedro Chambel
[1]) é constitúıdo por 3 040 vectores, cada um com vinte e quatro valores reais
que sintetizam caracteŕısticas extráıdas de imagens de faces humanas. A métrica
para as imagens de rostos é a de Manhattan (1).
2 Os ficheiros com as palavras foram obtidos em http://www.sisap.org/ .
3 O ficheiro foi retirado de http://www.dbs.informatik.uni-muenchen.de/ .

Uma Estrutura de Dados ... INForum 2010 – 85

Para conhecer algumas propriedades dos espaços métricos, calcularam-se,
para cada universo, todas as distâncias entre dois objectos distintos. A Fig. 3
apresenta os histogramas com as distribuições dessas distâncias e mais algumas
estat́ısticas. No caso dos dois espaços métricos de imagens, como as distâncias
são reais, foram agrupadas em vinte e cinco intervalos de igual dimensão.

Figura 3. Histogramas das distâncias para os quatro espaços métricos.

5 Resultados Experimentais

A RLC foi comparada com três estruturas de dados métricas genéricas, im-
plementadas em memória secundária: M-tree [2], Slim-tree [15] e DF-tree [16].
Usaram-se as implementações da biblioteca GBDI Arboretum [5], escrita em
C++. Não se testaram mais estruturas de dados devido à inexistência de imple-
mentações de domı́nio público.

Todas as estruturas de dados são parametrizadas. Para o parâmetro comum,
que é a dimensão das páginas do ficheiro em bytes, foi escolhido o valor 4 096.
Em relação à M-tree, usaram-se os métodos mais eficazes: o do hiperplano gene-
ralizado para particionar os nós e o que minimiza a soma dos raios para efectuar
as promoções. A implementação da Slim-tree permite definir a sub-árvore onde
se insere um objecto, quando mais do que uma o pode conter, e o método de
particionamento dos nós. As escolhas, aconselhadas em [15], recáıram, respectiva-
mente, sobre o método que selecciona a sub-árvore cuja raiz tem menor ocupação
e sobre o particionamento induzido pela árvore mı́nima de cobertura. A DF-tree

86 INForum 2010 Ângelo Sarmento, Margarida Mamede

tem quatro parâmetros, dos quais dois são os da Slim-tree, que seleccionaram
os mesmos algoritmos. Para o número de representantes globais, recorreu-se à
dimensão máxima dos pontos do universo: 33 para o dicionário de alemão, 21
para o de inglês, 112 para os histogramas de imagens e 24 para as imagens de
rostos. Por último, o valor a partir do qual o conjunto de representantes globais é
actualizado foi o utilizado pelos autores nos seus testes experimentais [16]: 2 000.
Os parâmetros da RLC, determinados por observação de resultados experimen-
tais [11], variam com o espaço métrico. O raio usado foi 10, 6, 0.71 e 23 160, e a
capacidade das folhas foi 100, 100, 50 e 25, respectivamente, para os dicionários
de alemão e de inglês, os histogramas de imagens e as imagens de rostos.

Das quatro estruturas de dados, a RLC é a única que suporta a operação
de remoção. Por esse motivo, os testes experimentais relatados neste artigo só
avaliam inserções e pesquisas (por proximidade).

Foram gerados quatro ficheiros por cada espaço métrico. Três são permu-
tações aleatórias do universo e foram usados para carregar a base de dados
por ordens diferentes. O outro, com cerca de 10% dos objectos do domı́nio
(também seleccionados aleatoriamente), contém as interrogações. Os raios das
interrogações foram gerados uniformemente dentro do intervalo [1, 3] para os di-
cionários, [0.00001, 0.1] para os histogramas de imagens e [5 000, 15 000] para as
imagens de rostos. Para cada espaço métrico, cada teste consistiu exactamente
nas mesmas inserções e nas mesmas pesquisas, variando apenas a ordem pela
qual os objectos foram inseridos, que tem influência na forma final das estrutu-
ras de dados. Todos os resultados apresentados são a média dos valores obtidos
nos três testes do mesmo universo.

A Fig. 4 apresenta o número médio de distâncias calculadas por operação de
inserção e de pesquisa, o número médio de leituras de ficheiro efectuadas por
operação de inserção e de pesquisa, e o número médio de operações de escrita
em ficheiro por operação de inserção. Para os valores das distâncias, dividiram-
-se os respectivos números médios pelo número de objectos do universo, para
se compreender melhor o desempenho das estruturas de dados. Repare que, se
essa percentagem for 70% (que é o valor para a pesquisa na Slim-tree com o
dicionário de inglês), o ganho face ao algoritmo que percorre um vector com os
objectos da base de dados e calcula as distâncias entre todos os elementos do
vector e o ponto da interrogação é de apenas 30%.

Numa primeira análise, pode-se concluir que os valores mı́nimos estão sem-
pre associados à M-tree, à Slim-tree ou à RLC. De facto, a RLC não tem o
melhor desempenho em apenas cinco dos vinte casos: no número de distâncias
por inserção com os dicionários de alemão (0.12% na Slim-tree e 0.50% na RLC)
e de inglês (0.14% na Slim-tree e 0.36% na RLC) e no número de leituras por
inserção com o dicionário de alemão (3 na M-tree e na Slim-tree; 6 na RLC)
com o dicionário de inglês (2.9 na M-tree e na Slim-tree; 3.4 na RLC) e com os
histogramas de imagens (11 na Slim-tree e 15 na RLC). No entanto, sempre que
os valores da RLC não são os mais baixos, as diferenças são pouco significativas.
Em todos os outros casos, e, em particular, nos dois parâmetros da avaliação das
pesquisas e no número de escritas em ficheiro, a RLC é imbat́ıvel.

Uma Estrutura de Dados ... INForum 2010 – 87

!!"#$%&
!'"!(%& #)"*$%&

)"((%&

)")!%&

)"!)%&

!"))%&

!)"))%&

!))"))%&

+,-./0& 123,45& 6758039:.:5& ;05805&

!"#$%&'()*+&'*$',+-./01+2-'3&%'40-$%56&'7$#'89'

<=89--& >,7.=89--& ?@=89--& ;AB&

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+,-./0# 123,45# 6758039:.:5# ;05805#

!"#$%&'()*+&'*$',+-./01+2-'3&%'4$-56+-2'7$#'89'

<=89--# >,7.=89--# ?@=89--# ;AB#

!"# "$#

!%&#

'%#

'#

(#

$(#

'$(#

)$(#

*+,-./# 012+34# 5647/289-94# :/47/4#

!"#$%&'()*+&'*$',$+-.%/0'1&%'230$%45&'

;<78,,# =+6-<78,,# >?<78,,# :@A#

!"!#$" "%&!"

&'"($("

"!#!"

"!"

"!$"

"!$$"

!"$$$"

!$"$$$"

!$$"$$$"

)*+,-." /01*23" 4536.178,83" 9.36.3"

!"#$%&'()*+&'*$',$+-.%/0'1&%'2$03.+0/'

:;67++" <*5,;67++" =>;67++" 9?@"

!"

#"

$"

%"

&'"

&("

&)"

'&"

*+,-./" 012+34" 5647/289-94" :/47/4"

!"#$%&'()*+&'*$',-.%+/0-'1&%'23-$%45&'

;<78,," =+6-<78,," >?<78,," :@A"

Figura 4. Números médios de distâncias calculadas entre objectos, de leituras e de
escritas em ficheiro, por inserção e por pesquisa. Nos dois gráficos de cima, os valores
correspondem à percentagem do número médio de distâncias calculadas em relação ao
número de objectos da base de dados. Note que a escala de três gráficos é exponencial,
para que todas as barras sejam viśıveis. Nesses casos, apresenta-se o valor da barra
mais alta para cada espaço métrico.

Estes resultados ainda são mais favoráveis para a RLC do que aqueles que
se obtiveram ao comparar estruturas de dados métricas em memória central
[6,7,8,1,3]. Note que as diferenças nos números de distâncias calculadas nas pes-
quisas são impressionantes. Acresce que a RLC é verdadeiramente dinâmica.
Portanto, ao contrário do que é usual quando se comparam estruturas de dados,
neste caso não é necessário optar entre um bom desempenho nas pesquisas e nas
inserções e a possibilidade de se efectuar uma operação tão importante como a
remoção.

Na Tabela 1, apresentam-se alguns dados sobre a forma da RLC, obtidos com
um dos ficheiros de teste. Verifica-se que há interiores implementados em listas
com muitos agrupamentos e que a profundidade da estrutura é pequena.

88 INForum 2010 Ângelo Sarmento, Margarida Mamede

Tabela 1. Dados sobre a forma da RLC com todos os objectos do espaço métrico.

Espaço Número de Comprimento da Comprimento má- Profundidade
métrico agrupamentos lista principal ximo de outra lista máxima

Alemão 22 976 2 360 2 494 4

Inglês 18 559 2 281 1 033 4

Histogramas 25 747 91 422 9

Rostos 326 42 67 2

6 Conclusões e Trabalho Futuro

Descreveu-se e avaliou-se uma adaptação da estrutura de dados RLC a memória
secundária. A RLC revelou-se equivalente à Slim-tree nas inserções, com a qual
partilhou os melhores desempenhos, e consideravelmente mais eficiente que todas
as outras estruturas de dados analisadas nas pesquisas por proximidade.

Em relação ao trabalho futuro, pretende-se continuar a avaliar a RLC, es-
tendendo os testes experimentais a dados de outras áreas (como biologia com-
putacional ou sistemas de informação geográfica) e a mais implementações de
estruturas de dados métricas. É importante obter versões da Slim-tree e da DF-
tree que incorporem o algoritmo slim-down [15] (que não está implementado na
biblioteca Arboretum) e implementações de estruturas de dados que suportem
a operação de remoção.

Para minorar o problema da parametrização da RLC, pretende-se descobrir
fórmulas para o raio e para a capacidade das folhas que dependam de carac-
teŕısticas do espaço métrico. Como o impacto do raio no desempenho da es-
trutura é enorme, e o impacto da capacidade das folhas é bastante reduzido,
começou-se pelo primeiro, tendo-se chegado à fórmula ρ = µ − σ

2 , onde µ é a
média e σ é o desvio padrão da distribuição das distâncias. Parece que os valores
obtidos (c.f. Tabela 2) são uma boa aproximação para distribuições normais, não
se aplicando à distribuição dos histogramas de imagens.

Tabela 2. Valores da fórmula para o raio, para distribuições normais.

Alemão Inglês Histogramas Rostos

Média (µ) 11.74 8.35 0.43 30 203

Desvio padrão (σ) 3.05 3.95 0.17 7 867

Raio usado 10 6 0.71 23 160

Valor de µ− σ
2

10.22 6.38 0.35 26 270

Agradecimentos Ângelo Sarmento teve uma bolsa semestral concedida pelo
Centro de Informática e Tecnologias da Informação (CITI), hospedado no Depar-
tamento de Informática da Faculdade de Ciências e Tecnologia da Universidade
Nova de Lisboa. Os autores agradecem a Lúıs Caires, por ter disponibilizado

Uma Estrutura de Dados ... INForum 2010 – 89

uma máquina eficiente para a realização dos testes experimentais, a Carlos Ro-
drigues, pela ajuda na utilização da biblioteca Arboretum, e a Pedro Chambel,
pela cedência dos dados das imagens de rostos.

Referências

1. Chambel, P.: Pesquisa de Imagens de Rosto. Master’s thesis, Faculdade de Ciências
e Tecnologia, Universidade Nova de Lisboa (2009), http://citi.di.fct.unl.pt/

2. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity
search in metric spaces. In: 23rd Int. Conf. on Very Large Data Bases (VLDB’97).
pp. 426–435. Morgan Kaufmann, San Francisco (1997)

3. Costa, F.: Geração automática de playlists de músicas semelhantes. Master’s thesis,
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (2009), http:
//citi.di.fct.unl.pt/

4. Dohnal, V., Gennaro, C., Savino, P., Zezula, P.: D-Index: Distance searching index
for metric data sets. Multimedia Tools and Applications 21(1), 9–33 (2003)

5. GBDI Arboretum, http://www.gbdi.icmc.usp.br/arboretum/
6. Mamede, M.: Recursive lists of clusters: A dynamic data structure for range queries

in metric spaces. In: 20th Int. Symp. on Computer and Information Sciences (ISCIS
2005). LNCS, vol. 3733, pp. 843–853. Springer, Heidelberg (2005)

7. Mamede, M.: A dynamic data structure for range queries in high dimensional
metric spaces. Tech. rep., Departamento de Informática, Faculdade de Ciências
e Tecnologia, Universidade Nova de Lisboa (2007), http://ctp.di.fct.unl.pt/
~mm/dynamic-07.pdf

8. Mamede, M., Barbosa, F.: Range queries in natural language dictionaries with re-
cursive lists of clusters. In: 22nd Int. Symp. on Computer and Information Sciences
(ISCIS 2007). pp. 1–6. IEEE CS Press, Los Alamitos, CA (2007)

9. Rodrigues, C.: Implementação de sistemas de indexação para espaços métricos.
Relatório do projecto final de curso, Departamento de Informática, Faculdade de
Ciências e Tecnologia, Universidade Nova de Lisboa (2006)

10. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Compu-
ter Graphics and Geometric Modeling, Morgan Kaufmann, San Francisco (2006)

11. Sarmento, A.: Estruturas de Dados Métricas Genéricas em Memória Secundária.
Master’s thesis, Departamento de Informática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa (2010), http://citi.di.fct.unl.pt/

12. Sexton, A.P., Swinbank, R.: Symmetric M-tree. Tech. Rep. CSR-04-02, School of
Computer Science, University of Birmingham (2004), http://www.cs.bham.ac.

uk/~rjs/research/
13. Thomasian, A., Zhang, L.: Persistent semi-dynamic ordered partition index. The

Computer Journal 49(6), 670–684 (2006)
14. Thomasian, A., Zhang, L.: The stepwise dimensionality increasing (SDI) index for

high-dimensional data. The Computer Journal 49(5), 609–618 (2006)
15. Traina, Jr., C., Traina, A., Faloutsos, C., Seeger, B.: Fast indexing and visualization

of metric data sets using Slim-trees. IEEE Transactions on Knowledge and Data
Engineering 14(2), 244–260 (2002)

16. Traina, Jr., C., Traina, A., Filho, R.S., Faloutsos, C.: How to improve the pruning
ability of dynamic metric access methods. In: 11th Int. Conf. on Information and
Knowledge Management (CIKM’02). pp. 219–226. ACM Press, New York (2002)

17. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach. Advances in Database Systems, Springer (2006)

90 INForum 2010 Ângelo Sarmento, Margarida Mamede

LiveWeb – Core Language for Web Applications

Miguel Domingues and João Costa Seco

CITI - Departamento de Informática FCT/UNL, Lisboa, Portugal
miguel.domingues@fct.unl.pt, joao.seco@di.fct.unl.pt

Abstract. We present a typed core language for web applications that
integrates interface definition, business logic and database manipulation.
By expressing the interactions between different application layers in the
same programming language, we gain the benefits of strongly typed lan-
guages without loosing the programming flexibility of interpreted lan-
guages which is frequently an argument in favor of unsafe programming
languages. We describe a prototype of a programming environment and
runtime support system for our language that allows a very dynamic
style of web application development.

Keywords: Web applications, programming languages, type systems

1 Introduction

The main-stream of web application development is usually based on a three-
layer architecture that divides applications into client interface, business logic
and database layers. In practice, applications are developed in heterogeneous
programming language environments, and in particular, the application logic is
specified using general purpose programming languages to define computations
and specialized query languages to access the information stored in databases.
The two language paradigms have several mismatches [5,6] making the inte-
gration between layers one of the most important aspects of web application
development. Typically, layers interact through dialects and programming con-
ventions, and communication code is not subject to effective mechanical verifi-
cation and is highly error prone. Writing SQL queries as strings is a simple and
fast way to implement database applications but doesn’t allow for any kind of
static checks. Object-Relational Mapping approaches provide a safer solution to
this problem but are in many cases considered too heavy [11].

Furthermore, web application development is very high demanding for rapid
construction and constant change, which gave rise to a series of flexible languages
that trade the benefits of statically strongly typed programming languages for
the advantages of dynamically typed interpreted languages (e.g., PHP, ASP,
Ruby). Some development frameworks targeting web applications (e.g., Ruby
On Rails, CakePHP) provide scaffolding features to increase developers’ produc-
tivity, others provide extensions to general purpose languages and include typing
for database operations [3,7], a third category of frameworks choose to use do-
main specific languages to provide program safety by construction [1,4,7,14]. We

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 91–94

argue that the latter approach, to integrate query support in the language and
hence enable static verification between layers, has clear advantages and is more
challenging from a programming language perspective.

Although the rising of the level of abstraction allows for checking the basic
safety of programs and elimination of many programming errors, our language
aims at potentiating the verification of other more sophisticated properties. In
particular, we refer to properties related to data security and access control
[2,10,12] and related to the coordination of several interacting parts in dis-
tributed systems [13]. In order to allow future experiments on these theoretical
studies on type systems we introduce a typed core language for web applications
that integrates the typing of interface definition, business logic and database ma-
nipulation. A more complete description of the language is available in [8]. Our
approach compares to Links [7] and Ur/Web [4] that also define strongly typed
languages but we take a more limited approach of starting from first principles
with primitive operations, types and a clear separation between interface and
program, and thus allowing for formal studies to be easily applied here.

We also describe an implementation of an interpreter and a highly flexible
programming environment for our language, designed to provide a dynamic pro-
gramming style where the developers act directly over the actual running code
without loosing the global integrity checks of interpreted languages.

2 Core Language for Web Applications

Our core language has three main programming elements: entities, screens and
actions. Entities are containers of structured persistent data implemented in
database tables. Operations over entities mimic a subset of the standard database
query language (SQL). Screens are abstractions over a user interface definition
language whose values are web pages. Screens may be parameterized and some
of the user interface expressions may contain general purpose expressions to
be executed back at the server. Actions are abstractions over general purpose
expressions comprising operations over entities, screens and other values.

We now illustrate the syntax of the language by means of the code fragment
in Fig. 1 implementing a phone number directory. We define an entity called
Person containing phone numbers and names by enumerating its attributes and
corresponding types. The interface of the application is defined in a screen called
directory, built by iterating the results of a from expression (written in a syntax
similar to LINQ [3]) that fetches all values stored in entity Person. The language
fragment used to define web pages is inspired in the nested structure of web
page blocks, it contains an iterator expression that maps query results in web
page blocks, and also contains input elements (textfield) and actuator elements
(button). Input elements declare local variable names that can be used in ex-
pressions that pass the control flow from the browser back to the web server.
The button element in screen directory calls action addPerson using as arguments
the values given by the user in the text fields, which are available through to
the local names name and phone. Action addPerson adds a new row to entity

92 INForum 2010 Miguel Domingues, João Seco

def e n t i t y Person { i d : Id , name : Str ing , phone : S t r i n g }
def screen d i r e c t o r y {

i t e r a t o r (row i n (from (p i n Person) s e l e c t p)) {
l a b e l ”Name : ” + row . name ; br ;
l a b e l ”Phone : ” + row . phone ; br ; br

} ;
l a b e l ”Name” ; t e x t f i e l d name ; br ;
l a b e l ”Phone” ; t e x t f i e l d phone ; br ;
button ”Add” to addPerson (name , phone)

}
def a c t i o n addPerson (nm: Str ing , ph : S t r i n g) : Block {

i n s e r t { name = nm, phone = ph } i n Person ;
d i r e c t o r y ()

}
Fig. 1: LiveWeb Example

Person with the given values for name and phone. After the insertion of a new
row, screen directory is rendered in the browser. The type system of the language
ensures that there are no runtime errors due to ill-formed queries, with missing
entity names or ill-typed arguments in where clauses, it ensures that screens are
rendered properly, e.g. with no missing information from entity attributes, and
that all actions used in screens exist and expect matching parameter types, etc.

3 Runtime Support System

We implement our language in a runtime support system that combines a web
server with a language interpreter and a database for application data. The
system also provides a wiki style development environment based on a persistent
and versioned code base. Source code is stored, versioned, and organized in a
database instead of being scattered in files. This allows for the type safe dynamic
reconfiguration of the system, since we maintain as active the code that was last
verified as well typed. The UI fragment evaluates to regular HTML code with
JavaScript for name binding and activating continuation code in the server.

Our runtime support system provides two functioning modes, one for exe-
cuting the application and another for editing and checking the source code.
The first mode of interaction, the execution mode, allows for actions and screens
to be called by standard URL conventions using the name of element (action
or screen) and by indicating the corresponding arguments by means of literals.
More complex browser interactions can be achieved by standard techniques but
are out of the scope of this work. Query expressions are evaluated to regular
SQL expressions and executed in the database.

The development mode is also available through the browser (usually through
an “edit” button or link). It lets the user access and change all available elements
of an application. The runtime support system stores screen, action, and entity
definitions as separate pieces of code, and establishes a notion of published ver-
sion of an application built from the latest verified copies. When the structure

LiveWeb - Core Language for Web Applications INForum 2010 – 93

of an entity is modified, the database model of application data must also be
modified to match the new entity definition. For the sake of simplicity, entity
data is transformed in the more direct way in order to keep applications working.

4 Final Remarks

On the one hand, this work aims at developing a simple and small language that
could be easily extended and allow the formal study of type related properties
like data security and access control. On the other hand, it aims at providing an
implementation of a runtime system for the language that works like a workbench
for those extensions. Security related property checking techniques based on
refinement types [9] are presented in [2] and a prototype is already available from
the authors’ web page. There are many technological issues that can be improved
to make the language and runtime system more usable (e.g. nested queries,
lazy query evaluation, asynchronous page updates, etc.) and robust (keeping
versions of data of deleted columns, etc.). However, the main goal is to provide
a framework to future experiments on type systems for web applications.

Acknowledgments. This work is partially supported by the Certified Inter-
faces project NGN44-CMUPortugal. We thank to Lúıs Caires, António Melo and
Lúcio Ferrão for the discussions at OutSystems that motivated this work.

References

1. OutSystems (Jan 2010), http://www.outsystems.com/
2. Caires, L., Perez, J.A., Seco, J.C., Vieira, H.T.: Refinement Types for Database

Access Control. Tech. rep., UNL-DI-3-2010, Dep. Informática, FCT/UNL (2010)
3. Calvert, C., Kulkarni, D.: Essential LINQ. Addison-Wesley Professional (2009)
4. Chlipala, A.: Ur: Statically-Typed Metaprogramming with Type-Level Record

Computation. PLDI 2010, SIGPLAN Notices 45(6), 122–133 (2010)
5. Cook, W.R., Ibrahim, A.H.: Integrating Programming Languages and Databases:

What’s the Problem? In: ODBMS.ORG, Expert Article (2005)
6. Cooper, E.: The Script-Writer’s Dream: How to Write Great SQL in Your Own

Language, and Be Sure It Will Succeed. DBPL 2009, LNCS 5708 (2009)
7. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: Web programming without

tiers. FMCO 2006, LNCS 4709, 266–296 (2006)
8. Domingues, M., Seco, J.C.: Definition of a Core Language for Web Applications

(LiveWeb). Tech. rep., UNL-DI-4-2010, Dep. Informática, FCT/UNL (2010)
9. Freeman, T., Pfenning, F.: Refinement Types for ML. PLDI 1991, SIGPLAN No-

tices 26(6) (1991)
10. Pires, M., Caires, L.: A type system for access control views in object-oriented

languages. In: ARSPA-WITS 2010. LNCS (2010)
11. Spiewak, D., Zhao, T.: ScalaQL: Language-Integrated Database Queries for Scala.

SLE 2009, LNCS 5969, 154–163 (2010)
12. Toninho, B., Caires, L.: A spatial-epistemic logic and tool for reasoning about

security protocols. Tech. rep., Dep. de Informática, FCT/UNL (2009)
13. Vieira, H.T., Caires, L., Seco, J.C.: The conversation calculus: A model of service

oriented computation. ESOP 2008, LNCS 4960 (2008)
14. Visser, E.: WebDSL: A case study in domain-specific language engineering. GTTSE

II, LNCS 5235 (2008)

94 INForum 2010 Miguel Domingues, João Seco

Replicated Software Components for Improved
Performance?

Paulo Mariano, João Soares and Nuno Preguiça

CITI / Dep. de Informática - Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa,

Quinta da Torre, 2829 -516 Caparica, Portugal

Abstract. In recent years, CPU evolution has shifted from the continu-
ous increase of speed to an increase in the number of processing cores. In
this paper, we propose to take advantage of the new multicore systems,
by diverse replication of software components. This approach, comple-
mentary to other directions that are being tackled, attempts to obtain a
better performance for a macro-component consisting of several diverse
implementations of the same specification, by returning, for each oper-
ation, the result from the replica that is faster for that operation. We
present an early design of a system that implements this approach.

Keywords: replication, parallel programming, multicore systems

1 Introduction

Until recently, CPUs evolution was a mix of improved functionality and a steadily
increase of clock speed. However, this path of evolution have reached its end, with
an increasing difficulty on further increasing clock speed [4]. Currently, hardware
manufacturers are deploying CPUs with an increasing number of processing
cores. With multicore CPUs, programs must include multiple concurrent threads
of activity to take benefit from the multiple cores available.

Previous experience in the field of concurrent/parallel programming shows
that creating such applications is a highly demanding task even for experienced
programmers. This problem has led to an intense research activity for finding
good abstractions for expressing parallel computations and to build suitable
runtime support [2,5,3] that simplifies this task in multicore environments.

In this paper, we propose a complementary approach that can be used by
both applications that include multiple threads and by applications that in-
clude a single thread. The main insight for our approach is that applications
almost always resort on a set of components with standard interfaces - e.g. data
structures, algorithms, etc. For these components, several implementations are
available, which have different performance for different inputs or for different

? This work was partially supported by FCT/MCTES, project
#PTDC/EIA/74325/2006 and #PTDC/EIA-EIA/108963/2008 and CITI.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 95–98

Replica 1

Replica 2

Replica 4

Replica 3

M
anager

 Internal
Scheduler

Application
Method Call

Submit Job
Macro-Component

Executor 1

Executor N

Executor 2
...

 Work
Queue

Global Scheduler

Fig. 1. Macro-component system model.

operations. Thus, we propose to locally replicate these components using differ-
ent underlying implementations, building a macro-component.

This basic macro-component concept can be used for two different purposes.
Reliability, by masking software bugs, similar to n-version programming [1] but
on a smaller scale. Or improved performance, by returning the result obtained by
the fastest replica. In this case, an operation would be executed in the underlying
replicas concurrently and the first result returned by these would be the result
returned by the macro-component.

Although the idea seems simple, making it work in practice has a number
of technical challenges that must be addressed, including performance issues,
coordination among macro-components in an application, etc. In this paper we
present our initial design for building and supporting macro-components.

The remaining of this paper is organized as follows: Section 2 describes our
initial design and Section 3 concludes the paper with some final remarks.

2 Design

In this section we present the initial design for a macro-component runtime sys-
tem. To simplify this initial design a number of assumptions are made about
the macro-component underlying micro-components (or replicas). First, it is
assumed that the replicas do not fail arbitrarily. Second, they must be self con-
tained. Implementations are not allowed to interact with their exterior through
any means other than operation results. Third, operations must be deterministic.

In figure 1, we present the macro-component runtime architecture. The ar-
chitecture can be divided in two main components: the global scheduler and
the individual macro-components. The macro-components are composed of a
manager, which provides the interface of the implemented specification to the
exterior, a set of underlying replicas and an internal scheduler. It is not necessary
to have any knowledge on the implementation details of the underlying replicas
as long as they all implement the same specification. The global scheduler keeps
track of the several execution jobs in a work queue and schedules them for execu-
tion by a pool of executor threads in a producer-consumer scheme. More details
on the purpose and functioning of both the internal schedulers and the global
scheduler can be found in section 2.1.

96 INForum 2010 Paulo Mariano, Nuno Preguiça, João Soares

When the application calls an operation on the macro-component, the man-
ager forwards it to the internal scheduler. The internal scheduler creates one or
more jobs for the operation which are then submitted to the global scheduler. If
the operation can be executed asynchronously (i.e., it returns no result and can
never fail), the application thread can immediately continue execution, other-
wise it must block until a result is available. Operations submitted to the global
scheduler are kept in a work queue until they are handed for execution to one
of the executor threads.

2.1 Scheduling

The scheduling of operations in a macro-component environment takes two
forms in the proposed model, internal scheduling and global scheduling. Internal
scheduling is done internally in the macro-component and consists on the cre-
ation of jobs to be submitted to the global scheduler. These jobs consist on the
execution of an operation on a given replica. As such, the internal scheduler is
responsible to decide which replicas will run an operation. Global scheduling, on
the other hand, handles the choice of which job to execute at any given moment.

Internal Scheduling As replica states must be maintained coherent, opera-
tions which update this state must be executed everywhere. However, for read
operations this is not required. In our prototype we have implemented the fol-
lowing three internal scheduling strategies based on this property.

Read-all Reads are executed in all replicas and the result returned will be
that of the replica that finishes processing first. If the macro-component
experiences a light load, this strategy ensures the best performance for all
operations. However, stress tests reveal a problem for this strategy as replicas
can be held back by unnecessary slow operations instead of useful work.

Read-one With read-one, the macro-component directs a read operation to a
single replica. This replica is, hopefully, the one with the best performance
for this operation type. The issue with this strategy is how can we predict
which replica best fits an operation.

Read-multiple A compromise between read-all and read-one modes. An oper-
ation is assigned to a subset of the replicas.

Macro

Micro 1

Micro 2

Macro

Micro 1

Micro 2

Read-All Read-One

Fig. 2. Read-all vs read-one example timeline.

Replicated Software Components for Improved Performance INForum 2010 – 97

Global Scheduling This scheduler works as a distributor of jobs for the ex-
ecutors. Various scheduling strategies can be implemented, but some concerns
must be addressed in order to maintain proper functionality. First, the relative
order of update operations must be preserved. This means that update oper-
ations must be executed in the same order on all replicas. If these operations
are executed out of order, macro-component replicas’ internal state may diverge,
leading to incorrect or unexpected results. Also, while read operations can be
reordered they must be executed in a state that reflect all previous updates.

For simple independent macro-components, these ordering rules can be en-
forced for each macro-component independently, as there is no relationship be-
tween the replicas. In more complex cases, this independence may not hold due
to relationships between macro-components. For example, in a macro-component
based JDBC driver, the Connection macro-component cannot be allowed to com-
mit before all previous operations on its Statements are finished.

3 Final Remarks

In this paper, we introduce the concept of macro-component, a software com-
ponent that combines several different implementations of a given component
specification. We propose the use of macro-components as a mechanism to im-
prove the performance of applications in multicore systems and present an initial
design of a runtime system to support this concept.

The initial evaluation with an early prototype of our system shows that the
runtime system imposes non-negligible overhead. However, even with a non-
optimized implementation it was possible to obtain a better overall performance
for a macro-component that implements an in-memory SQL database.

References

1. A. Avizienis. The n-version approach to fault-tolerant software. IEEE Trans. Softw.
Eng., 11(12):1491–1501, 1985.

2. J. Larus and C. Kozyrakis. Transactional memory. Commun. ACM, 51(7):80–88,
2008.

3. E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn. Parallelizing security checks
on commodity hardware. In S. J. Eggers and J. R. Larus, editors, ASPLOS, pages
308–318. ACM, 2008.

4. K. Olukotun and L. Hammond. The future of microprocessors. Queue, 3(7):26–29,
2005.

5. C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Evaluating
mapreduce for multi-core and multiprocessor systems. In HPCA ’07: Proceedings
of the 2007 IEEE 13th International Symposium on High Performance Computer
Architecture, pages 13–24, Washington, DC, USA, 2007. IEEE Computer Society.

98 INForum 2010 Paulo Mariano, Nuno Preguiça, João Soares

Compiladores e Linguagens de Programação

99

A Static Approach for Detecting Concurrency
Anomalies in Transactional Memory

Bruno Teixeira, João Lourenço, and Diogo Sousa?

CITI — Departamento de Informática,
Universidade Nova de Lisboa, Portugal

bct18897@fct.unl.pt Joao.Lourenco@di.fct.unl.pt
dm.sousa@fct.unl.pt

Abstract. Programs containing concurrency anomalies will most prob-
ably exhibit harmful erroneous and unpredictable behaviors. To ensure
program correctness, the sources of those anomalies must be located and
corrected. Concurrency anomalies in Transactional Memory (TM) pro-
grams should also be diagnosed and fixed. In this paper we propose a
framework to deal with two different categories of concurrency anoma-
lies in TM. First, we will address low-level TM anomalies, also called
dataraces, which arise from executing programs in weak isolation. Sec-
ondly, we will address high-level TM anomalies, also called high-level
dataraces, bringing the programmer’s attention to pairs of transactions
that the programmer has misspecified, and should have been combined
into a single transaction. Our framework was validated against a set of
programs with well known anomalies and demonstrated high accuracy
and effectiveness, thus contributing for improving the correctness of TM
programs.

Keywords: Static Analysis, Testing, Verification, Concurrency, Soft-
ware Transactional Memory

1 Introduction

Concurrent programming is inherently hard. The fact that more than one order-
ing of events may take place at runtime makes it difficult to consider all possible
execution scenarios of a program, and may expose unpredicted and harmful be-
haviors. The most notorious of these concurrency errors is the datarace, or low-
level datarace, which happens when two threads concurrently access a shared
variable with no concurrency control enforced, and at least one of those accesses
is an update. Low-level dataraces may be avoided by using locks, thus establish-
ing a mutual exclusion between certain code blocks of the program.
? This work was partially supported by Sun Microsystems and Sun Microsystems
Portugal under the “Sun Worldwide Marketing Loaner Agreement #11497”, by the
Centro de Informática e Tecnologias da Informação (CITI), and by the Fundação
para a Ciência e Tecnologia (FCT/MCTES) in the Byzantium research project PT-
DC/EIA/74325/2006 and research grant SFRH/BD/41765/2007.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 101–112

Even in the absence of low-level dataraces, a program may still exhibit con-
currency errors which result from incorrect ordering of correctly synchronized
critical sections. Such is the case when a thread executes two separate critical
sections which are related and should be merged into a single one in order to
ensure correctness. We shall call these errors high-level dataraces or high-level
anomalies. In contrast, dataraces, or low-level dataraces, will also be referred in
this paper as low-level anomalies.

This paper addresses the detection of both low-level and high-level anomalies
in the Transactional Memory (TM) [11,17] setting. TM is a promising approach
that offers multiple advantages for concurrent programming. In contrast to the
usage of locks, which enforces mutual exclusion, TM is neutral concerning the
execution model. Memory transactions usually execute optimistically in real con-
currency, assuming that no transaction will interfere with another. An underlying
TM framework monitors the system and aborts conflicting transactions.

TM is inherently immune to some concurrency errors that storm lock-based
programs, such as deadlocks. However, low-level dataraces can still be observed.
A transaction is only shielded against another transaction, in the same way that
a lock-protected critical section is only protected from another critical section
which holds a common lock.

There are several approaches to detect dataraces in lock-based programs,
both static [6, 9, 13], dynamic [8, 12, 15], and hybrid [16]. Likewise, there are
many approaches for high-level anomaly detection [3, 5, 10, 20, 22]. Even though
some results could also be applied to TM programs, none of these works targets
specifically the TM setting. In this paper, we consider the different nature of
TM programs, providing detection approaches for both low-level and high-level
anomalies in TM. For this, we discuss how to apply a low-level anomaly detector
meant for locks to a TM-based program, and we also propose a new definition
for high-level anomalies. We also describe a new static approach for detecting
high-level anomalies in TM, which conservatively extracts all possible execution
traces of a program and searches for anomalies using a pattern-based approach.

We will discuss the detection of low-level TM anomalies in Sect. 2, and of
high-level anomalies in Sect. 3; followed by a discussion of the related work in
Sect. 4; and by the conclusions and future work in the last section.

2 Low-Level Dataraces

The TM approach provides several advantages over currently existing concur-
rency control mechanisms. In particular, the usage of TM alone guarantees the
absence of some concurrency errors, such as deadlocks and priority inversion.
However, depending on the particular underlying TM system, dataraces may
still be observed. In this section we show how to detect dataraces in TM by con-
verting transactions into lock-protected critical sections and applying an existing
lock-oriented datarace detector.

102 INForum 2010 Bruno Teixeira, João Lourenço, Diogo Sousa

2.1 Dataraces in Transactional Memory vs. Locks

Locks enforce mutual exclusion between critical sections. If two distinct critical
regions are protected by at least one common lock, then no two threads may
execute them at the same time. One the other hand, in most cases TM does not
enforce mutual exclusion. Instead, two transactional code blocks may execute
concurrently, provided with the guarantees of Isolation and Atomicity. TM pro-
vides serializability of transactions, ensuring that if two transactions take place
concurrently and both succeed, then its final outcome is the same as if those two
transactions were executed one after the other.

Consider the distinct situations that may lead to a low-level datarace between
two threads, when using locks to control access to shared data:

1. None of the accesses is performed while holding a lock;
2. Only one of the accesses is performed while holding a lock; and
3. Both accesses are performed while holding locks; but there is no common

lock shared between them.

With locks, the user chooses which critical section will be mutually exclusive
with each other. Because in TM all transactions have the guarantees of Isolation
and Atomicity against all other concurrent transactions, the third case above
does not apply. Hence, as illustrated in Fig. 1, the situations that may lead to
dataraces in TM are:

1. None of the accesses is performed in the scope of a transaction; or
2. Only one of the accesses is performed in the scope of a transaction.

The general idea of our approach is to use an existing datarace detection
framework, interpreting atomic blocks as though they were simple lock-based
synchronized blocks. We propose an approach to automatically convert trans-
actional blocks into lock-based blocks, all synchronized on a single global lock.
Fig. 1 illustrates how each datarace case in TM is to converted to a related
situation with locks that result in the same outcome.

Conditions in TM

Ac
ce

ss
 1

Ø
T
Ø
T

Ø
Ø
T
T

DR
DR
DR

Ø
L1
Ø
L1
L1

Ø
Ø
L1
L2
L1

DR
DR
DR
DR

Ac
ce

ss
 2

Ac
ce

ss
 1

Ac
ce

ss
 2

Conditions in Locks

O
ut

co
m

e

O
ut

co
m

e

Fig. 1. Conditions for a datarace in TM and Locks

A Static Approach for ... INForum 2010 – 103

2.2 Detection Approach

Our approach was implemented through the use of AJEX [7], an extension to the
Polyglot compiler framework [14] for Java, that already parses atomic blocks.
Although our approach is independent from the lock-based datarace detector, in
the current implementation we opted to use JChord [13].

The automatic transformation process of TM programs to synchronized single-
lock programs consists of three distinct phases:

1. Parse the source code with the AJEX Polyglot extension. AJEX already han-
dles atomic blocks, inserting them in the generated program’s AST.

2. Global lock generation. The global lock must be globally accessible and have
an unique, unused name. Our automatic approach automatically decides on
how it should be named (a randomly generated name guaranteed to not
collide with other already existing names); and where it should be declared
(usually in the main class).

3. Generation of the transformed program. This new program contains syn-
chronized blocks instead of the original atomic blocks. The datarace detec-
tor, JChord, is then invoked on the generated program and the results are
presented.

2.3 Experiments

In order to validate our approach for transforming TM programs to synchronized
single-lock programs, a set of validation tests have been carried out [19]. Some of
these tests are well-known erroneous programs intended to benchmark validation
tools like our own. Others were developed specifically to test our tool, containing
simple stub programs with dataraces. We also tested Lee-TM [2], a renowned
concurrency benchmark. For each test it was necessary to have both lock-based
and TM-based versions, and some of the existing tests meant for locks had to
be manually rewritten using TM.

Tests were carried out by initially running JChord on the lock-based version
of each test. Then, we applied our approach to the TM versions of those tests, by
transforming them into single global-lock programs and feeding them to JChord.
For each test, the results for both executions of JChord were then compared. All
the results obtained fit into one of the following scenarios: for tests where the
lock-based and TM-based versions were strictly equivalent, the analysis results
were equivalent as well; when the TM and lock-based versions of a test would
have slightly different semantics (since some lock-based situations could not be
modeled using the TM programming model), results were slightly different, but
all those differences could be clearly mapped to the semantic variations between
the two versions.

2.4 Discussion

We have presented a static approach to detect low-level dataraces in TM pro-
grams. This approach is carried out by automatically converting transactions

104 INForum 2010 Bruno Teixeira, João Lourenço, Diogo Sousa

into proper lock-protected sections, and then invoking a lock-based datarace de-
tector. We have elaborated on the experimental results that show the validity
of this solution. The results have demonstrated that it is possible to detect real
anomalies in TM programs with our approach. More details on the detection of
low-level dataraces in TM programs can be found in [19].

3 High-Level Anomalies

A program that is free of low-level dataraces may still exhibit concurrency errors.
Unlike low-level anomalies, high-level anomalies do not result from unsynchro-
nized accesses to shared variables, but rather from a combination of multiple
synchronized accesses, which may lead to incorrect behaviors if ran in a specific
order.

As an example, consider the program in Fig. 2, showing a bounded data
structure whose size should not go beyond MAX_SIZE. Before a thread asks for
an item to be stored, it checks for available room. All accesses to the list fields
are safely enclosed inside transactions, and therefore no low-level datarace may
exist. However, due to interleaving with another thread running the same code,
between the executions of hasSpaceLeft() and store() the size of the list
could have changed to the maximum allowed; thus, the first thread would now
be adding an element to an already full list. Therefore, both method calls should
have been done inside the same transaction.

private boolean hasSpaceLeft() {
atomic { return (this.list.size() < MAX_SIZE); }

}

private synchronized void store(Object obj) {
atomic { this.list.add(obj); }

}

public void attemptToStore(Object obj) {
if (this.hasSpaceLeft()) {

// list may become full!
this.store(obj);
}

}

Fig. 2. Example of a High-level Anomaly

In the following sections we will discuss the conditions that may trigger high-
level anomalies, propose a possible categorization of those anomalies, and present
our approach for their detection.

3.1 Thread Atomicity

High-level anomalies are related with sets of transactions involving different
threads, which leave the program in an inconsistent state if ran in a specific

A Static Approach for ... INForum 2010 – 105

order. This happens because two or more transactions executed by a thread
are somehow related and make assumptions about each other (e.g., assumption
of success), but there is a scheduling in which another thread issues a con-
current transaction which breaks that assumption. The simplest way to solve
this problem is to merge those related atomic sections into a single transaction.
Furthermore, through empirical observation, it seems that most or all of such
anomalies involve only three transactions. Two consecutive transactions from
one thread and a third transaction from another thread, that when scheduled to
run between the other two, causes an anomaly.

Without further information from the developer on the intended program
semantics, it is not possible to infer at compile time all the relations among
transactions. However, it is possible to identify transactions that may or will
affect other transactions, and use this information to identify possible high-level
anomalies.

Consider a coordinate pair object shared between multiple threads. Let us
assume that a thread T1 issues a transaction t1.1 to read value x, and then issues
transaction t1.2 to read y. In between them, thread T2 could issue transaction t2.1

which sets both values to 0, and so thread T1 would have read values correspond-
ing to the old x and new y (zero), when it is likely that both read operations
were meant to read one single instant, i.e., either both before or after t2.1.

In this scenario, the final outcome is not equivalent to a situation in which
both read operations were ran without interleaving. The property of a set of
threads whose interleavings are guaranteed to be equivalent to their sequential
execution is called thread atomicity [22], and will be addressed again in Section 4.
It is common to pursue thread atomicity as being a correctness criterion.

3.2 Anomaly Patterns in Transactional Memory Programs

Feeling that full thread atomicity is too restrictive, thus triggering many false
positive scenarios, we opted for a more relaxed semantic that allows a restricted
number of atomicity violations. As an example of an atomicity violation which
in principle is not an error, consider Fig. 3, where each rectangle corresponds to
a transactional code block. The second (read) operation in T1 will be retrieving
the results written by T2. In order for this set of threads to be serializable, and
thus thread atomic, all possible interleavings would have to be equivalent to the
scenario in which the read immediately follows the write of the same thread.

WRITE (a)Thread 1 READ (a)

Thread 2 WRITE (a)

Time

Fig. 3. An unserializable pattern which does not appear to be anomalous.

106 INForum 2010 Bruno Teixeira, João Lourenço, Diogo Sousa

However, given the specific context of TM and the set of operations presented
in the figure, it seems unintuitive that this particular set would contain an error.
The read operation is retrieving a, and it seems unlikely that an operation will
be performed based on the value written before by the same thread, as it would
possibly be already outdated. The only error scenario involving this particular
setup would be the case in which after the read, the first thread would do a set
of operations that depend on both, the value just read and the value previously
written (e.g., assuming them to be equal).

Therefore, we propose a framework for detecting a configurable set of pat-
terns, and we opted to include only those most likely will result in concurrency
anomalies. Out of all the patterns that incur in atomicity violations, we have
isolated three suspicious patterns which describe possible high-level anomalies.

Read–write–Read or RwR — Non-atomic global read. A thread reads a
global state in two or more separate transactions. If it make assumptions
based on that state, this will most probably be a high-level anomaly.

Write–read–Write or WrW — Non-atomic global write. This is the oppo-
site scenario from above. A thread is changing the global shared state, but
in multiple separate transactions. Other thread reading the global state will
observe this state as inconsistent.

Read–write–Write or RwW — Non-atomic compare-and-swap. A thread checks
a variable value and, based on that value, alters the state of variable. If the
variable is changed meanwhile, the update will probably not make sense
anymore.

In the following, we will present our approach for statically matching suspi-
cious patterns against the program source code, and will report on the experi-
ments that assess the applicability and effectiveness of these patterns.

3.3 Symbolic Execution of Transactional Memory Programs

To detect high-level anomalies in TM programs, we perform a symbolic execution
of the program and generate a set of possible execution traces of the transac-
tional code. From these traces, we generate the set of possible interleavings of
transactional code blocks and check if there are matches with any of the patterns
identified in Sect. 3.2. Our approach for the detection of high-level anomalies in
TM programs was also implemented using Polyglot framework and AJEX. As
described before, Polyglot is a framework for performing transformations and
analysis on Java programs, and AJEX is an extension to Polyglot that parses
atomic blocks in TM programs.

The thread traces are obtained by symbolic execution. When the program to
be analyzed is loaded, all class declarations that contain main thread methods
are retrieved. This includes the classes that have a public static void
main (String args[]), the classes that inherit java.lang.Thread or
java.lang.Runnable and that contain a run() method declaration. Hence,
we obtain a list of all thread bootstrap methods. Statements in these thread

A Static Approach for ... INForum 2010 – 107

methods are then analyzed. Whenever a transactional code block is found, it is
added to the current trace, together with the full list of read and write operations
of that transaction.

Challenges arise when the program code is not strictly linear. When a method
call is encountered, the solution is to in-line the called code, i.e., to replace
the method call with the body of the target method, so that the transactions
performed by that method are still seen as being performed by the current
thread. Care must be taken not to perform infinite in-linings when in the presence
of recursive methods.

Additional challenges derive from disjunctions in the program control flow.
When there are multiple alternative paths, such as when using if or case state-
ments, the current trace must still represent all possible alternative paths. Rather
than having numerous alternative traces for the same thread, our approach adds
a special disjunction node to the trace, symbolizing a disjunction point, where
the execution can follow one of the multiple alternative paths. Thus, the trace
actually takes the form of a tree representing all the transactional blocks in all
the possible execution paths for a thread.

Finally, we also have to deal with loop structures in the input program.
This is solved by considering the representative scenarios of the execution of
loops. Therefore, the trace tree considers the cases in which the loop 1) is not
executed, 2) is executed once, or 3) is executed twice. It is not necessary to
consider more than two consecutive executions, as all the anomalies detected
with three or more expansions of the loop body are duplicates of those detected
with just two expansions. On the other hand, two expansions of the loop body
may yield anomalies that would not be detected with a single expansion. This is
the case when the loop body includes two or more transactions that are involved
in anomalies among themselves. Also, it is necessary to consider zero executions
of the loop body, for the case in which the statements that precede and the ones
that follow the loop are both involved in an anomaly.

3.4 Validation of the Approach

We ran a total of 14 tests, consisting of small programs taken from the liter-
ature [3, 4, 5, 10, 21], with studied high-level anomalies and that were analyzed
by our tool. Additionally, one test consisted on the Allocate Vector from the
IBM concurrency benchmark repository [1], and another test was developed by
ourselves [19]. The results are summarized in Table 1.

In a total of 12 anomalies present in these programs, 10 were correctly pointed
out: 2 RwR anomalies, 3 WrW and 5 RwW.

The false negatives were not due to imprecision of the anomaly patterns, but
rather to data accesses in JRE classes, whose source code is not available. Those
JRE methods may possibly read or update internal data, but since their code is
not available, these methods are ignored, thus missing potential anomalies. As
a possible approach to solve this problem, these unavailable methods could be
assumed to read and modify the involved objects.

108 INForum 2010 Bruno Teixeira, João Lourenço, Diogo Sousa

Table 1. Test results summary.

Test Total Total Correct False Missed
Name Anomalies Warnings Warnings Warnings Anomalies

Connection [5] 2 2 1 1 1
Coordinates’03 [3] 1 4 1 3 0
Local Variable [3] 1 2 1 1 0
NASA [3] 1 1 1 0 0
Coordinates’04 [4] 1 4 1 3 0
Buffer [4] 0 7 0 7 0
Double-Check [4] 0 2 0 2 0
StringBuffer [10] 1 0 0 0 1
Account [21] 1 1 1 0 0
Jigsaw [21] 1 2 1 1 0
Over-reporting [21] 0 2 0 2 0
Under-reporting [21] 1 1 1 0 0
Allocate Vector [1] 1 2 1 1 0
Knight Moves [19] 1 3 1 2 0

Total 12 33 10 23 2

In addition to the correctly detected anomalies, there were also 23 false pos-
itives (70% of total warnings). We group the causes for these imprecisions in 4
different categories.

First, out of these 23 false warnings, 5 were due to redundant reading op-
erations. In a read operation object.field, two readings are actually being
performed: object and field. It makes no sense that two instances of this
statement be involved in a RwR. It would be possible to eliminate these false
positives if the accesses were considered the same.

Another 6 false positives are related to cases for which additional semantic
information would have to be provided or inferred. These false warnings could be
eliminated with the aid of other available techniques, such as pointer analysis.

Of the remaining false positives, 10 could be eliminated by refining the defi-
nition of the anomaly patterns described in Section 3.2, with alterations that are
indeed intuitive. For example, an RwR anomaly could be ignored if the second
transaction would write both values involved. However, these alterations should
be made carefully, as they could harm the overall behavior in other tests.

Finally, the remaining 2 false reports are also related to correct accesses which
are matched by our anomaly patterns. Further study would be necessary to
adapt the anomaly patterns in order to leave out these correct accesses, without
seriously compromising the precision of the approach.

3.5 Discussion

We have analyzed common criteria for reporting high-level anomalies, and at-
tempted to provide a more useful criteria by defining three anomaly patterns. We

A Static Approach for ... INForum 2010 – 109

have defined and implemented a new approach to static detection of high-level
concurrency anomalies in Transactional Memory programs. This new approach
works by conservatively tracing transactions and matching the interference be-
tween each consecutive pair of transactions against a set of defined anomaly
patterns. Our approach raises false positives, although at an acceptable level.
When compared with the existing reports from the literature, these results are
somewhat better. The two false negatives were related to the unavailability of
the source code and not to the inadequacy of the anomaly patters. We may
therefore conclude that our conservative tracing of transactions is a reasonable
indicator of the behavior of a program, since our results rival with those of dy-
namic approaches. More details on the detection of high-level dataraces in TM
programs can be found in [18,19].

4 Related Work

Low-level datarace detection, either by observing a program’s execution — dy-
namic approach — or its specification — static approach — has been an area of
intense research [6, 8, 9, 12, 13, 15, 16]. We are unaware of any work that specif-
ically targets TM; however, we have shown that current algorithms, which are
mainly intended for use with lock-based mechanisms, may as well be applied to
transformed TM programs.

Although high-level anomaly detection is not such a hot topic, there are some
relevant works which share some principles and features with our own. One of
the earliest works on the subject is the one by Wang and Stoller [22]. They
introduce the concept of thread atomicity, atomicity having a different meaning
than the one stated in the ACID properties provided by TM systems. In this
case, thread atomicity is more related to serializability, and it means that any
concurrent execution of a set of threads must be equivalent to some sequential
execution of the same set of threads. Wang and Stoller provide two algorithms
for dynamically (i.e., at runtime) finding atomicity violations. Other authors
have based on this work to develop other approaches [5, 10].

An attempt to provide a more accurate definition of anomalies is the work on
High-Level Dataraces (HLDRs) by Artho et. al [3]. Informally, an HLDR refers
to variables that are related and should be accessed together, but there is some
thread that does not access that variable set atomically. This is different from
thread atomicity, which considers the interaction between transactions, without
regard for relations between variables.

Because HLDR is concerned with sets of related variables, some atomicity
violations are not regarded as anomalies, such as those which concern only one
variable. On the other hand, it is possible that an HLDR does not incur in an
atomicity violation. This work is in some way related to ours, in that it attempts
to increase the precision of thread atomicity by lowering its false positives. How-
ever, while our approach is to simply disregard some atomicity violations as
safe, the work by Artho founds a new definition, which still exhibits some false
positives, and also introduces some false negatives. This work is also related to

110 INForum 2010 Bruno Teixeira, João Lourenço, Diogo Sousa

our in that they both automatically infer data relationships, and do not require
processing user annotations which state those relationships.

A different approach has been taken by Vaziri et. al [20]. Their work fo-
cuses on a static pattern matching approach. The patterns reflect each of all the
possible situations that may lead to an atomicity violation. The anomalies are
detected based on sets of variables that should be handled as a whole. To this
end, the user must explicitly declare the sets of values that are related. This work
is similar to ours in that both approaches are static, and both follow a pattern-
matching scheme. However, our approach is intended to be applied to existing
programs, and so it assumes that any set of variables may be related. Contrar-
ily, the work by Vaziri demands that the user explicitly declares which sets of
variables are meant to be treated atomically, and so it can trigger anomalies on
all atomicity violations, without too many false positives.

5 Concluding Remarks

We have proposed a framework for the detection of both low-level and high-level
anomalies in Transactional Memory programs. The framework resorts to statical
analysis of the program’s source code to detect and report those anomalies.

The methodology used to detect low-level dataraces, based in a source-to-
source transformation of a TM program to a lock-based one, was proven to
provide adequate results, thus being a possible strategy to detect this kind of
anomalies.

The methodology used to detect high-level dataraces, based in static analysis
and symbolic code execution, and matching transactions’ interleavings with sus-
picious patterns, has also provided good quality results, comparable to or even
better than those reported in the literature for analogous problems in lock-based
programs.

Our approach is novel because it is based in static analysis; it extracts con-
servative trace trees aiming at reducing the number of states to be analyzed;
and it detects anomalies using a heuristic based in a set of suspicious patterns
believed to be anomalous.

The developed tool could be improved by further refining the error patterns.
The addition of points-to and happens-in-parallel analyses would also help to
improve the tool by reducing the number of states to be analyzed. Other im-
provements could be achieved by enabling the analysis of standard or unavailable
methods, and by solving the issue of redundant read accesses, as discussed in
Sect. 3.4.

References

1. IBM’s Concurrency Testing Repository. https://qp.research.ibm.com/
concurrency_testing.

2. Mohammad Ansari et al. Lee-TM: A non-trivial benchmark suite for transactional
memory. In Proceedings of ICA3PP ’08, pages 196–207, Berlin, 2008. Springer-
Verlag.

A Static Approach for ... INForum 2010 – 111

3. Cyrille Artho, Klaus Havelund, and Armin Biere. High-level data races. Softw.
Test., Verif. Reliab., 13(4):207–227, 2003.

4. Cyrille Artho, Klaus Havelund, and Armin Biere. Using block-local atomicity to
detect stale-value concurrency errors. In Farn Wang, editor, ATVA, volume 3299
of Lecture Notes in Computer Science, pages 150–164. Springer, 2004.

5. Nels E. Beckman, Kevin Bierhoff, and Jonathan Aldrich. Verifying correct usage
of atomic blocks and typestate. SIGPLAN Not., 43(10):227–244, 2008.

6. Jong deok Choi, Alexey Loginov, Vivek Sarkar, and Alexey Logthor. Static
datarace analysis for multithreaded object-oriented programs. Technical report,
IBM Research Division, Thomas J. Watson Research Centre, 2001.

7. Ricardo Dias and Bruno Teixeira. Ajex: A source-to-source java stm framework
compiler. Technical report, DI-FCT/UNL, April 2009.

8. Anne Dinning and Edith Schonberg. Detecting access anomalies in programs with
critical sections. SIGPLAN Not., 26(12):85–96, 1991.

9. Cormac Flanagan and Stephen N. Freund. Type-based race detection for Java.
SIGPLAN Not., 35(5):219–232, 2000.

10. Cormac Flanagan and Stephen N Freund. Atomizer: a dynamic atomicity checker
for multithreaded programs. In Proceedings of POPL’04, pages 256–267, New York,
NY, USA, 2004. ACM.

11. Maurice Herlihy, Victor Luchangco, Mark Moir, and III William N. Scherer. Soft-
ware transactional memory for dynamic-sized data structures. In PODC ’03: Pro-
ceedings of the twenty-second annual symposium on Principles of distributed com-
puting, pages 92–101, New York, NY, USA, 2003. ACM.

12. Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. Literace: effective
sampling for lightweight data-race detection. In Proceedings of PLDI’09, pages
134–143, New York, NY, USA, 2009. ACM.

13. Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for java.
In PLDI, pages 308–319. ACM Press, 2006.

14. Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: An
extensible compiler framework for java. In CC, pages 138–152, 2003.

15. Robert O’Callahan and Jong-Deok Choi. Hybrid dynamic data race detection.
SIGPLAN Not., 38(10):167–178, 2003.

16. Yao Qi, Raja Das, Zhi Da Luo, and Martin Trotter. Multicoresdk: a practical and
efficient data race detector for real-world applications. In Proceedings of the 7th
Workshop on Parallel and Distributed Systems, pages 1–11, New York, NY, USA,
2009. ACM.

17. Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of
PODC’95, pages 204–213, New York, NY, USA, 1995. ACM.

18. B. Teixeira, D. Sousa, J. Lourenço, R. Dias, and E. Farchi. Detection of trans-
actional memory anomalies using static analysis. In Proceedings of PADTAD’10,
pages 26–36, New York, NY, USA, 2010. ACM.

19. Bruno Teixeira. Static detection of anomalies in transactional memory programs.
Master’s thesis, Universidade Nova de Lisboa, April 2010.

20. Mandana Vaziri, Frank Tip, and Julian Dolby. Associating synchronization con-
straints with data in an object-oriented language. In Proceedings of POPL’06,
pages 334–345, New York, NY, USA, 2006. ACM.

21. Christoph von Praun and Thomas R. Gross. Static detection of atomicity violations
in object-oriented programs. In Journal of Object Technology, page 2004, 2003.

22. Liqiang Wang and Scott D. Stoller. Run-time analysis for atomicity. Electronic
Notes in Theoretical Computer Science, 89(2):191–209, 2003. RV ’2003, Run-time
Verification (Satellite Workshop of CAV ’03).

112 INForum 2010 Bruno Teixeira, João Lourenço, Diogo Sousa

Animation of Tile-Based Games Automatically
Derived from Simulation Specifications

Jan Wolter, Bastian Cramer, and Uwe Kastens

University of Paderborn
Department of Computer Science

Fürstenallee 11, 33102 Paderborn, Germany
jwolter@mail.uni-paderborn.de,{bcramer,uwe}@uni-paderborn.de

Abstract. Visual Languages (VLs) are beneficial particularly for
domain-specific applications, since they can support ease of understand-
ing by visual metaphors. If such a language has an execution semantics,
comprehension of program execution may be supported by direct visu-
alization. This closes the gap between program depiction and execution.
To rapidly develop a VL with execution semantics a generator framework
is needed which incorporates the complex knowledge of simulating and
animating a VL on a high specification level.
In this paper we show how a fully playable tile-based game is specified
with our generator framework DEViL. We illustrate this on the famous
Pac-man1 game.
We claim that our simulation and animation approach is suitable for
the rapid development process. We show that the simulation of a VL
is easily reached even in complex scenarios and that the automatically
generated animation is mostly adequate, even for other kinds of VLs like
diagrammatic, iconic or graph based ones.

1 Introduction
A prominent representative of a visual language is the Unified Modeling Lan-
guage (UML) [9] which is often used in software engineering process. Even
smaller languages precoined for a specific domain are popular, because they
can use visual metaphors of the target domain. In general an instance of such a
visual language is used to produce source code of a different domain, e.g. Java
Code from an UML class diagram.

To gain acceptance in rapid prototyping generator frameworks are used which
can generate graphical structure editors for such visual languages from high-level
specifications. These generators incorporate expert knowledge to produce a com-
plete development environment for a VL with all features known from typical
text editors like cut and paste, printing, drag and drop and so on. Unfortunately
there is still a gap between program depiction and the generated code of that
program. The programmer has to keep in mind what the program, he just cre-
ated, does when it is executed. This gap is known as the gulf of execution [8].
Simulation and animation of the visual language instance can help to narrow

1 Pac-man
R©

is a registered trademark of Namco.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 113–124

this gap. The execution semantics of a visual language (if it has one) can be
integrated into the visual language. Hence the VL instance is no longer static it
can be simulated and smoothly animated. The user can ”see” his language being
executed before he generates code.

This helps to avoid mistakes at a very early stage and it supports program
comprehension which is a challenging task especially in languages where many
things happen in parallel.

The Development Environment for Visual Languages, DEViL, is a generator
framework for visual languages which produces graphical editors from declar-
ative high-level specifications. We extended it with simulation and animation
support for VLs whereas a smooth and challenging animation can be derived
automatically from a simple simulation specification. In this paper we want to
show that our simulation specification language is powerful to simulate even
complex behavior. We claim that the language helps in rapid prototyping, be-
cause simulation becomes an easy task due to powerful encapsulated concepts
like event driven simulation and the extension of the simulation model. We will
show that the automatically derived animation is suitable in most situations.

We will demonstrate this on the famous Pac-man game. It has a playful
character, but it is also a challenging language for simulation, because of the
complex navigation concepts of the ”ghost” pawns in the game.

The paper is structured as follows: First we introduce the DEViL system
and its underlying specification concepts with particular attention to simulation
and animation. In Section 3 we give a brief description of the Pac-man game.
In the next section we present our Pac-man Editor with special attention to the
strategies of the ghost characters. Section 5 addresses related work and section
6 completes the exposition with a conclusion and a look at other implemented
languages.

2 The DEViL System

The DEViL framework generates syntax-directed graphical structure editors for
visual languages. The generated environments support all features of commonly
used editors. Especially 2.5D views on the underlying semantic model are sup-
ported. A more in depth look at the generator framework and its generated
products with respect to usability can be found in [12].

DEViL has already been successfully used for projects with nameable com-
panies like Bosch [3], VW or SagemOrga [14]. The specification of this Pac-man
Game Editor was one of many bachelor resp. master-theses that used the DEViL
framework.

The specification process to generate ”static” environments - environments
without simulation and animation support - is divided into three parts. As can
be seen later in this paper, simulation and animation support can be extended
easily by the reuse of components of some of these three specification steps. Hence
an user of the DEViL system who can build visual development environments
can extend a language with simulation and animation support with reasonable
effort.

114 INForum 2010 Bastian Cramer, Jan Wolter, Uwe Kastens

To generate a structure editor for DEViL one first specifies the semantic
model of the visual language. This is done with DSSL (DEViL Structure Speci-
fication Language). The semantic model abstracts from the visual representation.
It stores just the information necessary to describe the semantics of the visual
program. DSSL is inspired by an object oriented design with classes, inheritance,
attributes and references. Fig. 1 shows a part of the specification of the semantic
model for our Pac-man Editor. DEViL can generate an editor with a tree based
structure manipulation view from this part of the specification.� �

CLASS Tile {
columnRef: REF Column;
item: SUB Item?;

}
ABSTRACT CLASS Item {
name: VAL VLString;

}
CLASS Pacman INHERITS Item {
direction: VAL VLInt INIT "2";
angle: VAL VLInt INIT "0";
clockwise: VAL VLBoolean;

}�
Fig. 1. Part of the semantic model for the Pac-man Editor.

To obtain an advanced visual representation the semantic model (created
with DSSL) is decorated with so called ”visual patterns”. Visual patterns define
how constructs of the structure tree should look like. E.g. one can specify that
some part of the structure tree should be laid out as the abstract concept ”list”
and aggregated nodes play the role of ”list elements”. Control attributes may
modify this layout, for instance the list could be constituted vertically instead
of horizontally. DEViL provides a huge library of precoined visual patterns with
various possibilities to adapt their layout and appearance. A subset of this library
is for example ”sets, lists, trees, formulae or matrices”. Technically, symbols of
the semantic structure definition inherit from these visual patterns. The attribute
evaluator generated by LIGA [4] of the underlying compiler generator framework
Eli [5] computes the final graphical representation.

The last (optional) step of the specification process is the definition of a code
generator. Here all of the tools of the Eli system to analyze the visual language
instance can be used. A more detailed description of the VL specification process
can be found in [13].

In order to separate concerns of specification simulation and animation are to
be distinguished: simulation is the raw execution semantics of the visual language
and animation is the smooth depiction of discrete execution of VL programs.
Some visual languages have a precisely defined execution semantics, e.g. the
firing of tokens in a Petri-net may be smoothly depicted by animation. For other
visual languages simulation and animation may require to extend the semantic
model to represent the simulation states or its graphical representation.

The presented Pac-man Editor (Fig. 4) considered as a visual language has a
number of pawns that can be placed on a tile-based board which constitute the
playing field. The pawns are typed structure objects of this VL. The Pac-man
Editor has only four different pawns: ”wall”, ”ghost”, ”powerpill” and ”pac-
man”. Additionally, some structure objects are needed to represent the rows
and columns of the board. Hence, our Pac-man VL is a playground editor where
the user can create custom levels.

Animation of Tile-Based Games ... INForum 2010 – 115

To specify a simulation for the Pac-man Editor we have to define the state
space and the state transitions. Both can be specified in our simulation specifi-
cation language DSIM.

Fig. 2 (a) shows the specification of the simulation model in DSIM. As can be
seen, we again reuse DSSL concepts and we can extend the semantic model of the
visual language to reach a new model that is suited for simulation. In this case
we extended the semantic model class Tile (see Fig. 1). We can introduce new
attributes that are needed for simulation purposes only or extend our simulation
model with so called path expressions to traverse the simulation model tree at
run time. Both model the state space for the simulation.

We could also narrow the semantic model of the visual language in our sim-
ulation model. This can be done if parts of the semantic model of the visual
language are only needed for representation purposes and not for simulation.

� �
MODEL {

CLASS Tile {
OBJECT pill OF PowerPill: "THIS.item.CHILDREN[0]";
position: VAL VLPoint?;
diffVal: VAL VLInt INIT "0";
visited: VAL VLBoolean INIT "0";

}
CLASS Pacman {

OBJECT tile OF Tile: "THIS.PARENT.PARENT";
}

}�
(a) Simulation model.

� �
EVENTS {
goGhost(Tile from, Tile to){

Item i = REMOVE(from.item, FIRST);
INSERT(to.item, i, FIRST);

}
eatPacman(Tile from, Tile to){

IF(#[0]Root.sound == VLBoolean(1)){
vlPlaySound("pacmanDeath.wav");

}
REMOVE(to.item, FIRST);
Item i = REMOVE(from.item, FIRST);
INSERT(to.item, i, FIRST);
FIRE gameLost(#[0]Root)@TIME_NOW + 1;

}
}�

(b) Events.

Fig. 2. Simulation model in DSIM and some events which can be scheduled in the
simulation loop.

� �
FOREACH ghost IN [Ghost] {
IF(ghost.strategy == VLInt(1)) {

Tile to = NEIGHBOUR_TILE(mapping, NEUMANN, ghost.tile, Pacman);
IF(NOTNULL(to) AND (ghost.eatable == VLBoolean(0))){

FIRE eatPacman(ghost.tile, to) @TIME_DIRECT;
}
ELSE {

IF(NOTNULL(#[0]Pacman)) {
Tile to = NEIGHBOUR_EMPTY_TILE_RANDOM(mapping, NEUMANN, ghost.tile);
IF(NOTNULL(to)) {
FIRE goGhost(ghost.tile, to) @TIME_DIRECT;

}
}

}
}

}�
Fig. 3. Part of the simulation loop.

Fig. 3 shows an excerpt of the behavior specification part of DSIM. Here the
simulation model can be inspected and events can be scheduled that modify an
instance of the simulation model. Hence we follow the event based approach to
simulation. Events are scheduled for an arbitrary time. Any event can trigger
arbitrary so called simulation modification actions. These actions modify the
simulation model and they constitute the interface to the animation framework.
The excerpt shows the behavior specification of the ghost pawns. They try to
eat Pac-man if it is located on a neighbour tile. If not the ghost moves according
to its strategy to the next tile.

In DSIM the following simulation modification actions exist which also form
the interface to the animation part:

– REMOVE a structure object.

116 INForum 2010 Bastian Cramer, Jan Wolter, Uwe Kastens

– INSERT a new structure object instance or insert a structure object, that was
removed before. The latter would yield a MOVE action.

– COPY a structure object.
– CHANGE VAL to change a primitive attribute or a reference.

In Fig. 2 (b) some events with corresponding simulation modification actions
can be seen. The specific characteristics of the simulation modification actions
is that an animation can automatically derived from such a specification.

The default animations triggered are: slow shrinking to invisibility of an ob-
ject that is removed, slow growing of an object that is newly inserted. Linear
moving (with optional easing) of a structurally moved object. Copied objects
move from their copy source to their destination while changing their trans-
parency value from invisible to visible. Since editors generated by DEViL are
syntax directed structure editors, the creation or removal of structure objects
can have side effects to other structure objects with respect to their size or posi-
tion. These objects are automatically adapted smoothly, they are morphed. Even
colors of structure objects are adapted smoothly.

The default animation behaviour is sufficient for most automatically derived
animations as can be seen later. But, in some cases the default animation that
is automatically triggered is not what the animator of a visual language desires.
Here the animator can override the default behavior with so called animated
visual patterns (AVPs). The AVPs can be decorated like the visual patterns to a
structure object and tell the structure object in what way it is animated if a cer-
tain simulation modification action occurs. For instance if a token in a Petri-net
is removed it should not shrink to invisibility which is the standard animation.
The desired animation is to move the token to the fired transition, hence the
used AVP to override the default behavior for remove is AVPOnRemoveMove. We
have AVPs for changing size and transparency values of structure objects, for
moving, scaling, rotating and so on. All of them can be combined and adapted
to the needs of the animation.

A more detailed description of DEViL’s simulation and animation facilities
can be found in [2].

3 Pac-man
Pac-man is the most popular arcade computer game in the eighties of the last
century and it was originally developed by Toru Iwatani for the Namco company
in 1980. Because of the large degree of esteem different versions of the game have
been reprogrammed many times for several systems like home computers, game-
consoles and recently even for the iPhone [7]. The game is very interesting in
terms of navigating a character around a structured playground, accumulating
points, avoiding and (in some cases) attacking non-player game characters.

The classic version of Pac-man is an one-player game where the human player
routes the Pac-man around a maze with the goal to avoid the four ghost char-
acters and to eat as much pills as possible. Initially the pills are placed in each
walk-in field of the playground and will be eaten via the achievement of the field
by Pac-man. The overall four ghosts roam through the maze trying to catch Pac-
man. This is successful when a ghost achieves a tile in which Pac-man is located.

Animation of Tile-Based Games ... INForum 2010 – 117

In this case Pac-man looses one of his initial three lives and the game restarts
when Pac-man has just one life. Each of the four ghosts pursues a different
strategy to eat the Pac-man.

Besides the normal pills in each tile there are four powerpills which are located
near each corner of a maze. When Pac-man eats a powerpill he gets a special
score and is able to eat ghosts on his part. In this case all ghosts change their
color to blue for few moments, reverse their direction, and usually move more
slowly. If Pac-man eats a ghost, he gets a special score and the ghost resurrects
in the middle of the maze after a few moments. In addition to the previously
seen options there is one more possibility to increment the score: sometimes a
symbol of a fruit appears at a random position of the maze, which also gives the
chance to get extra points.

(a) Starting position of a Pac-man game. (b) A dynamic animation
object.

Fig. 4. Screenshots of our Pac-man game.

The game ends when all pills have been eaten or Pac-man has lost all of his
lives. In the former case the player reaches a new level which is more difficult
than the previous one. This can be achieved for example by faster moving ghosts.

Fig. 4 (a) shows a playground of a Pac-man game, which has been build
with our Pac-man Editor. Besides the Pac-man the figure shows three different
ghosts, wall items and powerpills.

4 Pac-man Editor
Our Pac-man Editor is structured as a multi document interface (MDI) and
offers the ability to create user-defined playgrounds for Pac-man games. The
user has the option to insert different items to the playground, e.g. Pac-man,
ghosts, powerpills or wall items. It is also possible to expand the playground
by adding rows and columns. A playground which is constructed in such a way
allows to play Pac-man as mentioned above.

The specification of the semantic model was the first task to implement this
editor. The most important part of the semantic model is the matrix structure.
An object of the matrix class is associated with an arbitrary number of columns
and rows. Each row owns several tiles, which includes in turn an item or not.
The item is an abstract class and the concrete subclasses are either Wall-item,
Pac-man, Ghost or Powerpill.

To realize a correct semantic playground it is essential to avoid more than
one Pac-man or a game without Pac-man. Hence, the DEViL System provides

118 INForum 2010 Bastian Cramer, Jan Wolter, Uwe Kastens

the ability to specify consistency constraints on various levels. E.g. cardinalities
in the semantic model or specialized callback functions which can navigate the
structure tree. All these checks are automatically performed before simulation.
Hence, only a correct Pac-man game instance can be simulated.

Besides the consistency constraints the language designer can implement ini-
tialization functions for each class of the semantic structure. Such a function is
a callback function and will be automatically called by the system, if a new ob-
ject has been created. We used this for example to realize a default playground
dimension of 10× 10 tiles.

4.1 Strategies
With our editor it is possible to allot one of overall three different strategies to
each ghost. We draw our inspiration with respect to the strategies of Repenning
[11]:
Random The ghost roams randomly through the maze. At each step it evalu-

ates the walk-in fields in the von Neumann neighbourhood and chooses one
randomly.

993 994 995 996 997 996 995 994 993

992 996 997 998 997 992

999 998 997 991

996 997 998 999 1000 999 998 990

995 989

994 993 992 991 990 989 988 987 988

Fig. 5. Distribution of diffusion values to apply hill-climbing.

Incremental Approach The ghost tries to move closer to the Pac-man. At
each step it evaluates the empty neighbour tiles and selects the closer closest
one in euclidean sense.

Hill-climbing Due to the fact that the incremental approach does not permit
the overcoming of walls, the strategy of hill-climbing affords this. To achieve
this goal, diffusion values are used for each tile. These are used to spread
the ”scent” of the Pac-man in the maze. The value represents the closeness
of a ghost to Pac-man. The largest value gets the tile in which Pac-man is
allocated. Starting from this tile, the value is distributed to all walk-in fields
of the playground. Every tile which is not accessible, e.g. a tile with a wall
item, gets a negative diffusion value. At each step of the game the ghost
selects the tile which has the largest diffusion value. Due to the fact that
the diffusion values must be recalculated at each step, this brings the ghost
closer to Pac-man. Fig. 5 illustrates the allocation of diffusion values and the
way a ghost must go to get Pac-man.
A closer look to the implementation of the hill-climbing strategy is available

in the next section. Amongst other things we describe the implementation of
ghost strategies in DSIM.

Animation of Tile-Based Games ... INForum 2010 – 119

4.2 Simulation
The user interaction via keyboard is essential for the Pac-man game. The DEViL
System provides the ability to define arbitrary keyboard events which can be
processed in the simulation.

We used the simulation model to add particular attributes which are neces-
sarily needed for the simulation. An extract is given in Fig. 2 (a). We extend the
Pac-man class with a tile attribute, which allows the access of the tile in which
Pac-man is located, from the context of a Pac-man object. Besides others, we
had extended the tile class with an attribute which stores the diffusion value of
a tile. This is needed to realize the hill-climbing strategy. Keep in mind, that
these attributes only exist in the simulation model, not in the semantic model
of the Pac-man VL.� �

coordinatePacman(Pacman pacman, VLInt direction){
Tile go = NEIGHBOUR_TILE(default, NEUMANN, pacman.tile, PowerPill);
IF(NOTNULL(go)){

FIRE eatPowerpill(pacman.tile, go, pacman, direction) @TIME_DIRECT;
} ELSE {

go = NEIGHBOUR_TILE(default, NEUMANN, pacman.tile, Ghost);
IF(NOTNULL(go)){

FIRE eatGhost(pacman.tile, go, pacman, direction) @TIME_DIRECT;
}ELSE{

go = NEIGHBOUR_TILE(default, pacman.tile, direction);
IF(NOTNULL(go) AND (SIZE(go.item) == VLInt(0))){

FIRE goPacman(pacman.tile, go, pacman, direction) @TIME_DIRECT;
}

}
}

}

goPacman(Tile from, Tile to, Pacman p, VLInt d){
FIRE incrementScore(#[0]Score, 1) @ TIME_DIRECT;
FIRE computeRotation(p,d) @ TIME_DIRECT;
Item i = REMOVE(from.item, FIRST);
INSERT(to.item, i, FIRST);

}�
Fig. 6. Coordination of the Pac-man pawn.

In the event block we specified events, which can be scheduled at an arbitrary
simulation time in the loop block. Hence, our simulator follows an event driven
approach. We had implemented overall 16 different events. Fig. 6 shows two
events. The coordinatePacman event gets the Pac-man instance and a direction
to move to. It checks, whether a powerpill or a ghost is in the way. If so Pac-man
tries to eat the ghost resp. the powerpill. If there is nothing to eat Pac-man just
walks to the next tile, the goPacman event is called. This event again calls two
events to increment the score and to compute the rotation, which is needed for
the animation. Finally the Pac-man pawn is removed from the actual tile and
inserted to the tile in the desired direction. This yields a MOVE action for the
Pac-man pawn. � �

NEIGHBOUR_COUNT(mapping, MOORE, pacman.tile, Ghost);
NEIGHBOUR_TILE(mapping, ghost.tile, S);
NEIGHBOUR_TILE_RANDOM(mapping, NEUMANN, pacman.tile);�

Fig. 7. Exemplary neighbour access functions.

In each simulation step we have to compute the diffusion value for the hill-
climbing strategy. This is done by a call of a C function. The function computes
the value via a simple breadth-first search. Afterwards the ghost has to pick the
target tile which has the largest diffusion value. To get a specific neighbour, we
extended the simulation language such that we can access structure objects (of
a specific type) in the neighbourhood of a given tile. Due to the fact that all
editors generated with DEViL that make use of tiling have the same underlying

120 INForum 2010 Bastian Cramer, Jan Wolter, Uwe Kastens

model we could identify a subset of tile-access functions which are often needed
and generalize these functions. This lead to a decrease of hand written C-code.

Fig. 7 shows some neighbour access functions. The first function counts the
ghosts in Moore neighbourhood of the Pac-man. A computation of the neighbour
tile in south direction of a ghost shows the second function. The last function
returns a random tile in von Neumann neighbourhood of Pac-man.

4.3 Animation
The default animation which is automatically derived from the simulation spec-
ification is almost adequate. A ghost and the Pac-man move fast from the start
tile to the target tile in each simulation step. This is the case, because the ani-
mation framework interprets the modification actions REMOVE and INSERT as a
moving animation. Furthermore the Pac-man shrinks to invisibility when he is
caught by a ghost.

But Pac-man looks in the desired viewing direction until he has accessed the
target tile. It would be nicer if Pac-man rotates to the desired viewing direction
in the start tile before he moves to the target tile. Now the idea is to override
the default behaviour for Pac-man. All animations are typed over their sim-
ulation modification action. Hence, we need to override the default animation
pattern MOVE, because the Pac-man is moved (REMOVEd and INSERTed) on the
playground. We do it with the specification in Fig. 8 (a). We use the animated vi-
sual patterns OnMoveRotate and OnMoveMove. OnMoveRotate rotates a structure
object if it is moved. Hence, we have to override the angle and rotate attributes.
The angle and rotate attributes are stored in the ”pacman” class (see Fig. 1)
and will be computed via the computeRotation event in each simulation step.
In addition we override the duration attribute to specify the duration of the ro-
tate operation. In this configuration the rotation and the move are scheduled at
the same simulation time, but we want the animation of the rotation to appear
before the animation of the move. Hence the OnMoveMove animation must be an-
imated after the OnMoveRotate animation. Hence, we have to assign the value 2
to the time attribute. Furthermore we override the duration attribute to indicate
the duration time for a move operation. As can be seen, besides the simulation
time, we have an animation time which defines an order of the animations and
which can easily be adapted to gain a desired animation.

� �
SYMBOL pacmView_Pacman INHERITS VPContainerElement, VPForm,

AVPOnMoveRotate, AVPOnMoveMove, AVPOnRemoveShrink
COMPUTE
SYNT.drawing = ADDROF(PacmanDrawing);
SYNT.onMoveRotateAngle = THIS.pers_angle;
SYNT.onMoveRotateClockwise = THIS.pers_clockwise;
SYNT.onMoveRotateDuration = 600;
SYNT.onMoveMoveRaiseDisplayOrder = 1;
SYNT.onMoveMoveAnimationTime = 2;
SYNT.onMoveMoveDuration = 900;
SYNT.onRemoveShrinkAnimationTime = 10;

END;�
(a) Mapping of AVPs with control attributes to
override default animation.

� �
SYMBOL pacmView_Pacman INHERITS AVPCreateDynamicObject,

AVPMoveDynamicObject
COMPUTE
SYNT.createDynamicObjectModificationAction = REMOVE;
SYNT.createDynamicObjectDrawing = ADDROF(SkullDrawing);
SYNT.createDynamicObjectPosition = POSITION(

SELECT(THIS.oPosition, sub(VLPoint(0,10))));

SYNT.moveDynamicObjectDuration = 8000;
SYNT.moveDynamicObjectStartPosition = POSITION(

SELECT(THIS.oPosition, sub(VLPoint(0,10))));
SYNT.moveDynamicObjectEndPosition = POSITION(

SELECT(THIS.oPosition, sub(VLPoint(0,60))));
END;�

(b) Creating a dynamic animation object and
moving it.

Fig. 8. Animation of Pac-man.

The animation framework offers the possibility to animate objects which are
not part of the semantic model (so called dynamic objects). If Pac-man is caught,

Animation of Tile-Based Games ... INForum 2010 – 121

we have used this feature to display a skull (see Fig. 4 (b)). For such a purpose
it is only necessary to use the provided visual patterns as described in Fig. 8
(b). The visual pattern CreateDynamicObject reacts to a modification action
and offers the possibility to add a drawing. As seen in Fig. 8 (b) we override
the modification action attribute to react to a remove action. Furthermore, we
override the drawing attribute to add the skull drawing. In order that the skull
moves bottom-up from the position of the Pac-man, we had used the pattern
MoveDynamicObject. We also had used the pattern OnRemoveShrink to show
the skull temporary.

The specification of an animation in DEViL is straight forward: first specify
a simulation, then derive the animation automatically. Hence the animation is
a formal mapping of its simulation part. At last animations can be adapted by
overriding the default animations through the application of a huge declarative
animation pattern library.

5 Related Work
The Agentsheets system [10] can generate tile based simulations and games.
The specification process is fully graphical and rule based. Agentsheets uses the
programming by demonstration paradigm. In the rules one can access neighbour
tiles through the help of icons with specific arrows. This is the visual variant of
our neighbour access functions. Agentsheets is restricted to tile based simulation
whereas our system can also handle diagrammatic or iconic visualizations.

In the area of generator frameworks for visual language environments the
GenGed [1] system makes use of graph transformation and visual rewrite rules
to specify simulation. To store the simulation state, rules must be extended.
This is similar to our simulation model which can extend the semantic model
of a VL. GenGed uses a formal mapping between simulation and animation.
This is comparable to our simulation modification actions which trigger default
animations. They are the interface between simulation and animation framework.
Smooth and complex animations can not be specified with GenGed.

The DiaGen [6] system also uses graph transformation to specify a visual
language. Some editors already support simulation and animation. Interesting
is that every animation step is a state of the system whereas we interpolate
between two adjacent simulation model states.

6 Conclusion
The specification of the Pac-man editor is a straight forward task. Table 1 shows
that we needed 220 LOC for the whole simulation part including all ghost strate-
gies and 400 LOC for hand written C-code. The other specs part needs only 236
LOC. The second column of the table shows a decrease of total LOC from 883
to 646 LOC. This is because of the neighbour access functions we had gener-
alized. This reduced the LOC of C-code nearly by 250 LOC and we need only
7 additional LOC in the simulation specification to realize to mapping between
concrete and generalize matrix structure. The 156 LOC of C-code is just a sim-
ple tile initialization function for the hill-climbing strategy. The automatically

122 INForum 2010 Bastian Cramer, Jan Wolter, Uwe Kastens

derived animation is sufficient to play the game. The 27 LOC are just syntactic
sugar.

The DSIM language with its narrow interface to the animation and its con-
structs tailored for the simulation of visual languages has already been approved
in other VLs with execution semantics like Petri-nets, a Datapath simulation,
electronic circuits and even the game Ludo. Table 2 shows the amount of LOC
for simulation and animation part of already implemented editors. The examples
in line two and three are based on the Petri-net simulation shown in line one.
They show the simulation of the well-known dining philosophers and a simula-
tion of a signal light of a four-way-crossing. Both are structural coupled to the
Petri-net with DEViL’s internal declarative coupling mechanism. A simulation
of the Petri-net automatically triggers synchronization functions in the philoso-
phers resp. signal-light view. The simulator detects these triggerings and calls
the animation framework. Hence, additional specification amount is not needed.

LOC LOC with access fct. generated LOC

simulation 220 227

87.504
animation 27 27

C-code 400 156

other specs. 236 236

883 646 87.504

Table 1. Distribution of the specification complexity.

Simulation Coupling Animation Anim. syntactic sugar

Petri-nets 29 4 0

Dining-Philosophers 29 95 4 0

Signal-Lights 29 57 4 0

Logo 211 3 3

Game of Life 39 0 0

Ludo 338 0 0

Statecharts 78 2 0

Bubblesort 13 0 0

Quicksort 93 0 0

CPU Datapath 263 160 0

Washing bay 35 0 0

Electronic circuits 99 109 0

Table 2. Simulation and Animation LOC of other VLs.
As can be seen in Table 2 the automatically triggered animation is mostly

sufficient. We need to adapt the animation only in simulations where animations
depend on the context of their structure objects. E.g. this is the case in our CPU
datapath simulation where an animation of an instruction is different whether
it is located in an instruction decoder, in an accumulator or somewhere else.

The already implemented VLs have a very diverse appearance: we have di-
agrammatic, iconic and graph based depictions. Currently we are working on a
traffic simulation to see how our approach scales. Interesting extensions would
be semantic zooming, camera views or even isometric views. Here also a pattern
based approach is imaginable.

Also outstanding is a visual language for DSIM and an usability study.

Animation of Tile-Based Games ... INForum 2010 – 123

References

1. Bardohl, R.: GenGed: A generic graphical editor for visual languages based on
algebraic graph grammars. In: 1998 IEEE Symp. on Visual Lang. pp. 48–55 (Sep
1998)

2. Cramer, B., Kastens, U.: Animation automatically generated from simulation spec-
ifications. In: VLHCC ’09: Proceedings of the 2009 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). pp. 157–164. IEEE Com-
puter Society, Washington, DC, USA (2009)

3. Cramer, B., Klassen, D., Kastens, U.: Entwicklung und Evaluierung einer domnen-
spezifischen Sprache fr SPS-Schrittketten. In: Fahland, D., Sadilek, D.A., Scheid-
gen, M., Weileder, S. (eds.) DSML. CEUR Workshop Proceedings, vol. 324, pp. 59–
73. CEUR-WS.org (2008), http://dblp.uni-trier.de/db/conf/dsml/dsml2008.
html#CramerKK08

4. Kastens, U.: An attribute grammar system in a compiler construction environment.
In: Proceedings of the International Summer School on Attribute Grammars, Ap-
plication and Systems. Lecture Notes in Computer Science, vol. 545, pp. 380–400.
Springer Verlag (1991)

5. Kastens, U., Pfahler, P., Jung, M.: The Eli system. In: Koskimies, K. (ed.) Pro-
ceedings of 7th International Conference on Compiler Construction CC’98. pp.
294–297. No. 1383 in Lecture Notes in Computer Science, Springer Verlag (Mar
1998)

6. Minas, M.: Concepts and realization of a diagram editor generator based on hy-
pergraph transformation. Science of Computer Programming 44(2), 157–180 (Aug
2002), http://www.elsevier.com/gej-ng/10/39/21/86/49/29/abstract.html

7. Namco Games: Pacman for iPhone. http://www.appsafari.com/games/2741/pacman-
for-iphone/ (2008), [Online; accessed 19-February-2010]

8. Norman, D.A., Draper, S.W.: User Centered System Design; New Perspectives
on Human-Computer Interaction. L. Erlbaum Associates Inc., Hillsdale, NJ, USA
(1986)

9. Object Management Group: Unified Modeling Language (UML), version 2.2
(2009), http://www.omg.org/technology/documents/formal/uml.htm

10. Repenning, A.: AgentSheets
R©

: an Interactive Simulation Environment with End-
User Programmable Agents. In: Interaction 2000, Tokyo, Japan (2000)

11. Repenning, A.: Collaborative Diffusion: Programming Antiobjects. In: OOPSLA
2006, ACM SIGPLAN International Conference on Object-Oriented Programming
Systems, Languages, and Applications, (Portland, Oregon, 2006). IEEE Press
(2006)

12. Schmidt, C., Cramer, B., Kastens, U.: Usability evaluation of a system for imple-
mentation of visual languages. In: Symposium on Visual Languages and Human-
Centric Computing. pp. 231–238. IEEE Computer Society Press, Coeur d’Alne,
Idaho, USA (Sep 2007)

13. Schmidt, C., Kastens, U., Cramer, B.: Using DEViL for implementation of domain-
specific visual languages. In: Proceedings of the 1st Workshop on Domain-Specific
Program Development. Nantes, France (Jul 2006), http://ag-kastens.upb.de/
paper/dspd2006-devil.pdf

14. Schmidt, C., Pfahler, P., Kastens, U., Fischer, C., Gmbh, O.K.: Simtelligence de-
signer/j: A visual language to specify sim toolkit applications. In: Proceedings
of the Second Workshop on Domain Specific Visual Languages (OOPSLA 2002
(2002), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.9269

124 INForum 2010 Bastian Cramer, Jan Wolter, Uwe Kastens

Domain-Specific Language for Coordination Patterns

Nuno Oliveira1, Nuno Rodrigues2, and Pedro Rangel Henriques1

1 University of Minho - Department of Computer Science,
Campus de Gualtar, 4715-057, Braga, Portugal
{nunooliveira,lsb,prh}@di.uminho.pt

2 IPCA – Polytechnic Institute of Cavado e Ave
Campus da ESGT, Barcelos, Portugal

nfr@ipca.pt

Abstract. The composition of software systems in a new one requires a good
architectural design phase to speed up remote communications between these
systems. But at the implementation phase, the code to coordinate such compo-
nents ends up mixed in the main business code. This leads to maintenance prob-
lems, raising the need of, on the one hand, separate the coordination code from
the business code, and on the other hand provide mechanisms for analysis and
comprehension of the architectural decisions once made.
In this context our aim is at developing a domain-specific language, CoordL, to
write coordination patterns. From our point of view, coordination patterns are ab-
stractions, in a graph form, over the composition of coordination statements from
the system code. These patterns would allow us to identify, by means of pattern-
based graph search strategies, the code responsible for the coordination of the
several components in a system. The recovering and separation of the architec-
tural decisions for a better comprehension of the software is the main purpose of
this pattern language.

1 Introduction

Software Architecture [12] is a discipline within the Software Development [11] con-
cerned with the design of a system. It embodies the definition of a structure and the
organization of components which will be part of the system. The architecture design
concerns also with the way these components interact with each other and which are the
constraints in their interactions. In their turn, software components [8] may be seen as
objects in the object-oriented paradigm, however, besides data and behavior, they may
embody whatever we think as a software abstraction. Although they may have their own
functionality (sometimes a component is a remote system), most of the times they are
developed to be composed with other components within a software system and to be
reused from a system to another, giving birth to component-based software engineering
methodology [9].
The definition of the interaction between the components of a system may be seen from
two perspectives: (i) integration and (ii) coordination. The differences between these
two perspectives is slightly none. The former is related with the integration of some

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 125–136

functionalities of a system into a second one which needs to borrow such a compu-
tation; the latter is concerned with the low level definition of the communication and
its constraints between the modules of a system. Such interaction definition between
the components should be exogeneous, that is, the coordination of components is made
from the outside of a component, not needing to change its internals to make possible
the communication with new components [3].
However, this rule of separating computational code from the coordination code is not
always adopted by those who develop software. The code is all weaved in a single layer
where there is no space for separation of concerns. This behavior would arise problems
in the future of the system, namely in maintenance phases. These problems are mainly
concerned with the comprehension of the code and architectural decisions by hampering
their analysis.
Reverse engineering [20] of legacy systems for coordination layer recovery would play
an important role on maintenance phases, diminishing the difficulties on analyzing the
architectural decisions. But extracting code dedicated to the coordination of the system
components from the whole intricate code is not an easy task. There is not a standard
(and unique) way of programming the interactions between the components. However,
and fortunately, there are a lot of code patterns which the majority of the developers
use to write the coordination code. Once the code of a system can be represented as
a graph of dependences between the statements and procedures, the so-called System
Dependence Graph (SDG) [10], we are also able to represent code patterns as graphs,
allowing the search for these patterns in the SDG.
In this context, we define the notion of coordination patterns as follows:

Given a dependence graph G as in [18] a coordination pattern is an equivalence
class, a shape or a sub-graph of G, corresponding to a trace of coordination
policies left in the system code.

In this paper we show how we developed a Domain-Specific Language (DSL) [22]
named CoordL, to write coordination patterns. Our main objective is to translate Co-
ordL specifications into a suitable graph representation. Such representation feed a
graph-based search algorithm applied on a dependence graph, in order to discover the
coordination code weaved in the system code. In more detail, the paper follows this
structure: in Section 2 we address related work; in Section 3 we present and describe
the syntax of CoordL; in Section 4 we address its semantics; in Section 5 we show
how we used the AnTLR system to define the syntax and the semantics of CoordL;
in Section 6 we expatiate upon actual and future applications of the language and the
patterns and finally, in Section 7 we conclude the paper by expressing what we have
done.

2 Related Work

CoordL is a DSL to write coordination patterns with the purpose of extracting and
separating the coordination layer from the source code of a multi-component software

126 INForum 2010 Nuno Oliveira, Nuno Rodrigues, Pedro Rangel Henriques

system. The main idea of this code separation into concern-oriented layers is to recover
architectural decisions and ease the comprehension of the system and its architecture.
The recovery of the system architecture for software comprehension is not a novelty.
Tools like Alborz [19] or Bauhaus [16] recover the blueprints of an object-oriented sys-
tem. Bauhaus recovers architectures as a graph where the nodes may be types, routines,
files or components of the system, and the edges model the relations between these
nodes. Such architecture details are presented in different views for an easy understand-
ing of the global architecture. Alborz presents the architecture as a graph of components
and keeps a relation between this graph and the source code of the software system.
Our main aim is not at visualizing the blueprints of a system, but to provide mech-
anisms for understanding the rationale behind the architectural decisions once made.
This embodies the recovering of the coordination code. The tools mentioned before do
not support this feature and do not take advantage of code patterns to do the job.
Although we may reference Architectural Patterns [4] or Design Patterns [5] as related
work, because of the common methodology of patterns and the borrowed notions and
description topics, there is a huge difference between their application. While coordi-
nation patterns are used to lead a reverse and a re-engineering to recover architectural
decisions, and are focused on low-level compositions of code, the architectural/design
patterns play in a higher level, being used to define the architecture of a system in earlier
phases of the software development process [11].
Architecture Description Language (ADL), are languages to formally describe the archi-
tectures and the interactions between the components of the system. Although CoordL
is not to be considered an ADL, we must acknowledge that there are some similarities in
the concepts embodied in these languages and those encapsulated in our. Some of these
languages are ACME [7], ArchJava [1], Wright [2], and Rapide [13]. The great
majority of these languages has tool support for analyzing the described architecture.
Such analysis made at high level, allows one to reasoning about the correctness of the
system, and may provide important information about future improvements that can or
can not be done according to the actual state of the architecture.
According to our knowledge, there is no language with the same exact purpose as Co-
ordL.

3 CoordL - Design and Syntax

The design of a DSL is always a task embodying a lot of steps. As a first step it is needed
to collect all the information about the domain in which the language will actuate.
Then this information shall be organized using, for instance, ontologies [21]. Once the
main concepts of the domain are identified it is needed to choose those that are really
needed to be encapsulated in the syntax of the language; this leads to the last step which
concerns with the choice of a suitable syntax for the language.
Figure 1 presents an ontology to organize the domain knowledge of the area where we
want to solve problems. The main concept of this domain is the coordination pattern.
The majority of the concepts incorporated in this domain description are wider than

Domain-Specific Language for Coordination Patterns INForum 2010 – 127

what we show, however, to keep the description limited to the domain, we narrowed the
possible relations between each concept, as well as the examples they may have.

Fig. 1. Ontology Describing the Coordination Pattern Domain Knowledge

Notice also that in this ontology we used operational relations (marked as dashed ar-
rows) besides the normal compositional ones. This would provide a deeper comprehen-
sion of how the concepts interact between them in the domain.
The core of the knowledge base represented in Figure 1, describes that a coordination
pattern is a part of a coordination dependence graph (CDG) [18] abstracting code which
is seen as a composition of statements concerned with coordination aspects, and are
used to analyze architectures. As novelty the web of knowledge shows that coordination
patterns communicate with each other through ports.

128 INForum 2010 Nuno Oliveira, Nuno Rodrigues, Pedro Rangel Henriques

From this description, and knowing that the main objective of CoordL is to define a
graph over the composition of statements in the source code of a system, then some kind
of graph representation need to be embodied in the language. An obvious reference for
representing graphs in a textual way is the DOT language [6], so, CoordL borrows
some aspects from that language. The notion of communication ports (in and out) came
from the ACME language [7], although the notion of ports is very different in these two
contexts. To know which ports exist for a pattern, it was adopted the notion of arguments
from any general-purpose programming language (GPL). The description of what are
these ports led to the introduction of declarations and initializations in the language.
Declarations describe the types of statements represented as nodes in the graph, while
the initialization describes the service call which is performed by the node.
From this textual description we defined a syntax by means of a context free grammar
shown (partially) in Listing 1.1.

Listing 1.1. Partial grammar for CoordL
1 l a n g → p a t t e r n +
2 p a t t e r n → ID ‘ (’ p o r t s ‘ | ’ p o r t s ‘) ’ ‘{ ’ d e c l s g raph ‘} ’
3 p o r t s → l s t I D
4 d e c l s → (d e c l ‘ ; ’) +
5 d e c l → ‘ node ’ l s t I D ‘= ’ nodeRules | ‘ fo rk ’ l s t I D | ‘ j o i n ’ l s t I D |
6 ‘ t t r i g g e r ’ l s t I D | ID i n s t a n c e s
7 i n s t a n c e s → i n s t a n c e (‘ , ’ i n s t a n c e)∗
8 i n s t a n c e → ID ‘ (’ p o r t s ‘ | ’ p o r t s ‘) ’
9 . . .

10 graph → a g g r e g a t i o n | c o n n e c t i o n s
11 a g g r e g a t i o n → p a t t r e f (‘+ ’ p a t t r e f)∗
12 p a t t r e f → cnode | ‘ (’ a g g r e g a t i o n n ‘) ’ c o n n e c t i o n
13 . . .
14 cnode → node | ID ‘ . ’ propTT
15 . . .
16 c o n n e c t i o n → ‘{ ’ o p e r a t i o n s ‘} ’ ‘@’ ‘ [’ p o r t s a l i v e ‘ | ’ p o r t s a l i v e ‘] ’
17 . . .
18 o p e r a t i o n → cnode l i n k cnode | f o r k | j o i n | t t r i g g e r
19 . . .
20 f o r k → node s p l i n k ‘{ ’ cnode ‘ , ’ cnode ‘} ’
21 . . .
22 l i n k → ‘− ’ ID ‘− ’ ‘>’
23 . . .

Figure 2 presents two examples of patterns written with CoordL. The pattern a) is
known as the Asynchronous Sequential Pattern which is a pattern used when the system
has to invoke a series of services but the order of the answer is not important. The pattern
b) is known as the Joined Asynchronous Sequential Pattern, which is a transformation
of the first pattern to impose order in the responses.
Both of these patterns address different aspects of the syntax, but the main structure of
the patterns is the same. Moreover, they address the composition and reuse of patterns.
Regard, for instance, pattern in Figure 2.a). It has a unique identifier (pattern -
1) and declares in and out ports, identifiers p0 and p1, p2 and p3 respectively. The in
ports go on the left side of the ‘|’ (bar) symbol, and the out ports on its right. Then, a
space is reserved for node declarations and initializations. There are 5 types of nodes in
CoordL: node, fork, join, ttrigger and pattern instance. In Figure 2.a) we use the node
and fork types, and in Figure 2.b) we use node, join and pattern instance types. The
ttrigger type is similar to fork or join.

Domain-Specific Language for Coordination Patterns INForum 2010 – 129

Nodes of type node require an initialization where it is described a list of rules address-
ing the corresponding coordination code fragment, the type of interaction or the calling
discipline. These rules are composed using the && (and) and/or || (or) logical opera-
tors, and the list must, at least, embody one of the following: (i) Statement (st), presents
the code fragment of the statement responsible by the coordination request. This state-
ment may be described by a regular expression or may be a complete sentence; (ii) Call
Type (ct), defines the type of service requested. The options are not limited, but some of
the most used are web services, RMI or Remoting; (iii) Call Method (cm), defines the
method in which the request is made. It can be either synchronous or asynchronous and
(iv) Call Role (cr), describes the role of the component that is requesting the service. It
can be either consumer or producer.

1 p a t t e r n 1 (p0 | p1 , p2 , p3){
2 node p0 , p3 { s t == ”∗” }
3 node p1 , p2 {
4 s t == ” c a l l i n g (∗) ” &&
5 c t == w e b s e r v i c e &&
6 cm == sync &&
7 c r == consumer &&
8 } ;
9 f o r k f1 , f2 ;

10

11 { f2 − (x ,w)−> (p3 , p2)}
12 { f1 − (x , y)−> (f2 , p1)}
13 {p0 −x−> f1}
14 }

(a)

1p a t t e r n 2 (p1 | p2){
2node p1 , p2 , pa = { s t == ”∗”} ;
3p a t t e r n 1 p a t t (i 1 | o1 , o2 , o3) ;
4j o i n j1 , j 2 ;
5

6(p1 + p a t t + p2)
7{p1 −x−> p a t t (i 1) ,
8(p a t t (o1) , p a t t (o3)) − (x , y)−> j 1}
9{(j1 , p a t t (o2)) − (x ,w)−> j 2}
10{ j 2 −x−> p2}
11}

(b)

Fig. 2. Definition of Two Coordination Patterns with CoordL

Pattern instance nodes have the type of an existent pattern. In Figure 2.b), line 3, it
is declared an instance of pattern pattern 1. Each instance of a pattern must be
initialized with unique identifiers referring to all the in and out ports of the pattern
typing it.
In CoordL, a node is seen as a pseudo-pattern (with in and out ports, which may
be the node itself). Any operation over these pseudo-patterns define a new pseudo-
pattern. The main operations are the aggregation and the connection. Aggregation3 is
the combination of two or more pseudo-patterns by putting them side-by-side, this is,
not connecting them. The syntax for the aggregation operation is at line 6 of Figure 2.b).
Connection is the combination of two nodes by means of an edge with the identifica-
tion of, at least, a running thread. Examples may be seen in lines 11, 12 and 13, of
pattern 1 and 7, 8, 9 and 10 of pattern 2.
These two operations are used to build the graph of the pattern, which comes after all the
node declarations. There are two ways of defining the graph: (i) the implicit composi-
tion, where there are only used connection operations and (ii) the explicit composition,

3 Aggregation may be used alone, but will never define a usable pattern.

130 INForum 2010 Nuno Oliveira, Nuno Rodrigues, Pedro Rangel Henriques

where aggregation and connection operations are used simultaneously. The graph of the
pattern 1 uses implicit composition, while pattern 2 uses explicit composition.
The connection operation uses one or more out nodes and one or more in nodes (de-
pending on the type of in and out nodes). When the connection uses these nodes, their
implicit in or out ports are closed, meaning that no newer connection can use these
nodes as in or out ports again. But, as sometimes it is needed to reuse a node as a in
or an out port of a connection, it is needed to re-open them to be used in the sequent
connections. This is done with the ‘@’ (alive) operator.
We acknowledge that with all the operators and the associated syntax, the code of the
pattern is not easily readable. This way, we defined a visual notation with a suitable
“translation” into the textual notation of CoordL. In Figure 3 we present the compo-
nents of the visual notation corresponding to the textual elements that define the graph.
In Figure 4 we present how the patterns in Figure 2 look like in this notation.

Node Fork Join

T trigger Instance Edges

Fig. 3. Components of the Visual Notation for CoordL

pattern 1 pattern 2

Fig. 4. Visual Representation of Two Coordination Patterns

Domain-Specific Language for Coordination Patterns INForum 2010 – 131

4 CoordL - The Semantics

The constructs presented in Section 3 have a precise meaning in CoordL. In some
cases it is possible to draw a mapping between the meaning of a construct and the de-
pendence graph which is extracted from the source code of the system being analyzed.
The following paragraphs explain, using informal textual description, the semantics of
each construct in the language.
Bar: |
This construct separates a list of identifiers into two. The identifiers on the left side list
are called in ports and those on the list at the right side are called out ports. It may
appear in the signature of the pattern, or in the graph of the pattern, when it is needed
to keep ports opened for further use.
Aggregation: pp1 + pp2

This construct sets two pseudo-patterns side by side but do not connect them. This is
used to re-inforce the existence of the pseudo-patterns in the graph, before connect their
ports.
Connection: n1 –x–> n2

This construct creates a link between two nodes in the graph of the pattern. It means
that in the dependence graph G, where the pattern will be applied, there is a path of one
or more edges going from n1 to n2 through one or more edges in a thread identified by
x.
Fork Connection: f –(x, y)–> (n1, n2)
This construct creates a link between two nodes in the graph of the pattern, where the
start node is a fork. It means that in the dependence graph G, where the pattern will
be applied, there are two parallel paths (p1 and p2) going from f to n1 through one or
more edges in a thread identified by x, and from f to n2 in a freshly spawned thread
identified by y, respectively. A necessary pre-condition is that in the dependence graph,
there is some path p0 from any node to f in a thread identified by x.
Join Connection: (n1, n2) –(x, y)–> j
This construct creates a link between two nodes in the graph of the pattern, where the
end node is a join. It means that in the dependence graph G, where the pattern will be
applied, there are two parallel paths (p1 and p2) going from n1 to j through one or
more edges in a thread identified by x, and from n2 to j in a thread identified by y,
respectively. A necessary pre-condition is that in the dependence graph, there are two
paths (p0 and p′0) from a fork node to n1 in a thread identified by x and from the same
fork node to n2 in a thread identified by y, respectively.
Thread Trigger Connection: (n1, n2) –(x, y)–> tt.sync, (n1, n2) –(x, y)–> tt.fail
This construct creates a link between two nodes in the graph of the pattern, where
the end node is a ttrigget. It means that in the dependence graph G, where the pattern
will be applied, there are two parallel paths (p1 and p2) going from n1 to tt through
one or more edges in a thread identified by x, and from n2 to tt in a thread identified
by y, respectively. This meaning is replied to express what happens when the threads
synchronize (tt.sync), or when the threads synchronization fails (tt.fail). A necessary
pre-condition is that in the dependence graph there are two paths (p0 and p′0) from a
fork node to n1 in a thread identified by x and from the same fork node to n2 in a
thread identified by y, respectively.

132 INForum 2010 Nuno Oliveira, Nuno Rodrigues, Pedro Rangel Henriques

List of Connections: { connection, . . . }
This construct creates a list of independent connections. That is, a connection inside
that list do not depend on any node, node property or even on other connections that
are used and defined in the list. This independence dues to the fact that there is no order
between the connections inside a list of connections. Sequent lists of connections may,
but are not obliged to, depend on previous lists.
Along with this construct comes the notion of fresh nodes. A fresh node is a control
node (like a fork, join or ttrigger) that is firstly used in a connection, and cannot be
reused in the same list because of the order dependence. For instance, a fork node must
be used as an out port in a connection before being used as a in node.

Alive: @
This construct instructs that a list of identifiers are kept alive as in and out ports. Ports
need to be reopened because once a connection uses a node, the implicit port of such
node is killed. The ‘@’ construct is followed by a list of identifiers divided into two by
the bar construct.

5 CoordL - Compiling & Transforming

We used AnTLR system [15] to produce a parser for CoordL. Taking advantage of
the AnTLR features we adopted a separation of concerns method to generate the full-
featured compiler. Figure 5 shows the architecture of the compiler system. The main
piece of the compiler system is the syntax module where we specified both the con-
crete and abstract syntax for CoordL, using the context free grammar presented in
Listing 1.1. Based on the abstract syntax, AnTLR produces an intermediate structure of
that grammar known as a tree-grammar.
From the tree-grammar (using attribute grammars methodology) we were able to define
new modules that do not care about the concrete syntax. These modules embody the
semantics checker, the graph drawer and the unimaginable number of possible transfor-
mations applied to that tree-grammar.
The following hierarchical dependence on these modules is observed: the semantics
module depends on the syntax module; the graph drawer and the transformation mod-
ules depend on the semantics module, so, for transitivity, they also depend on the syntax
module. This holds the requirement that some modules may only be used if the syntax
and the semantics of the CoordL sentence are correct.
We reckon that the separation of concerns on the modules and the dependence between
them may be seen as a problem to maintain the compiler. For instance, if something in
the abstract syntax of the language changes, these changes must be performed in ev-
ery dependent module. Nevertheless, this method brings also positive aspects: (i) the
number of code lines in each file decreases, easing the comprehension of the module
for maintenance; (ii) since each module defines an operation over the coordination pat-
terns code, the compiler may be integrated in a software system providing independent
features to manipulate the patterns and (iii) the separation of concerns into modules
would ease the maintenance of each feature.

Domain-Specific Language for Coordination Patterns INForum 2010 – 133

Fig. 5. CoordL Compiler Architecture

The transformation modules have, as main objective, to provide perspectives about the
coordination patterns, namely, their transformation into Orc [14] or REO [3] specifica-
tions. An important module to be considered is the transformation of the pattern code
into a suitable input to search for these patterns in the dependence graph of a system
code. As for the syntax and the semantic modules, their main output is the syntactic and
semantic errors, respectively. The graph drawer module outputs the visual representa-
tion of the coordination patterns.

6 Applications and Further Work

The list of possible applications of CoordL is not very long. Its precise objective of
discovering coordination patterns in a dependence graph reduces its applicability into
other areas. Nevertheless, the area of architectural analysis and comprehension allows
a profound application of this language.
CoordInspector [17] is a tool to extract the coordination layer of a system to repre-
sent it in suitable visual ways. In a fast overview, CoordInspector processes com-
mon intermediate language (CIL), meaning that systems written in more than 40 .NET
compliant languages can be processed by that tool. The CIL code is then transformed
into an SDG which is sliced to produce a CDG. Then it is used ad-hoc graph notations
and rules to perform a blind search for non-formalized patterns in the CDG. Here is
where CoordL has its relevance. Due to its systematization and robust formal seman-
tics, the process of discovering patterns in the code would be more reliable than using

134 INForum 2010 Nuno Oliveira, Nuno Rodrigues, Pedro Rangel Henriques

the ad-hoc rules. The integration of CoordL in CoordInspector led to the de-
velopment of an editor to deal with the language. The editor makes heavy use of the
CoordL compiler system, namely the syntax and semantics modules in order to check
whether there are or there are not errors in the patterns specification.
CoordInspector is used for integration of complex information systems, resorting
to the discovering of coordination patterns. The use of CoordL in this task is crucial
for a faster and systematized search for such parts of code.
In order to avoid the repetition of writing recurrent patterns, we decided to create a
repository of coordination patterns. The repository may be accessed by means of web
services from the editor in CoordInspector. This repository is not yet finished, but
the main objective is to give developers and analysts the possibility of expressing recur-
rent coordination problems in a CoordL pattern and documenting them with valuable
information. The existence of the repository of coordination patterns and the fact of
being possible the definition of a calculus over the language, allows the creation of
relations between the patterns, defining an order of patterns.
As further work we may think about how a calculus over the language would allow the
development of a model checker for analyzing the properties of these patterns.

7 Conclusion

In this paper we introduced a domain-specific language named CoordL. This language
is used to describe coordination patterns for posterior use in discovering and extract-
ing recurrent coordination code compositions in the tangled source code of a software
system.
We explained how the language was designed resorting to (i) the application domain
description, by means of an ontology, and (ii) existing programming language and
associated knowledge. Then we showed how we took advantage of AnTLR to define a
full-featured and concern-separated compiler for the language. The adoption of this sys-
tematic development of modules for the compiler and the dependencies between them
may arise some discussions about the flexibility at maintenance phase. We are aware of
such problems, nevertheless we argue that the separation of concerns by modules allow
a better use of the compiler when integrated in other tools, and the problems of main-
tenance are not that numerous because the comprehension of the modules is easier due
to having a small number of lines of code, and the issue solved in these lines is known
a priori.
Finally, we argue for the applicability of CoordL along with CoordInspector, a
tool to aid in architectural analysis and systems reengineering, and the creation of a
pattern repository for (i) cataloguing of valuable information about these coordination
patterns and (ii) allowing their adoption reuse by developers and analysts.

References

1. Jonathan Aldrich, Craig Chambers, and David Notkin. Archjava: connecting software archi-
tecture to implementation. In ICSE ’02: Proceedings of the 24th International Conference

Domain-Specific Language for Coordination Patterns INForum 2010 – 135

on Software Engineering, pages 187–197, New York, NY, USA, 2002. ACM.
2. Robert Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie Mellon,

School of Computer Science, January 1997.
3. Farhad Arbab. Reo: a channel-based coordination model for component composition. Math-

ematical. Structures in Comp. Sci., 14(3):329–366, June 2004.
4. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.

Pattern-Oriented Software Architecture, Volume 1: A System of Patterns. Wiley, Chichester,
UK, 1996.

5. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: elements
of reusable object-oriented software. Addison-Wesley Professional, 1995.

6. Emden R. Gansner and Stephen C. North. An open graph visualization system and its appli-
cations to software engineering. Softw. Pract. Exper., 30(11):1203–1233, 2000.

7. David Garlan, Robert T. Monroe, and David Wile. Acme: Architectural description of
component-based systems. In Gary T. Leavens and Murali Sitaraman, editors, Foundations
of Component-Based Systems, pages 47–68. Cambridge University Press, 2000.

8. A. Joseph Goguen. Reusing and interconnecting software components. Computer, 19(2):16–
28, 1986.

9. George T. Heineman and William T. Councill, editors. Component-based software engineer-
ing: putting the pieces together. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2001.

10. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. In
PLDI ’88: Proceedings of the ACM SIGPLAN 1988 conference on Programming Language
design and Implementation, volume 23, pages 35–46, New York, NY, USA, July 1988. ACM.

11. Ivar Jacobson, Grady Booch, and James Rumbaugh. The unified software development pro-
cess. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

12. Lih-ren Jen and Yuh-jye Lee. IEEE Recommended Practice for Architectural Description of
Software-intensive Systems. IEEE Architecture, pages 1471–2000, 2000.

13. David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug Bryan, and Walter
Mann. Specification and analysis of system architecture using rapide. IEEE Trans. Softw.
Eng., 21(4):336–355, 1995.

14. Misra, Jayadev, Cook, and William. Computation orchestration: A basis for wide-area com-
puting. Software and Systems Modeling (SoSyM), 6(1):83–110, March 2007.

15. Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific Languages. The
Pragmatic Bookshelf, Raleigh, 2007.

16. Aoun Raza, Gunther Vogel, and Erhard Plödereder. Bauhaus - a tool suite for program
analysis and reverse engineering. In Reliable Software Technologies - Ada-Europe 2006,
pages 71–82. LNCS (4006), June 2006.

17. Nuno Rodrigues. Slicing Techniques Applied to Architectural Analysis of Legacy Software.
PhD thesis, Engineering School, University of Minho, October 2008.

18. Nuno F. Rodrigues and Luis S. Barbosa. Slicing for architectural analysis. Science of Com-
puter Programming, March 2010.

19. Kamran Sartipi, Lingdong Ye, and Hossein Safyallah. Alborz: An interactive toolkit to ex-
tract static and dynamic views of a software system. In ICPC ’06: Proceedings of the 14th
IEEE International Conference on Program Comprehension, pages 256–259, Washington,
DC, USA, 2006. IEEE Computer Society.

20. Margaret-Anne Storey. Theories, tools and research methods in program comprehension:
past, present and future. Software Quality Journal, 14(3):187–208, September 2006.

21. Robert Tairas, Marjan Mernik, and Jeff Gray. Using ontologies in the domain analysis of
domain-specific languages. Models in Software Engineering, pages 332–342, 2009.

22. Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: an annotated
bibliography. ACM SIGPLAN Notices, 35:26–36, 2000.

136 INForum 2010 Nuno Oliveira, Nuno Rodrigues, Pedro Rangel Henriques

GammaPolarSlicer
A Contract-based Tool to help on Reuse

Sérgio Areias, Daniela da Cruz, Pedro Rangel Henriques, and Jorge Sousa Pinto

Departamento de Informática e CCTC
Universidade do Minho

Braga, Portugal

Abstract. In software development, it is often desirable to reuse existing soft-
ware components. This has been recognized since 1968, when Douglas Mcllroy
of Bell Laboratories proposed basing the software industry on reuse. Despite the
failures in practice, many efforts have been made to make this idea successful.
In this context, we address the problem of reusing annotated components as a
rigorous way of assuring the quality of the application under construction. We in-
troduce the concept of caller-based slicing as a way to certify that the integration
of an annotated component with a contract into a legacy system will preserve the
behavior of the former.
To complement the efforts done and the benefits of the slicing techniques, there
is also a need to find an efficient way to visualize the annotated components
and their slices. To take full profit of visualization, it is crucial to combine the
visualization of the control/data flow with the textual representation of source
code. To attain this objective, we extend the notion of System Dependence Graph
and slicing criterion.

1 Introduction

Reuse is a very simple and natural concept, however in practice it is not so easy. Ac-
cording to the literature, selection of reusable components has proven to be a difficult
task [1]. Sometimes this is due to the lack of maturity on supporting tools that should
easily find a component in a repository or library [2]. Also, non experienced developers
tend to reveal difficulties when describing the desired component in technical terms.
Most of the times, this happens because they are not sure of what they want to find [2,
3]. Another barrier is concerned with reasoning about component similarities in order
to select the one that best fits in the problem solution; usually this is an hard mental
process [1].

Integration of reusable components has also proven to be a difficult task, since the
process of understanding and adapting components is difficult, even for experienced
developers [1]. Another challenge to component reuse is to certify that the integration
of such component in a legacy system is correct. This is, to verify that the way the
component is invoked will not lead to an incorrect behavior.

A strong demand for formal methods that help programmers to develop correct
programs has been present in software engineering for some time now. The Design by
Contract (DbC) approach to software development [4] facilitates modular verification

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 137–148

and certified code reuse. The contract for a component (a procedure) can be regarded
as a form of enriched software documentation that fully specifies the behavior of that
component. So, a well-defined annotation can give us most of the information needed
to integrate a reusable component in a new system, as it contains crucial information
about some constraints safely obtaining the correct behavior from the component.

In this context, we say that the annotations can be used to verify the validity of every
component’s invocation; in that way, we can guarantee that a correct system will still be
correct after the integration of that component. This is the motivation for our research:
to find a way to help on the safety reuse of components.

This article introduces GamaPolarSlicer, a tool that we are currently developing to
identify when an invocation is violating the component annotation, and display, when-
ever possible, a diagnostic or guidelines to correct it. For such a purpose, the tool im-
plements the caller-based slicing algorithm, that takes into account the calls of an an-
notated component to certify that it is being correctly used.

The remainder of this paper is structured into 5 sections. Section 2 is devoted to
basic concepts. In this section the theoretical foundation for GamaPolarSlicer is settle
down; the notions of caller-based slicing and annotated system dependence graph are
defined. Section 3 gives a general overview of GamaPolarSlicer, introducing its ar-
chitecture; each block on the diagram will be explained. Sub-section 3.1 complements
the architecture discussing the decisions taken to implement the tool and presenting
the interface underdevelopment. Section 4, also a central one, illustrates the main idea
through a concrete example. As to our knowledge we do not known any tool similar
to GamaPolarSlicer, in Section 5 we discuss related work concerned with the use of
slicing technique for annotated programs. Then the paper is closed in Section 6.

2 Basic Concepts

We consider that each procedure consists of a body of code, annotated with a precon-
dition and a postcondition that form the procedure specification, or contract. The body
may additionally be annotated with loop invariants. Occurrences of variables in the pre-
condition and postcondition of a procedure refer to their values in the pre-state and
post-state of execution of the procedure respectively.

2.1 Caller-based slicing

In this section, we briefly introduce our slicing algorithm.

Definition 1 (Annotated Slicing Criterion) An annotated slicing criterion of a pro-
gram P consists of a triple Ca = (a, Si, Vs), where a ∈ {α, δ} is an annotation of
Pa (the annotated callee), Si correspond to the statement of P calling Pa and Vs is a
subset of the variables in P (the caller), that are the actual parameters used in the call
and constrained by α or δ.

Definition 2 (Caller-based slicing) A caller-based slice of a program P on an anno-
tated slicing criterion Ca = (α, callf , Vs) is any subprogram P ′ that is obtained from
P by deleting zero or more statements in a two-pass algorithm:

138 INForum 2010 Sérgio Areias, Daniela Cruz, P. R. Henriques, J. S. Pinto

1. a first step to execute a backward slicing with the traditional slicing criterion
C = (callf , Vs) retrieved from Ca — callf corresponds to the call statement under
consideration, and Vs corresponds to the set of variables present in the invocation
callf and intervening in the precondition formula (α) of f

2. a second step to check if the statements preceding the callf statement will lead to
the precondition satisfaction of the callee;

For the second step in the two-pass algorithm, in order to check which statements
are respecting or violating the precondition we are using abstract interpretation, in par-
ticular symbolic execution.

According to the original idea of James King in [5], symbolic execution can be
described as “instead of supplying the normal inputs to a program (e.g. numbers) one
supplies symbols representing arbitrary values. The execution proceeds as in a normal
execution except that values may be symbolic formulas over the input symbols.”

Using symbolic execution we will be able to propagate the precondition of the
function being called through the statements preceding the call statement. In particu-
lar, to integrate symbolic execution with our system, we are thinking in use JavaP-
athFinder [6]. JavaPathFinder is a tool than can perform program execution with
symbolic values. Moreover, JavaPathFinder can mix concrete and symbolic execu-
tion, or switch between them. JavaPathFinder has been used for finding counterexam-
ples to safety properties and for test input generation.

The main goal of our caller-based slicing algorithm is to ease the use of annotated
components by discovering statements that are critical for the satisfaction of the pre-
condition or postcondition (i.e, that do not verify it, or whose value can lead to the
non-satisfaction) before or after calling an annotated procedure (a tracing call analysis
of annotated procedures). In the work reported here, we just deal with preconditions
and statements before the call.

2.2 Annotated System Dependence Graph (SDGa)

In this section we present the definition of Annotated System Dependence Graph, SDGa

for short, that is the internal representation that supports our slicing-based code analysis
approach. We start with some preliminary definitions.

Definition 3 (Procedure Dependence Graph) Given a procedure P , a Procedure De-
pendence Graph, PDG, is a graph whose vertices are the individual statements and
predicates (used in the control statements) that constitute the body of P , and the edges
represent control and data dependencies among the vertices.

In the construction of the PDG, a special node, considered as a predicate, is added
to the vertex set: it is called the entry node and is decorated with the procedure name.

A control dependence edge goes from a predicate node to a statement node if that
predicate affects the execution of the statement. A data dependence edge goes from an
assignment statement node to another node if the variable assigned at the source node
is used (is referred to) in the target node.

Additionally to the natural vertices defined above, some extra assignment nodes
are included in the PDG linked by control edges to the entry node: we include an

GammaPolarSlicer INForum 2010 – 139

assignment node for each formal input parameter, another one for each formal output
parameter, and another one for each returned value — these nodes are connected to all
the other by data edges as stated above. Moreover, we proceed in a similar way for each
call node; in that case we add assignment nodes, linked by control edges to the call
node, for each actual input/output parameter (representing the value passing process
associated with a procedure call) and also a node to receive the returned values.

Definition 4 (System Dependence Graph) A System Dependence Graph, SDG, is a
collection of Procedure Dependence Graphs, PDGs, (one for the main program, and
one for each component procedure) connected together by two kind of edges: control-
flow edges that represent the dependence between the caller and the callee (an edge
goes from the call statement into the entry node of the called procedure); and data-
flow edges that represent parameter passing and return values, connecting actualin,out

parameter assignment nodes with formalin,out parameter assignment nodes.

Definition 5 (Annotated System Dependence Graph) An Annotated System Depen-
dence Graph, SDGa, is a SDG in which some nodes of its constituent PDGs are anno-
tated nodes.

Definition 6 (Annotated Node) Given a PDG for an annotated procedure Pa, an An-
notated Node is a pair< Si, a >where Si is a statement or predicate (control statement
or entry node) in Pa, and a is its annotation: a pre-condition α, a post-condition ω, or
an invariant δ.

The differences between a traditional SDG and a SDGa are:

– Each procedure dependence graph (PDG) is decorated with a precondition as well
as with a postcondition in the entry node;

– The while nodes are also decorated with the loop invariant (or true, in case of in-
variant absence);

– The call nodes include the pre- and postcondition of the procedure to be called (or
true, in case of absence); these annotations are retrieved from the respective PDG
and instantiated as explained below;

We can take advantage from the call linkage dictionary present in the SDGa (inher-
ited from the underlying SDG) — the mapping between the variables present in the call
statement (the actual parameters) and the formal parameters of the procedure — to as-
sociate the variables used in the calling statement with the formal parameters involved
in the annotations.

3 GamaPolarSlicer — Architecture and Implementation

As referred previously, our goal is to ease the process of incorporating an annotated
component into an existent system. This integration should be smooth, in the sense of
that it should not turn a correct system into an incorrect one.

To assure this, there is the need to verify a set of conditions with respect to the
annotated component and its usage:

140 INForum 2010 Sérgio Areias, Daniela Cruz, P. R. Henriques, J. S. Pinto

– Verify its correctness with the respect to its contract (using a traditional Verification
Condition Generator, already incorporated in GamaSlicer [7], available at http:
//gamaepl.di.uminho.pt/gamaslicer);

– Given a concrete call to the reusable component, verify if the concrete calling con-
text preserves the precondition;

– Given a concrete call and the postcondition of the component, verify if it is properly
used in the concrete context after the call;

– Given a reusable component and a set of calling points, specify the component body
according to the concrete calling needs.

The chosen architecture to achieve the second condition was based on the classical
structure of a language processor. Figure 1 shows the defined GamaPolarSlicer archi-
tecture. Notice that the third and fourth conditions will be addressed by future projects.

Fig. 1. GammaPolarSlicer Architecture

GammaPolarSlicer INForum 2010 – 141

Source Code is the input to analyze.
Lexical Analysis, Syntactic Analysis, Syntactic Analysis: the Lexical layer converts

the input into symbols that will be later used in the identifiers table. The Syntactic
layer uses the result of the Lexical layer above and analyzes it to identify the syn-
tactic structure of it. The Semantic layer adds the semantic information to the result
from the Syntactic layer. It is in this layer that the identifier table is built.

Invocations Repository is where all invocations found on the input are stored in order
to be used later as support to the slicing process.

Annotated Components Repository is where all components with a formal specifi-
cation (precondition and post condition at least) are stored. It is used in the slicing
process only to filter the invocations (from the invocation repository) without any
annotation. Has an important role when verifying if the invocation respects compo-
nent’s contract.

Identifiers Table has an important role on this type of programs as always. All sym-
bols and associated semantic found during the analysis phase are stored here. It will
be one of the backbones of all structures supporting the auxiliary calculations.

Annotated System Dependence Graph is the intermediate structure chosen to apply
the slicing.

Caller-based Slicing uses both invocations repository and annotated components repos-
itory to extract the parameters to execute the slicing for each invoked annotated
component. The resulting slice is a SDGa this a subgraph of the original SDGa.

Contract Verification using the slice that resulted from the layer above, and using the
component contract, this layer analyzes every node on the slice and verifies in all
of them if there are guarantees that every annotation in the contract is respected.

Output Report presents a view of all violations found during the whole process to the
user. In a later stage of this project, exists the possibility of also present suggestions
to solve them.

3.1 Implementation

To address all the ideas, approaches and techniques presented in this paper, it was nec-
essary to choose the most suitable technologies and environments to support the devel-
opment.

To address the design-by-contract approach we decide to use the Java Modeling
Language (JML) 1. JML is a formal behavior interface specification language, based on
design-by-contract paradigm, that allows code annotations in Java programs [8]. JML is
quite useful as it allows to describe how the code should behave when running it. Also
it allows the specification of the syntactic interface [8]. Preconditions, postconditions
and invariants are examples of formal specifications that JML provides.

As the goal of the tool is not to create a development environment but to support
one, our first thought was to implement it as an Eclipse 2 plugin. The major reasons that
led to this decision were:

1 http://www.cs.ucf.edu/ leavens/JML/
2 http://www.eclipse.org/

142 INForum 2010 Sérgio Areias, Daniela Cruz, P. R. Henriques, J. S. Pinto

– the large community and support. Eclipse is one of the most popular frameworks
to develop Java applications and thus a perfect tool to test our goal;

– the fact that it includes a great environment to develop new plugins. The Plugin
Development Environment (PDE) 3 that allows a faster and intuitive way to develop
Eclipse plugins;

– the built-in support for JML, freeing us from checking the validity of such annota-
tions.

However, the parser generated for Java/JML grammar exceeded the limit of bytes
allowed to a Java class (65535 bytes). Thus, this limitation led us to abandon the idea
of the Eclipse plugin and implement GamaPolarSlicer using Windows Forms and C#
(using the .NET framework).

Figure 2 shows the current interface of GamaPolarSlicer.

Fig. 2. Interface of GamaPolarSlicer prototype

4 An illustrative example

To illustrate what we intended to achieve, please consider the Example 1 listed below
that computes the maximum difference among student ages in a class. This component

3 http://www.eclipse.org/pde/

GammaPolarSlicer INForum 2010 – 143

reuses other two: the annotated component Min, defined in Example 2, that returns the
lowest of two positive integers; and Max, defined in Example 3, that returns the greatest
positive integer.

Example 1 DiffAge
1: public int DiffAge() {
2: int min = System.Int32.MaxValue;
3: int max = System.Int32.MinValue;
4: int diff;
5:
6: System.out.print(”Number of elements: ”);
7: int num = System.in.read();
8: int[] a = new int[num];
9: for(int i=0; i¡num; i++) {

10: a[i] = System.in.read();
11: }
12:
13: for(int i=0; i¡a.Length; i++) {
14: max = Max(a[i],max);
15: min = Min(a[i],min);
16: }
17:
18: diff = max - min;
19: System.out.println(”The gap between max and min age is ” + diff);
20: return diff;
21: }

Example 2 Min
/ ∗@ requires x ≥ 0 && y ≥ 0
@ ensures (x > y)? \result == x : \result == y
@ ∗ /
1: public int Min(int x, int y) {
2: int res;
3: res = x− y;
4: return ((res < 0)? x : y);
5: }

Let us consider that we want to analyze the Min invocation present in the DiffAge
component.

Our slicing criterion will be: Ca = (x ≥ 0&&y ≥ 0,Min, {a[i],min})
In the second step, a backward slicing process is performed taking into account

the variables present in Vs. Then, using the obtained slices, the detection of contract

144 INForum 2010 Sérgio Areias, Daniela Cruz, P. R. Henriques, J. S. Pinto

Example 3 Max
/ ∗@ requires x ≥ 0 && y ≥ 0
@ ensures (x > y)? \result == y : \result == x
@ ∗ /
1: public int Max(int x, int y) {
2: int res;
3: res = x− y;
4: return ((res > 0)? x : y);
5: }

violations starts. For that, the precondition is back propagate (using symbolic execution)
along the slice to verify if it is preserved after each statement. Observing the slice for the
variable a[i], listed in the example 4 below, it can not be guaranteed that all integer
elements are greater than zero; so a potential precondition violation is detected.

Example 4 Backward Slicing for a[i]

i n t [] a = new i n t [num] ;
f o r (i n t i =0 ; i<num ; i ++) {

a [i] = System . i n . r e a d () ;
}
f o r (i n t i =0 ; i<a . Length ; i ++) {

max = Max(a [i] , max) ;
min = Min (a [i] , min) ;

}

The third step consists in the notification of all the contract violations detected. In
the example above, the user will receive a warning alerting to the possible invocation
of Min with negative numbers (what does not respect the precondition).

In order to help to visualize which contracts and statements are being violated, we
display the SDGa with such entities colored in red. Figure 3 shows a fragment of the
SDGa for the example above.

5 Related Work

In this section we review the published work on the area of slicing annotated programs,
as those contributions actually motivate the present proposal.

In [9], Comuzzi et al present a variant of program slicing called p-slice or predi-
cate slice, using Dijkstra’s weakest preconditions (wp) to determine which statements
will affect a specific predicate. Slicing rules for assignment, conditional, and repetition
statements were developed. They presented also an algorithm to compute the minimum
slice.

GammaPolarSlicer INForum 2010 – 145

Fig. 3. Example of an Annotated System Dependence Graph

146 INForum 2010 Sérgio Areias, Daniela Cruz, P. R. Henriques, J. S. Pinto

In [10], Chung et al present a slicing technique that takes the specification into
account. They argue that the information present in the specification helps to produce
more precise slices by removing statements that are not relevant to the specification for
the slice. Their technique is based on the weakest pre-condition (the same present in p-
slice) and strongest post-condition — they present algorithms for both slicing strategies,
backward and forward.

Comuzzi et al [9], and Chung et al [10], provide algorithms for code analysis en-
abling to identify suspicious commands (commands that do not contribute to the post-
condition validity).

In [11], Harman et al propose a generalization of conditioned slicing called pre/-
post conditioned slicing. The basic idea is to use the pre-condition and the negation of
the post-condition in the conditioned slicing, combining both forward and backward
conditioning. This type of program slicing is based on the following rule: “Statements
are removed if they cannot lead to the satisfaction of the negation of the post condition,
when executed in an initial state which satisfies the pre-condition”. In case of a pro-
gram which correctly implements the pre- and post-condition, all statements from the
program will be removed. Otherwise, those statements that do not respect the conditions
are left, corresponding to statements that potentially break the conditions (are either in-
correct or which are innocent but cannot be detected to be so by slicing). The result of
this work can be applied as a correctness verification for the annotated procedure.

6 Conclusion

As can be seen in section 4, the motivation for our research is to apply slicing, a well
known technique in the area of source code analysis, to create a tool that aids program-
mers to build safety programs reusing annotated procedures.

The tool under construction, GamaPolarSlicer, was described in Section 3. Its
architecture relies upon the traditional compiler structure; on one hand, this enables
the automatic generation of the tool core blocks, from the language attribute gram-
mar; on the other hand, it follows an approach in which our research team has a large
knowhow (apart from many DSL compilers, we developed a lot of Program Com-
prehension tools: Alma, Alma2, WebAppViewer, BORS, and SVS). The new and
complementary blocks of GamaPolarSlicer implement slice and graph-traversal algo-
rithms that have a sound basis, as described in Section 2; this allows us to be confident
in there straight-forward implementation.

GamaPolarSlicer will be included in Gama project (for more details see http:
//gamaepl.di.uminho.pt/gama/index.html). This project aims at mixing
specification-based slicing algorithms with program verification algorithms to analyze
annotated programs developed under Contract-base Design approach. GamaSlicer
is the first tool built under this project for intra-procedural analysis that is available at
http://gamaepl.di.uminho.pt/gamaslicer/.

Although reuse was not the topic of the paper (just some considerations were drawn
in the Introduction), reuse is the main motivation for GamaPolarSlicer development.
We are preparing an experiment to assess the validity of our proposal and the usefulness
of the tool.

GammaPolarSlicer INForum 2010 – 147

References

1. Maiden, N.A.M., Sutcliffe, A.G.: People-oriented software reuse: the very thought. In: Ad-
vances in Software Reuse - Second International Workshop on Software Reusability, IEEE
Computer Society Press (1993) 176–185

2. Sherif, K., Vinze, A.: Barriers to adoption of software reuse a qualitative study. Inf. Manage.
41(2) (2003) 159–175

3. Shiva, S.G., Shala, L.A.: Software reuse: Research and practice. In: ITNG, IEEE Computer
Society (2007) 603–609

4. Meyer, B.: Applying ”design by contract”. Computer 25(10) (1992) 40–51
5. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7) (1976) 385–394
6. Anand, S., Păsăreanu, C.S., Visser, W.: Jpf-se: a symbolic execution extension to java

pathfinder. In: TACAS’07: Proceedings of the 13th international conference on Tools and
algorithms for the construction and analysis of systems, Berlin, Heidelberg, Springer-Verlag
(2007) 134–138

7. da Cruz, D., Henriques, P.R., Pinto, J.S.: Gamaslicer: an online laboratory for program
verification and analysis. In: Proceedings of the 10th Workshop on Language Descriptions
Tools and Applications (LDTA’10). (2010)

8. Leavens, G.T., Cheon, Y.: Design by contract with jml (2004)
9. Comuzzi, J.J., Hart, J.M.: Program slicing using weakest preconditions. In: FME ’96: Pro-

ceedings of the Third International Symposium of Formal Methods Europe on Industrial
Benefit and Advances in Formal Methods, London, UK, Springer-Verlag (1996) 557–575

10. Chung, I.S., Lee, W.K., Yoon, G.S., Kwon, Y.R.: Program slicing based on specification. In:
SAC ’01: Proceedings of the 2001 ACM symposium on Applied computing, New York, NY,
USA, ACM (2001) 605–609

11. Harman, M., Hierons, R., Fox, C., Danicic, S., Howroyd, J.: Pre/post conditioned slicing.
icsm 00 (2001) 138

148 INForum 2010 Sérgio Areias, Daniela Cruz, P. R. Henriques, J. S. Pinto

Identification and Characterization of Crosscutting

Concerns in MATLAB Systems1

Miguel P. Monteiro1, João M. P. Cardoso2, Simona Posea3

1, 3 CITI, Departamento de Informática, Faculdade de Ciências e Tecnologia Universidade

Nova de Lisboa, 2829-516 Caparica, Portugal
1mmonteiro@di.fct.unl.pt, 3simona8810@yahoo.com

2 Departamento de Engenharia Informática, Faculdade de Engenharia (FEUP),

Universidade do Porto, 4200-465 Porto, Portugal, 2jmpc@acm.org

Abstract. The current state-of-the-art in aspect mining is well advanced for

object-oriented programming languages but until now neglected the MATLAB

language. This paper contributes to fill that gap by proposing a novel notion of

crosscutting concern, tailored for the specific characteristics of MATLAB code

bases. We present an exploratory, token-based, approach to aspect mining for

MATLAB. An analysis of data obtained from a tool using this approach over

209 publicly available MATLAB files indicate the approach is valid for

detecting several kinds of crosscutting concerns in MATLAB systems.

Keywords: MATLAB, aspect mining, code tangling, crosscutting concerns.

1 Introduction

Currently, the state-of-the-art of aspect mining [6], i.e., identifying and locating

crosscutting concerns (CCCs) as latent aspects in source code, is well advanced for

object-oriented (OO) programming languages such as Java. However, most research

on aspect mining has until now neglected the popular and widely used procedural

language MATLAB. We contribute to address this gap by presenting an exploratory

effort to identify and characterize CCCs in MATLAB systems. This paper argues that,

due to the specific characteristics and different typical uses of MATLAB, a rethink of

the notion of crosscutting concern is warranted, which also requires fresh approaches

for their identification in MATLAB code bases.

This paper highlights some differences between symptoms of the presence of

CCCs in OO source code and MATLAB code and proposes a simple but effective,

token-based, approach for identifying and locating CCCs in MATLAB code. We

present an exploratory study of CCCs in a number of real MATLAB applications in

the domain of signal and image processing, as well as a short analysis of data

collected from that study.

1 Work for the present publication was partially supported by project AMADEUS under grant

(POCTI, PTDC/EIA/70271/2006) from FCT (Portuguese Science Foundation).

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 149–160

The rest of this paper is organized as follows. Section 2 reviews traditional notions

of CCC. Section 3 outlines our approach to tackle CCCs in the specific case of

MATLAB and on that basis proposes a novel notion of CCC, tailored for MATLAB.

Section 4 analyses the suitability of current of aspect mining techniques to be used as

an initial, exploratory approach for aspect mining for MATLAB systems. Section 4

proposes an adapted version of one of those techniques for that purpose. Section 5

analyses data collected from MATLAB systems in the domain of signal and image

processing. Section 6 outlines opportunities for future work and concludes the paper.

2 Crosscutting concerns and aspect-oriented programming

It has long been accepted that existing programming paradigms suffer from the

tyranny of the dominant decomposition [12], meaning that each programming

paradigm provides a single decomposition criterion for a software system. As a

consequence, concerns that do not align with the primary decomposition tend to cut

across the decomposition units. Such non-aligning concerns are known as

crosscutting concerns [8]. The usual symptoms of the presence of a CCC in source

code are code scattering and code tangling [8].

Aspect-oriented programming [8] was proposed as an approach to modularize

CCCs and thus eliminate the negative symptoms of scattering and tangling. The

majority of aspect-oriented languages are backwards-compatible extensions of

existing languages, with a marked predominance of OO languages such as Java.

Typically, such language extensions add a distinct kind of (often class-like) module –

the aspect – for the specific purpose of enclosing code related to CCCs.

In OO systems, decomposition units are classes as full-fledged modules. In such

systems, code scattering usually takes the form of code fragments scattered across

multiple units of modularity, often corresponding to repeated instances of “boiler

plate code”. Tangling is found in the modules that the CCCs overlap: code pertaining

to the primary concern appears intertwined with code pertaining to other concerns.

Tangling is particularly harmful to the comprehensibility of all concerns found in the

unit, including the primary concern. A Java example is given in section 3.

In less structured programming paradigms such as that supported by (mainly

procedural) MATLAB, decomposition units are simpler, less powerful constructs.

Since the MATLAB language features are very different from those available in

typical OO languages, it is reasonable to expect that symptoms of CCCs and indeed

the very idea of CCC requires some adaptation to the different context.

In principle, any approach to identify and locate CCCs is directly dependent of

whatever notions are held of what is a CCC. Such notions are traditionally based on

the capabilities of the specific aspect-oriented extension of the language concerned.

However, that approach assumes an already existing, clearly defined AOP extension

to the language. The present situation differs somewhat for two reasons: (1) the

distinct characteristics of MATLAB (see section 3), and (2) the fact that in this case,

development of the infrastructure to support the language extension is ongoing [4].

The design of our infrastructure enables a wide range of choices in its future

development, which can be geared to tackle whatever turns out to make a promising

150 INForum 2010 Miguel Monteiro, João Cardoso, Simona Posea

aspect. Our primary criterion for selection is impact: the uses that promise to be useful

to most MATLAB users comprise the most desirable targets for future development.

The work presented in this paper is part of an ongoing project whose primary aim

is to create an aspect-oriented extension to the MATLAB programming language [5].

The approach taken is focused on the support to separate aspect modules that specify

functionality that would otherwise cut across, or “pollute”, the core parts of the

system (MATLAB functions) giving rise to the tangling/pollution symptom.

A detailed description of the infrastructure and underlying approach is not required

to understand our proposed notion of CCC. For such an description we refer to our

DSAL 2010 paper [4]. It suffices to know the following:

 A transformational approach is taken, in which aspect weaving, i.e.,

composition of the aspect modules to the core parts of the application, is carried

out by transformation tools according to rules specified in the aspect modules.

The outcome of the aspect weaving is transformed, legal MATLAB code.

 The approach is more invasive than traditional aspect-oriented approaches such

as AspectJ [7]. Virtually any detail in the base code is potentially the target of

some transformation. The transformed code can be considerably different from

the code from the base, original, system.

 Potential uses for the transformations supported cover a wide range of concerns,

from monitoring, profiling, debugging, to the configuration of variables to

support non-standard shapes, i.e., numerical representations.

 The infrastructure was designed to support the addition of new, composition

rules that facilitate a routine development of case-specific, throw-away aspects.

This approach markedly differs from the usual, compiled approaches to AOP. It

also differs from AspectMatlab [1], an extension of MATLAB specifically developed

for scientific programming. Our infrastructure targets a significantly wider range of

domains. Its transformational approach is motivated by the specific characteristics of

MATLAB, particularly its interpreted nature, which blurs the usual distinction

between source code and executable code. MATLAB code plays both roles: as a

parallel with Java, the MATLAB code generated by the infrastructure can be regarded

as a product of source-code transformation, but it is equally reasonable to approach it

as the outcome of bytecode weaving [7].

3 A notion of crosscutting concerns in MATLAB

In addition to its interpreted nature, the characteristics of MATLAB differ from

languages typically extended to aspect-orientation in other respects that also have an

influence on the specific details of the symptoms of the presence of CCCs. The

procedural nature of MATLAB means that its decomposition units are predominantly

individual functions and groups of functions called toolboxes. MATLAB‟s OO

extensions comprise a recent add-on: typical MATLAB applications do not use them.

Since our primary criteria for the selection of problems to be tackled is impact, issues

pertaining to MATLAB‟s OO features are not promising candidates. It is worth noting

that OO features are also ineffective in modularizing the concerns that are the focus of

this paper, often for the same reasons why they also appear in OO systems.

Identification and Characterization of Crosscutting ... INForum 2010 – 151

Simple functions and groups of functions comprise a less powerful, more limited

mechanism for modularizing concerns than class modules, so it is to be expected that

concerns will not appear so well organized within MATLAB systems. Typical uses of

MATLAB also differ from those of typical OO languages, so they may give rise to

different code symptoms. Therefore, studies of the actual code symptoms in existing

MATLAB systems are warranted, namely to characterize the precise ways in which

they differ from symptoms in OO code, as well as the typical underlying causes. To

our knowledge, no such studies have been carried out until now. The sole prior

description of symptoms of the presence of CCCs in MATLAB code is provided by

Cardoso et al [5]. Their example comprises the configuration of a benchmark to a

specific fixed-point representation. The description provided includes snippets of a

clean, version of a function and a “polluted” version using a specific fixed-point

representation, programmatically supported. The example suggests fine-grained shape

configuration may be a typical CCC in MATLAB.

To illustrate the proposed notion of CCCs in MATLAB and highlight differences

between symptoms of CCCs in OO languages and symptoms of CCCs in MATLAB

systems, we next describe a simple example of CCC in each platform. In both cases,

the secondary concern is the graphical presentation of data, i.e., a display concern.

However, the specific details for each case are markedly different, reflecting the

differences between the Java and MATLAB platforms, as well as their typical uses.

3.1 A crosscutting concern in Java

Fig. 1 shows the classes comprising an example often used to illustrate the effects of

CCCs in Java systems, including in the seminal paper on AspectJ [7]. It comprises an

abstract declaration of a FigureElement type, plus a number of classes – Point

and Line – that concretize it. The classes provide operations for changing the values

of the figure elements. Also included is a display functionality to provide a graphical

presentation of the figure elements that must be updated upon all changes to them.

This is represented by class Display, also shown in Fig. 1.

Display

*

2Point

getX()
getY()
setX(int)
setY(int)
moveBy(int, int)

Figure

makePoint(..)
makeLine(..)

FigureElement

moveBy(int, int)

Line

getP1()
getP2()
setP1(Point)
setP2(Point)
moveBy(int, int)

Fig. 1. The Figure example used in [7]

The problem is felt when trying to compose the update logic to the existing

decomposition units (here: classes). All operations that have an impact on the

152 INForum 2010 Miguel Monteiro, João Cardoso, Simona Posea

graphical representation of the figures must undergo invasive changes, in the form of

the references to Display. Fig. 2 shows the effect on source code of class Point,

with code pertaining to the secondary concern highlighted in grey background. We

see code related to the display concern in addition to code related to the module‟s core

concern. Similar symptoms would be found in other FigureElement classes (not

shown). Note that in real cases, multiple CCCs are often found in single modules.

public class Point implements FigureElement {

 private int _x, _y;

 private Display _display;

 public Point(int x, int y) {

 _x = x;

 _y = y;

 }

 public Point(int x, int y, Display display) {

 this(x, y);

 setDisplay(display);

 }

 public void setX(int x) {

 _x = x;

 _display.update(this);

 }

 public void setY(int y) {

 _y = y;

 _display.update(this);

 }

 public void setDisplay(Display display) {

 _display = display;

 }

 public void moveBy(int dx, int dy) {

 _x += dx;

 _y += dy;

 _display.update(this);

 }

}

Fig. 2. Illustrative example of a CCC in Java

3.2 A crosscutting concern in MATLAB

Fig. 3 shows a MATLAB function in two versions. The value returned for a given

parameter value is the same in both cases. At the left a clean version is shown, whose

code relates to its core concern exclusively – compute the result of the exponential

function applied to a specific parameter value using the first N terms of the power

series expansion. At the right, a tangled version is shown also including a display

concern, MATLAB style: preparing a call to function „plot’. The code pertaining to

the secondary concern is highlighted in grey, as in Fig. 2. The extra code is mostly

about building the vector data required for building a two-dimensional representation

of the function within a given range, which will feed „plot’ at the end. The tangled

version defines an additional (and of optional use) parameter to support a choice

between creating and not creating the plot representation. The sole motivation for this

Identification and Characterization of Crosscutting ... INForum 2010 – 153

parameter is support to one of the primary advantages of modularity: (un)pluggability

of the functionality concerned. Note that in real-world examples, use of „plot’ would

pollute the original code even more, as programmers usually also include a title and

legends in the plotted figure.

This example differs from the Java example in one crucial point: the secondary

concern does not merely comprise additional code, intertwined with the original code

(i.e., tangling). Rather, additional functionality has a direct impact on the original

code that yields different, modified code. The computation is no longer performed on

simple, scalar values. Instead, vectors are used in place of the original variables to

produce the data that will feed „plot’.

Recent versions of MATLAB incorporate object-oriented features. However, it is

not possible to reuse the original version from this example, even through inheritance.

This MATLAB example is of course a trivial one, having been taken from tutorial

material used for teaching programming at the institution to which one author is

affiliated. However, the course is not controlled by the authors and the example is

presented as is. That such a clear example of a CCC can be found in tutorial material

serves to highlight how pervasive this kind of symptoms is in MATLAB systems.

function z = expo(x,n)

 y = 1;

 for i = 1:n

 y = y + x^i/factorial(i);

 end

 z = y;

function z = expo(x,n,p)

 P(1) = 1; Y(1) = 1;

 for i = 1:n

 P(i+1) = P(i)+1;

 Y(i+1) = Y(i) + x^i/factorial(i);

 end

 z = Y(n+1);

 if (p) plot(P,Y) end

Fig. 3. Illustrative example of a CCC in MATLAB

3.3 A notion of crosscutting concerns in MATLAB

This paper builds upon the work by Cardoso et al [5] and proposes a notion of a CCC

in MATLAB that covers any case in which a given decomposition unit – for brevity,

henceforth just “function” – encloses code that can conceptually be traced to more

than one concern. The stress on the conceptual (semantic) level is important: a CCC

in a function is always a secondary concern that is found in addition to the function‟s

core concern. In all such cases, the secondary concern can conceivably be extracted

from the function, yielding a “clean” version of the function in which only code

pertaining to the core concern remains. However, in MATLAB systems it must be

assumed that the presence of a secondary concern yields different code from the

original, which also directly depends on the specifics of the secondary concern.

It is important to note that a significant part of the secondary concerns that fall into

the proposed definition can conceivably be implemented by means of some additional

language feature – such as can be supported by our infrastructure. Thus, a promising

indicator of a potential aspect is to feel the need or desirability of some unsupported

additional feature, of a possibly narrow applicability. Though narrowly case-specific,

154 INForum 2010 Miguel Monteiro, João Cardoso, Simona Posea

modularization and (un)pluggability of such features may bring significant benefits to

developers.

Discovering some of these concerns can be a subtle task. For instance, Fig. 4

shows a fragment from one of the systems we analyzed. („drawedgelist’). It is used to

assist debugging and requires an assignment to variable „debug’, defined in the

MATLAB code of the function with a default value of 0 (i.e., false).

We identified the following preliminary list of CCC categories upon manual

inspection of a number of real cases, complemented with insights acquired upon

analysis of data collected from a tool (presented in the next section):

 Messages and monitoring: messages to the user, warnings, errors, graphics

visualization, monitoring, etc.;

 I/O data: reading data from file, writing data to file, saving an image, loading

an image, etc.;

 Verification of function arguments and return values: default shapes and

values for the arguments that may not be passed in certain function calls;

 Data type verification and specialization: check whether a variable is of

certain type, configuring the assignment of data types to variables, etc.

 System: code that verifies certain system environment properties, to pause

execution, etc.

 Memory allocation/deallocation: The use of the „zeros’ function is most of

times used to allocate a specific array size. This avoids the reallocation for

each new item to be stored in an array. Use of the „clear‟ instruction that

appears in some MATLAB functions is another example.

 Parallelization: use of parallel primitives such as „parfor‟;

 Design space exploration: code to explore different specializations, different

algorithms to solve the same problem, to find the number of iterations

needed (e.g., to be above a certain precision).

 Dynamic properties: constructing inline function objects (inline), executing a

string containing MATLAB expressions („eval’), etc.

 if debug

 for I = 1:Nedge

 mid = fix(length(edgelist{I}) / 2);

 text(edgelist{I}(mid,2), edgelist{I}(mid,1), sprintf('%d',I))

 ...

Fig. 4. Segment of MATLAB code for debugging purposes.

In the example presented in Fig. 5 (a fragment of function „gaborconvolve‟), we

show a number of aspect candidates whose behavior deals with argument verification

(„nargin‟), class verification („isa’), freeing memory („clear‟), and messages to the

user („fprintf’). In this case, code related to debugging can be difficult to

automatically expose as an argument variable („feedback’) is used as an option to

enable the printing of certain messages in the screen. An advanced aspect mining tool

should identify the use of functions to print messages to the screen („fprintf’ in this

case) and the code associated with those functions.

Identification and Characterization of Crosscutting ... INForum 2010 – 155

function EO = gaborconvolve(im, nscale, norient, minWaveLength, mult,

... sigmaOnf, dThetaOnSigma, feedback)

 if nargin == 7

 feedback = 0;

 end

 … % original code removed

 if ~isa(im,'double')

 im = double(im);

 end

 … % original code removed

 clear x; clear y; clear theta; % save a little memory

 … % original code removed

 for o = 1:norient, % For each orientation.

 if feedback

 fprintf('Processing orientation %d \r', o);

 end

 … % original code removed

 end

 if feedback, fprintf(' \r'); end

Fig. 5. Illustrative example of CCCs in MATLAB

4 Aspect mining

The task of identifying and locating CCCs in existing code is called aspect mining [6].

Typical research on aspect mining covers the development of methods and tools for

the automatic or semi-automatic detection and identification of concerns that

comprise promising candidates for being extracted to their own aspect modules. Once

identification is concluded, a refactoring process can be performed for the extraction

of aspects yielding an aspect-oriented version of the original target system [10].

To date, research on aspect mining is largely focused on the OO paradigm, plus the

specific case of the C programming language [3]. Java is the most usual OO

representative [6]. We have no knowledge of any previous approach on aspect mining

for MATLAB systems. Moreover, it turns out that MATLAB code places different,

possibly more challenging hurdles for aspect mining tasks.

This section next briefly surveys existing approaches to aspect mining [3], [9], [2],

[11]. The intent is not to issue a final judgment on those techniques, even in relation

to MATLAB. We aim to select the approach that promises to be the most suitable for

an initial, exploratory study in a topic in which many facets remain unclear.

Two techniques focus on the analysis of method calls, respectively static and

dynamic: fan-in analysis [9] and analysis of event traces [2]. Both work at an

abstraction level and granularity suitable for object-oriented systems. However,

MATLAB does not support the equivalent of full Application Program Interfaces

(APIs) in OO systems. Most MATLAB elements available for analysis are minute

details of function implementations that are hidden from APIs, such as names of local

variables, control structures and names of called functions. Indeed, it is not clear that

either technique would be effective for cases like the one described is section 3.

156 INForum 2010 Miguel Monteiro, João Cardoso, Simona Posea

Another technique is the extraction of conceptual knowledge from names in

code [11]. Unfortunately, the typical style of naming prevalent in the MATLAB

community seems an impediment to that kind of approach. Developer support in

MATLAB tools is less rich than that provided for the Java community and lacks

features such as code completion and refactoring. Due to such circumstances,

programmers tend to use short, cryptic names for parameters and variables, often with

a single letter. Function names are longer, but with some exceptions they generally

comprise a single word (e.g., „zeros’, „values’) or a cryptic combination of a few

shortened words/acronyms (e.g., „cumtrapz’, „tsearchn’). Thus, high-level, domain

concepts are more poorly represented in MATLAB than in Java. For this reason,

extraction of conceptual knowledge does not seem promising as an initial approach.

Another option are clone detection techniques [3]. As argued in section 3, the

presence of secondary concerns in MATLAB often results in modified code whose

details depend on both the original primary logic and the secondary concern in

question. This results in higher levels of variability of symptoms in the code, as

compared to what is observed in OO systems. One can imagine multiple instances of

one same function, each differently “transformed” by a different secondary concern.

There is no guarantee that each such instance will bear enough similarities for

approaches based on resemblances of code fragments. Thus, clone detection

techniques do not generally look suitable for detecting and identifying CCCs in

MATLAB code, with one exception.

4.1 Aspect mining tailored to MATLAB

Token-based clone detection techniques are about performing a tokenization of the

source code and subsequently use the tokens as a basis for clone detection [3]. Our

approach is an adapted version of this kind of clone detection technique, which

nevertheless allows us to deal efficiently with all MATLAB examples, regardless of

language version. Target systems are assumed to be MATLAB-grammar compliant

and no checks for syntactic or grammatical correctness are performed.

The core idea is to count occurrences of function calls in non-comment text lines.

The tool decomposes MATLAB source files into sequences of tokens and computes

metrics based on those tokens. Distinguishing variable accesses from function calls is

not straightforward in MATLAB, as the same syntax is used for both. Thus, the tool

builds a list of variable names by extracting them from the function declarations, and

by analyzing each individual line to determine if it is a variable assignment. If it is, it

registers the lvalue, i.e., the name in the left side of the assignment. The list of

variable names thus collected is used to filter out the collection of names extracted

from the source text. It is assumed that the remaining names are function names. For

each separate MATLAB file, a number of metrics is computed, including:

1. Number of times a given function name appears in a given MATLAB file.

2. Number of different function names appearing in a given MATLAB file.

The tool can compute the above metrics for individual *.m files, all *.m files in a

toolbox and all *.m files in arbitrary collections of toolboxes. Further functionality

was included to ensure that computed data is presented in a form that scales to a fairly

large number of systems. Output comprises several tables with this data.

Identification and Characterization of Crosscutting ... INForum 2010 – 157

5 Analysis of collected data

Though language processing performed by the tool is not sophisticated, the metrics

collected proved very useful. Note that a low number of occurrences cannot count as

an useful indicator, as it is perfectly reasonable for a function to call another function

several times. However, it became clear that a “high” number of calls is a fairly

reliable indicator of tangling. For instance, this metric yields value 8 for the example

presented by Cardoso et al [5] (not shown due to space constraints). Determining

more precise thresholds is an obvious next step that is left for future work.

We computed the aforementioned metrics for a collection of MATLAB

repositories (i.e., applications) in the signal and image processing domains, spanning

17 repositories with 209 MATLAB files and a total of 7,775 lines of code. Fig. 6

shows the number of uses of candidate functions and percentage of the most

representative candidates. Function „size‟ is the most often used: 194 uses that

correspond to 15% of the global uses of the functions identifying aspect candidates.

Functions „error‟, „zeros‟ and „nargin‟ are also heavily used (147, 11.4%, 123,

9.5% and 89, 6.9% respectively). Note that a more advanced analysis would be

required to pinpoint the uses of „zeros‟ used exclusively to allocate memory, as there

are cases in which the function is used to actually initialize a matrix with zero values.

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

0

50

100

150

200

250

si
ze

er
ro

r

ze
ro

s

n
a

rg
in

fi
gu

re

p
lo

t

ax
is

d
o

u
b

le

u
in

t3
2

fp
ri

n
tf

u
in

t8

h
o

ld

le
n

g
th

re
al

ti
tl

e

cl
ea

r

m
e

sh
g

ri
d

su
b

p
lo

t

co
lo

rm
ap

is
em

pt
y

ch
e

ck
a

rg
s

li
n

e

g
ra

y

n
d

im
s

ex
is

t

sh
o

w

im
sh

ow

w
ar

n
in

g

#uses % over total

Fig. 6. Aspect candidates present in the analyzed repositories.

The MATLAB files analyzed include the use of 28 functions that we selected as

candidates to aspects. Those functions appear 1294 times in the 209 files analyzed,

yielding an average of 6.19 uses per *.m file. If we measure the “pollution” level as

the number of uses per lines of code we have for these examples, around 16.64% of

lines use functions that we cataloged as related to aspects. Considering scattering

results (i.e., simply considering if a function is used or not in a MATLAB file), there

are a total of 646 references which yields about 3.09 different functions referred per

file. Fig. 7 shows the frequency of *.m files per range of candidate functions. Of 209

files, just 19 do not use candidate functions and 116 files use from 1 to 4 candidate

functions. These results indicate a significant proportion of MATLAB code that

comprises promising candidates for extraction to future aspectual extensions of

MATLAB.

158 INForum 2010 Miguel Monteiro, João Cardoso, Simona Posea

It is worth noting that the MATLAB systems analyzed reveal a low use of shape

specialization. This is natural, as most publically available MATLAB systems use

high-level models and few of these systems include specialized versions, needed for

any case specific use of those systems, e.g., in embedded systems. Most available

code is for simulating and problem-solving under the MATLAB environment and is

not publicly provided to become part of final system implementations.

Some functions include additional code to make them as generic as possible. When

specific specializations are needed, the extra code needed to generalize those

functions can be made (un)pluggable, yielding a cleaner version of the core function.

19

116

44

18
7 4 1

0

20

40

60

80

100

120

140

0 1-4 4-8 8-12 12-16 16-20 20-24

#MATLAB files

Fig. 7. Frequency of MATLAB files per functions candidate to aspects.

MATLAB models also usually use input/output features during development that

will not be used in the final, working system. These include reading from and writing

to files, which should be removed and replaced by a suitable input/output aspect.

In some cases, functions are part of a specific behavior and a more elaborate

analysis would have to be performed to indentify the code segments that relate to that

behavior. For instance, „nargin‟ is often used to deal with optional arguments. In the

repositories used for this study, a function named „phasecong‟ includes 32 lines

related to „nargin‟ verification and initializations according to the number of

arguments passed in the function call. This kind of behavior can conceivably be

extracted to a “specialization aspect”. That code could then be removed from the

MATLAB source and an invocation of the function with fewer arguments could

originate a specialization of that function. Such specialization includes the code that

should be executed for a certain number of arguments. Another case is when the class

(i.e., MATLAB type) of a variable is verified and according to the class a specific

behavior is invoked.

6 Conclusion and future work

This paper described our first contribution to aspect-mining in MATLAB systems,

proposing a novel notion of crosscutting concern for MATLAB and evaluating

whether instances of those concerns are found in a significant number of MATLAB

files. Experimental results using a token-based aspect-mining tool and targeting

Identification and Characterization of Crosscutting ... INForum 2010 – 159

publicly available real systems enabled the identification of a number of promising

candidates for modularization through extraction to aspect modules.

There are many directions through which this work can be developed in future,

contributing to refine and mature the notion of crosscutting concern proposed in this

paper. One front is to explore the (semi-)automatic identification of crosscutting

concerns (“candidate aspects”) on the basis of broader code segments, namely

through pattern matching. However, much analysis remains to be performed on data

computed through this simple, token-based approach. The “number of calls per

individual function” metric proves an useful indicator of tangling, but this hypothesis

requires further analysis and assessment. In addition, there are several other

hypotheses that can be assessed through this approach, namely: (1) the extent to

which “number of functions that call this function” can be a reliable indicator of

scattering; (2) whether certain groups of tokens tend to be used together; (3) whether

certain tokens tend to appear in connection to specific functionalities; (4) whether

specific groups of tokens can be traced to specific application domains.

In a different front, the previously aspect mining techniques surveyed in section 4

should be also explored, to assess in practice the extent to which they can

advantageously replace or complement the approach proposed in this paper.

References

1. Aslam T., Doherty J., Dubrau A., Hendren L. AspectMatlab: An Aspect-Oriented Scientific

Programming Language. AOSD 2010, Saint Malo, France, March 2010.

2. Breu S., Krinke J. Aspect Mining Using Event Traces. 19th IEEE international conference

on Automated software engineering (ASE 2004). Linz, Austria, September 2004.

3. Bruntink M., Deursen A. van, Engelen R. van, Tourwé T. An Evaluation of Clone

Detection Techniques for Identifying Cross-Cutting Concerns. ICSM‟04, Chicago, Illinois,

USA, September 2004.

4. Cardoso, J., Diniz, P., Monteiro, M., Fernandes, J., Saraiva, J. A Domain-Specific Aspect

Language for Transforming MATLAB Programs. DSAL 2010, Rennes, March 2010.

5. Cardoso, J., Fernandes, J., Monteiro, M. 2006. Adding Aspect-Oriented Features to

MATLAB. SPLAT!2006, Bonn, Germany, March 2006.

6. Kellens A., Mens K., Tonella P. A Survey of Automated Code-Level Aspect Mining

Techniques. Transactions on Aspect Oriented Software Development, vol. 4 (LNCS 4640),

pp. 145-164. Springer, 2007.

7. Kiczales G., Hilsdale E., Hugunin J., Kersten M., Palm J., Griswold W., An Overview of

AspectJ. ECOOP 2001, Budapest, Hungary, June 2001.

8. Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C., Loingtier J., Irwin J., Aspect-

Oriented Programming. ECOOP‟97, Jyväskylä, Finland, June 1997.

9. Marin M. Deursen A., Moonen L., Identifying Aspects using Fan-In Analysis. Working

Conference on Reverse Engineering (WCRE2004), Delft, The Netherlands, Nov 2004.

10. Monteiro M.P., Fernandes J.M. Towards a Catalogue of Refactorings and Code Smells for

AspectJ. LNCS TAOSD I, Springer vol. 3880, 2006.

11. Shepherd D., Fry Z., Hill E., Pollock L., Vijay-Shanker K. Using Natural Language

Program Analysis to Locate and Understand Action-Oriented Concerns. AOSD 2007,

Vancouver Canada, March 2007.

12. Tarr P., Ossher H., Harrison W., Sutton Jr., S.M., N Degrees of Separation: Multi-

Dimensional Separation of Concerns. ICSE'99, Los Angeles, USA, May 1999.

160 INForum 2010 Miguel Monteiro, João Cardoso, Simona Posea

Producing EAM code from the WAM

Paulo André1 and Salvador Abreu1

Departamento de Informática,
Universidade de Évora and CENTRIA FCT/UNL, Portugal

{prla,spa}@di.uevora.pt

Abstract. Logic programming provides a very high-level view of programming,
which comes at the cost of some execution inefficiency. Improving performance
of logic programs is thus one of the holy grails of Prolog system implementations
and a wide range of approaches have historically been taken towards this goal.
Designing computational models that both exploit the available parallelism in a
given application and that try hard to reduce the explored search space has been
an ongoing line of research for many years. These goals in particular have moti-
vated the design of several computational models, one of which is the Extended
Andorra Model (EAM). In this paper, we present a preliminary specification and
implementation of the EAM with Implicit Control, the WAM2EAM, which supplies
regular WAM instructions with an EAM-centered interpretation.

1 Introduction

Logic programming provides an abstract and high-level view of programming in which
programs are expressed as a collection of facts and rules that define a model of the
problem at hand and against which questions may be asked. The most well-known ex-
ample of this paradigm of programming is Prolog, which has been sucessfully used
in applications of many different areas. One line of work that has been followed to
address performance issues is parallel execution: parallelism allows logic programs to
transparently exploit multi-processor environments while extensions like co-routining,
constraints and tabling go a long way towards reducing the problem’s inherent search
space. Some or all of these together act as the foundation on which to build more ad-
vanced techniques towards obtaining maximum performance.

From the experience gained in implementing the Basic Andorra Model, D.H.D. War-
ren made a more radical proposal, the Extended Andorra Model, or EAM [11], where
the conditions in which independent computations might be carried out are eagerly
sought. In this article, we present a concrete implementation of the Extended Andorra
Model, the WAM2EAM, which differs from other approaches taken in the past because
we are compiling straight WAM code into C,1 adopting an EAM computational model,
resorting to GCC extensions.

This paper is structured as follows: Section 2 presents a short survey on the road
leading up to our current implementation as far as the EAM is concerned, from the
Andorra Principle to the BEAM. Section 3 describes the EAM in more detail and lays

1 We are targetting C with GCC extensions, such as label values and indirect jumps.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 161–172

down the theoretical groundwork of the WAM2EAM and delves more deeply into its prac-
tical implementation from WAM code compilation to the data structures and execution
control of the EAM-based generated C code. We conclude with section 4.

2 State of the Art and Related Work

A significant body of research on Logic Programming has been directed towards im-
proving the performance of Prolog. One important line of research towards this goal
is the exploitation of the different forms of implicit parallelism, present in Prolog pro-
grams. Several approaches have been devised over the years but we shall focus on the
systems which allow for the transparent parallel goal execution, in particular the “An-
dorra” family of languages which includes Andorra-I, AKL and the BEAM.

2.1 The Andorra Principle

David H. D. Warren proposed the Basic Andorra Model (BAM),2 geared towards the
execution of logic programs, in which a goal is called determinate if it has at most one
candidate clause. In this model, deterministic goals should be executed first, thereby
reducing the nondeterminate “guesswork” to the minimum possible. Only then, once no
deterministic goal remains to be executed, should a non-deterministic goal be selected
for execution.

A system incorporating the Andorra Principle reduces the search space of logic
programs by having deterministic goals execute first and only once, rather than have
them re-executed several times in different points of the search space. This behavior is
also known as “sidetracking.” Also, as a desirable consequence, deterministic goals may
generate constraints (bindings) which may further reduce the number of alternatives in
other (non-deterministic) goals, possibly even making them deterministic.

Another interesting advantage is how all deterministic goals can execute in parallel,
as long as they do not run into binding conflicts. Parallelism in the BAM comes in two
flavours:

– AND-Parallelism - deterministic goals run in parallel
– OR-Parallelism - the exploration of different alternatives to a goal is done in parallel

The BAM may also alter the semantics of programs, in that the order of the solutions
for a given goal may be different from that resulting from sequential Prolog execution.
This may cause otherwise nonterminating programs to reach a solution.

There are, however, a few issues inherent to this sort of computational model:

– Finding which goals are deterministic can sometimes be difficult as predicates with
more than one clause may actually have a single matching clause for a given query.

– Concurrency may break Prolog semantics, for instance by executing a pruning di-
rective (e.g. cut) too early.

2 Not to be confused with van Roy’s Berkeley Abstract Machine, used in the Aquarius Prolog
system.

2

162 INForum 2010 Paulo André, Salvador Abreu

The best-known implementation of the Basic Andorra Model is Andorra-I [3,2]. It ex-
ploits OR-parallelism and determinate dependent AND-parallelism while fully sup-
porting Prolog, however, despite good results, the system is limited by the fact that
co-routining and AND-parallelism can only be exploited between determinate goals.

Shortly after, Warren went further and proposed the Extended Andorra Model
(EAM) which improved upon the ideas of the BAM, namely by trying to explore inde-
pendent AND-parallelism. This lead to a two major approaches:

– AKL: The Andorra Kernel Language (AKL) [4,5] was designed by Haridi and Jan-
son and was the course followed at SICS. It concentrated on the idea that a new
language was needed, based on the advantages of the EAM, which would subsume
both Prolog and committed-choice languages. AKL distinguished itself by featur-
ing an explicit control scheme, as programs were written using guarded clauses,
where the guard was separated from the body with a sequential conjunction, cut or
commit operator.

– EAM with Implicit Control: In contrast to AKL, David H. D. Warren and other
researchers at Bristol worked towards an implementation of the EAM with implicit
control [11]. Its main goal was to take advantage of the Andorra Principle while
alleviating the burden on the programmer.

2.2 The BEAM

The Boxed EAM (BEAM) is an implementation of the EAM design with implicit con-
trol, developed at University of Porto, Portugal [6,7,8,9]. The beam’s initial goal was
to prove the feasibility of Warren’s design for the EAM, and as a first step it concen-
trated on the original rewriting rules of the EAM, so formally it was defined through
rewrite rules that manipulate AND-OR trees as well as simplification and optimization
rules used to simplify the tree and discard boxes. It also made use of a general control
strategy, which is used to decide when and how to apply each rule.

The main operations of the BEAM are:

– Reduction expands a goal G into an OR-box.
– Promotion promotes constraints from an inner AND-box to an outer AND-box.
– Propagation propagates constraints from an outer AND-box to the inner boxes.
– Splitting distributes a conjunction across a disjunction.

Adding to these are a few simplification and optimization rules, all of which are de-
scribed in [8].

Apart from AND- and OR-boxes, there’s also another kind of box contemplated
in the BEAM which is the choice-box. These are special OR-boxes created when the
clauses defining a procedure include a pruning operator, generically designated by %.
The original EAM supports two pruning operators, cut and commit.

The EAM tries to keep the control implicit as much as possible, contrary to AKL
for instance. Therefore, in the BEAM, the control decisions are based exclusively on
information implicitly extracted from the program. Moreover, one of the main goals of
the EAM is to perform the least possible number of reductions to obtain the solutions
to a goal. BEAM’s control strategy is geared towards this goal.

3

Producing EAM code from the WAM INForum 2010 – 163

The BEAM also does not attempt to do all the work by itself, instead relying on the
output of an existing Prolog compiler, in this case YAP Prolog. The BEAM was built
as an extension to YAP. It differs from the work reported herein in that the BEAM is
meant to be an interpreter, whereas WAM2EAM takes WAM code and compiles it to C.

Non-termination A central problem found by the developers of the BEAM was a
consequence of EAM’s execution scheme: as long as they do not bind any (external)
variables, the EAM allows the early parallel execution of nondeterminate goals. In the
worst case, this may lead to non-termination for certain recursive predicates. The pro-
posed solution was based on both eager non-determinate promotion and tabling which,
on the one hand guarantees that the computation ends in programs that have finite solu-
tions and on the other hand, with tabling, allows for the reuse of solutions to goals.

3 The Extended Andorra Model and WAM2EAM

The Extended Andorra Model (EAM) is the foundation for the work we carried out
with WAM2EAM. The idea is to perform as much work as possible in parallel, exploiting
all the avaliable forms of parallelism:

– Or-parallelism, related to exploring the various alternatives of any given goal.
– Indendent AND-parallelism, within a conjunction of goals that do not share any

variables.
– Dependent AND-parallelism, between goals that do share variables.

The main extension of the EAM over the BAM is that non-deterministic goals are al-
lowed to execute in parallel so long as they do not bind any external variables.

Our purpose is to provide a concrete implementation of the EAM with implicit
control. It departs from existing work because it compiles regular WAM code into C,
using an EAM runtime specification. Therefore, the biggest challenge and arguably the
most interesting aspect of this work, is going from one paradigm (Prolog compiled onto
the WAM) to a different one (EAM) with a single tool.

Based on a configuration AND-OR tree at all times, the way to evolve this config-
uration is by using one of several rewrite rules on it and an execution control scheme
to manage the application of these rules. We do not present the rewrite rules used by
WAM2EAM, as these are closely related to those presented in [11]. An configuration is
made up of nodes, or boxes: AND-boxes and OR-boxes, like in the BEAM and other
AND-OR tree-based models. What constitutes these boxes and how they are imple-
mented in WAM2EAMis explained more thoroughly in Section. ??.

The major challenge in WAM2EAM certainly is to go from a WAM program and re-
interpret it from an EAM point of view. To accomplish that, we take the GNU Prolog’s
textual WAM output and proceed from there. The idea is to generate C code for an
EAM runtime. This entails doing things quite differently from previous work such as
WAMCC [1] or B-Prolog [10]. WAM2EAM is comprised of two major modules:

1. the compiler, comprising the parser and the C code generator,

4

164 INForum 2010 Paulo André, Salvador Abreu

2. the runtime, a collection of data structures, logic and execution control that imple-
ments the EAM execution model.

The remainder of this section discusses design and implementation of the compiler and
runtime.

3.1 Parsing WAM instructions

We used GNU Prolog because its compilation passes are fairly simple and it is easy
to materialize the WAM representation of Prolog programs. The following is a snippet
of code which is the GNU Prolog WAM representation of a p(X) :- q(X), r(X).
predicate.

predicate(p/1,5,static,private,user,[

allocate(1),

get_variable(y(0),0),

put_value(y(0),0),

call(q/1),

put_value(y(0),0),

deallocate,

execute(r/1)]).

We built a parser for this representation in Bison, which constructs an abstract parse
tree of the WAM program.

3.2 C Code Generation

An interesting aspect of WAM2EAM is how we take a sequence of instructions intended for
the regular WAM and directly re-interpret them in an EAM context, yielding appropriate
patterns of target code. Be that as it may, a lot of the WAM instruction set translates as-
is to the EAM representation. Simpler instructions, such as put value for instance, are
supposed to do exactly the same thing in the WAM and in the EAM and the same goes
for indexing instructions like switch *. In a few cases, such as proceed, WAM2EAM
simply disregards the instruction as not being useful in the EAM setting.

At closer inspection of the WAM instruction set, the major difference in paradigm
impacting the C code generation concerns the instructions dealing with non-determinism.
Whereas the WAM deals with choice points, creating and destroying them as needed,
the EAM, by doing away with the WAM’s stack-based representation and using an
AND-OR tree based configuration instead, deals with OR-boxes when it comes to set-
ting up and exploring alternatives.

Once every detail of the original program has a C representation – an abstract parse
tree – the idea is to walk through it and emit a bit of C for each predicate and for
every WAM instruction inside it. For each internalized predicate, a block of C code is
generated, setting up a new AND-box which contains a suitable number of allocated
local variables,3 binding those variables to its parent OR-box corresponding predicate
arguments and defining each of those variables’ home as the very AND-box that is being
created. The output code is generated by this code in the compiler:

3 The exact number is determined by inspection of the WAM code in the body.

5

Producing EAM code from the WAM INForum 2010 – 165

emit(8, "a = new_and_box (o, %d, ab_id++);\n", max_var_idx+1);

for (i = 0; i < n; i++)

emit(8, "bind (a->locals[%d], o->args[%d]);\n", i, i);

for (i = 0; i < max_var_idx+1; i++)

emit(8, "ASREF(a->locals[%d])->home = a;\n", i);

max var idx reflects the maximum number of variables used in this predicate, account-
ing for possible temporaries in all of its clauses, potentially a single one if deterministic.
Looking now at the C code for a clause with two local variables, it might look something
like this:

a = new_and_box (o, 2);

bind (a->locals[0], o->args[0]);

bind (a->locals[1], o->args[1]);

This allocates a new AND-box with two local variables, as a child of the current OR-box
(whose address is kept in o) and both of those variables are then immediately bound to
whatever are the first two parent OR-box arguments. This creates variable chains across
the AND-OR tree, reflecting the same concept found in Prolog clauses where a newer
variable might refer to an older one.

A second pass through the WAM instructions for the clause is needed to generate
code for each actual WAM instruction by traversing the list built by the parser.

while (instrs) {

print_instr (instrs->head, (*a)->name, n, max_var_idx+1, FALSE)

instrs = instrs->tail;

}

print instr then goes through a large switch instruction that finds the appropriate
bit of C code to emit for each WAM instruction, having the EAM execution scheme in
mind. WAM instructions, which by now we regard as EAM instructions in their own
right, are roughly divided in three major groups:

Choice point manipulation These are the try*, retry* and trust* instructions.
We no longer think in terms of choice point frames, instead looking at managing non-
determinism by way of OR-boxes. A predicate with only one clause consists of an
OR-box with a single alternative (and thus a single descendant AND-box) whereas a
non-deterministic predicate (ie. having more than one clause) is translated as an OR-
box with as many children AND-boxes as there are possible clauses. A more in-depth
description of how OR-boxes actually deal with alternatives will be given after we in-
troduce the major data structures used throughout WAM2EAM. In practice, an instruction
like try me else (L) (or retry me else (L), for that matter) for predicate q(1)
simply defines the next alternative in the current OR-box, generating the following bit
of C code:

o->alt = &&P_q_1_C4;

6

166 INForum 2010 Paulo André, Salvador Abreu

Execution Control The call and execute instructions are responsible for predicate
calling, in effect jumping to the appropriate place in the code where to start executing
the called predicate. They also need to setup a return address where to get back to
when this predicate finishes execution. This is accomplished by emiting a C label and
configuring the current AND-box continuation to that label, using GCC’s label address
extension. With this, once the called predicate is done, it will proceed to whatever
AND-continuation is available in its AND-box, in effect returning here and resuming
execution. The difference between call and execute is precisely what to do after the
called predicate is done with. Whereas in the former case, it simply continues executing
whatever is left in the current predicate, the latter means this was the last goal in the
current clause and it should look for a continuation above, in the Prolog execution
chain. Here’s how the call instruction is translated to C: For example, the pattern of
code generated for calling the goal q(X) in our example is:

/* call(q/1) */

q_enqueue(a->and_conts,&&R1); // setup AND-continuation

o = new_or_box(a,1); // create new OR-box

o->args[0] = a->locals[0]; // preload A registers on the new OR-box

goto P_q_1; // jump to the predicate’s code

R1: // return label

/* further code.. */

Variable manipulation and unification This type of instructions is also handled quite
differently within the EAM. Simple instructions such as put value or get variable
are basically the same, but unification needs to be looked at more carefully, as trying
to bind variables which are not local to the current AND-box leads to suspension of
execution and triggers a search for work, elsewhere in the code. AND-box suspension
and the WAM2EAM execution scheme will be looked upon in a bit more detail shortly.

3.3 Generated code structure

One important constraint on generated code layout is that we must be able to jump
back and forth between different predicates, in order to implement predicate calling
and returning. Also, we need to jump to random places in the code when attempting
to resume a suspension. As it is illegal to use C’s goto between different functions,4

generating one C function per predicate is not an option.
One possible alternative then is to implement the entire program as a single function

and delimiting predicates using unique labels. This way, jumping from one point in the
code to another remains within the bounds of the one function and correct indentation
when emitting the code will hopefully not make it a burden to look at. We also must
be careful when jumping to a point of code from out of nowhere, since the correct
environment must be replaced, namely the current AND- and OR-boxes. Other than
that, all it takes for jumping around the code is the address to jump to and making good
use of GCC’s labels as values extension.

4 We may not reenter an existing C stack frame.

7

Producing EAM code from the WAM INForum 2010 – 167

int program ()

{

/* ... */

P_p_1: {

a = new_and_box(o,1);

/* ... */

o = new_or_box(a,1);

goto P_q_1;

/* ... */

P_q_1: {

a = new_and_box(o,1);

/* ... */

}

3.4 Runtime Data Structures

The runtime half of WAM2EAM is itself broken into two major steps and these are where
we significantly depart from the WAM way of doing things and completely focus on
EAM. First, executing the C code previously generated by the compiler will incre-
mentally build the configuration, an AND-OR tree that gets constructed, modified and
pruned as execution of the code proceeds. The way for this to happen is by applying in
turn the different AND-OR tree rewrite rules.

The most important data structure in WAM2EAM is the AND-OR tree, or configura-
tion. An AND-OR tree is so called because it is composed of AND nodes, correspond-
ing to Prolog clauses and OR nodes, consisting of Prolog goals. It is important to note
that no two nodes, or boxes, of the same type are directly connected in an AND-OR
tree. Moreover, the root is always an OR-box.

AND-boxes They represent clauses, so there is one AND-box in the configuration for
every clause in the Prolog source code. So, for instance, a non-deterministic predicate
having four different clauses, would consist of four AND-boxes, one for each clause.
AND-boxes are a lengthy structure in WAM2EAM in that they play a critical role. They are
home to the clause’s local variables, they need to keep track of their continuations (e.g.
where to find the code for the next goal in the clause once the current goal is done with)
and they also may or may not be suspended at any point in time. Finally, promotion also
impacts AND-boxes directly, so they also have mechanisms to deal adequately with
that. And, of course, they spawn (and in turn descend from) OR-boxes corresponding
to the reduction of their body goals.

OR-boxes These represent goals and are created everytime a new goal is executed.
Their primary concern is dealing with non-determinism by managing goal alternatives,
namely holding an address for the next alternative for the current goal at all times. They
also carry the goal’s arguments when the goal gets called in order to pass them initially
to each clause’s AND-box as initial values. OR-boxes thus spawn an AND-box for each
clause they invocate.

8

168 INForum 2010 Paulo André, Salvador Abreu

3.5 Suspensions

As we have seen before, caution must be taken when an attempt to bind a variable
is made. Only in case the variable is local to the current AND-box will binding be
allowed to occur. Otherwise, the AND-box is said to be suspended on the offending
variable and execution proceeds elsewhere, namely to the next alternative in the current
OR-box. Execution can only return to this AND-box when certain conditions are met,
namely when the variable becomes local to the current AND-box or it gets bound from
elsewhere. In the latter case, when the suspension is resumed, the attempted binding
that triggered the suspension in the first place is retried and it either checks OK or it
fails against the prevailing (earlier) binding.

In order to correctly deal with these situations, we need to wrap instructions wherein
a suspension might occur with some code that actually checks for “offending” binding
attempts, namely trying to bind a non-local variable. We do this by having every unifi-
cation instruction check whether the dereferenced variable is already bound and if not,
whether it is local or external to the current AND-box. The result of this verification
is then returned as a meanigful code to a wrapping CHECK() macro, which then acts
accordingly. Faced with a unification attempt, the outcome can then be any one of:

BIND SUSP the variable is not bound yet and it is not local to the current AND-box
either. The current AND-box suspends on this variable.

BIND OK the variable is not bound and it is local, so the binding succeeds.
CHECK OK the variable is bound and its value is the same as the one being attempted

in the binding, so execution may proceed.
CHECK FAIL the variable is bound and its value differs with the one being tried. The

configuration branch rooted in the current AND-box fails and is pruned off the tree.

Because of suspensions, for every non-trivial program it is easy to see that we quickly
arrive at what we call a stuck configuration, an AND-OR tree where all leaf AND-boxes
are suspended. As we don’t stop execution anytime a box suspends, it is only when no
more code is left to execute that we have a problem. At this time we try to apply one of
the rewriting rules, in particular giving priority to determinate rules such as determinate
promotion. By promoting an inner AND-box into an outer AND-box, the variables
inside it are also promoted which means they become closer to the AND-box where
they will actually be local, eventually allowing for bindings to happen or suspensions
to resume.

3.6 Deterministic Promotion

As explained in the previous section, actions (or rules) that contract the configuration
are desirable. On the other hand, expanding goals also expands the configuration, as
AND-boxes give way to OR-boxes which in turn give way to more AND-boxes and
so forth. Deterministic promotion, being the only rule that eliminates boxes, is highly
sought after. This rule is only applicable to OR-boxes with a single alternative.

Implementation-wise, promoting an AND-box context (variables, suspensions and
continuations) into another requires maintaining their environments coherent. In other
words, if the resulting AND-box contains the union of both sets of locals variables

9

Producing EAM code from the WAM INForum 2010 – 169

from the two AND-boxes involved in the suspension, then what was the first variable
in the inner (promoted) AND-box is probably no longer the first variable in the outer
(resulting) AND-box after promotion. This lends itself to all kinds of mayhem when
code still refers a->locals[0] (WAM register X(0)) when the actual variable is now
at a->locals[1].

Fig. 1. On the left: an AND-box grouping made of 3
different AND-boxes.

To cope with this problem, we
opted to introduce the concept of
AND-box groupings. Each AND
node in the configuration is ac-
tually a group of one or more com-
plete AND-boxes, forward-connected
among themselves by a pointer
which indicates the next box in
the group. Moreover, every box
in the group is also linked to the
first - the head. This situation is
illustrated in figure 1.

This way, each box environ-
ment remains pristine, as origi-
nally constructed, and it is safe
to resume from a suspension point
as far as accessing local variables is concerned. It is important to note that a variable is
local to the current AND-box if, after dereferencing, its home AND-box is in the same
group, i.e. has the same head.

3.7 OR-split and non-deterministic promotion

Desirable as deterministic promotion might be, its occurence is heavily constrained as
we have shown in the previous section. The OR-box must have a single alternative and
for predicates with multiple clauses that’s frequently not the case. It is quite common
for a configuration to get stuck with no chance for deterministic promotions to occur.
When it comes to this, there is no other choice than to perform what we call an OR-split
which forces a situation where a determinate promotion may happen.

Simply put, we elect an OR-box with more than one alternative to act as the root
of a subtree to be cloned. In the original subtree, only one alternative remains, while in
the cloned subtree, every other alternative is present. This way, all alternatives remain
in the overall configuration, ensuring correctness of the program, yet an opportunity
for deterministic promotion now exists. Note that if the selected OR-box contains only
two alternatives, we arrive at the special case where the OR-split induces two different
deterministic promotion possibilities: one in the original box and another in the cloned
box.

The choice of OR-box to split may be guided by heuristics, yet at this early stage we
are simply going with the leftmost OR-box suitable for splitting. Also, from the chosen
box’s alternatives, we are picking the leftmost one to remain in the original branch and
all others to be moved to the cloned subtree. Actual cloning is only needed for the parent

10

170 INForum 2010 Paulo André, Salvador Abreu

AND-box and any siblings of the chosen OR-box. OR-split is the least desirable rule,
because with cloning entire branches of the tree, it quickly becomes expensive.

3.8 The scheduler

The need to decide which rule to apply led to the implementation of a scheduler. This
scheduler is called the first time after all alternatives and continuations are exhausted
and no answers were produced. In other words, when the tree is stuck we ask the sched-
uler for guidance.

Fig. 2. The scheduler’s flow diagram.

The implementation of the sched-
uler is part of the runtime code
and is implemented as a C macro.
It basically follows a hierarchy
of possible events and acts ac-
cordingly for each outcome. First
of all, in the event that a variable
that had suspensions got bound,
it tries to resume from any sus-
pension pending on that variable.
If none are found, it looks for
an alternative in the current OR-
box. If found, it continues exe-
cution from there, otherwise it
tests the tree to see if it is stuck.
If it is, it tries to apply determin-
istic promotion in order to try to
move on or, if that fails, it resorts
to applying non-deterministic pro-
motion, by way of an OR-split. Putting this as the last choice makes sense, because it is
also the most expensive operation.

It is interesting to note the reason why the scheduler is implemented as a macro
instead of a function, despite being a little involved and lengthy, it is because it may
involve jumping to any point in the code, be it a suspension point, a continuation or an
OR-alternative. Again, we are faced with the problem of not being able to jump between
different C functions, so implementing this as a macro solves the problem. The control
flow for the scheduler is depicted in figure 2.

4 Concluding Remarks & Future Work

We are convinced that our goal of generating a program following EAM semantics from
a classical WAM one has been met, even if with some restrictions for the time being.
Performance is not yet an issue but will become one as we develop further aspects of
this implementation. It is interesting to see that it is feasible to have an EAM execution
model without the Prolog compiler being aware of the fact.

11

Producing EAM code from the WAM INForum 2010 – 171

Further work is to focus on the introduction of pruning operators – in the case of
cut this is straightforward to recognize from the WAM code but for commit special
measures will have to be taken as it is not inherently accounted for by the Prolog-to-
WAM compiler of GNU Prolog.

One of the driving motivations for generating AND-OR trees and having them ma-
nipulated as per the EAM was to bridge this computational model to one with tabling,
as found in XSB or YAP Prolog. This goal remains in our agenda, as does a parallel
version which will be the ultimate test for the claim that AND-OR tree rewriting is a
good approach for implicit parallel execution.

Acknowledgments

The authors would like to thank Ricardo Rocha for fruitful discussions on the imple-
mentation of WAM2EAM. The FCT (Portuguese Government Agency) is acknowledged
for supporting this work under the project STAMPA (PTDC/EIA/67738/2006).

References

1. Philippe Codognet and Daniel Diaz. wamcc: Compiling Prolog to C. In 12th International
Conference on Logic Programming. The MIT Press, 1995. 3

2. Vı́tor Santos Costa, David H. D. Warren, and Rong Yang. Andorra-i: A parallel prolog
system that transparently exploits both and- and or-parallelism. In PPOPP, pages 83–93,
1991. 2.1

3. Vı́tor Santos Costa, David H. D. Warren, and Rong Yang. The andorra-i engine: A parallel
implementation of the basic andorra model. In ICLP, pages 825–839, 1991. 2.1

4. Torkel Franzén, Seif Haridi, and Sverker Janson. An overview of the andorra kernel lan-
guage. In Lars-Henrik Eriksson, Lars Hallnäs, and Peter Schroeder-Heister, editors, ELP,
volume 596 of Lecture Notes in Computer Science, pages 163–179. Springer, 1991. 2.1

5. Sverker Janson and Seif Haridi. Programming paradigms of the andorra kernel language. In
ISLP, pages 167–183, 1991. 2.1

6. Ricardo Lopes and Vı́tor Santos Costa. The beam: A first eam implementation. In
Maria Chiara Meo and Manuel Vilares Ferro, editors, APPIA-GULP-PRODE, pages 425–
440, 1999. 2.2

7. Ricardo Lopes, Vı́tor Santos Costa, and Fernando M. A. Silva. A novel implementation of
the extended andorra model. In I. V. Ramakrishnan, editor, PADL, volume 1990 of Lecture
Notes in Computer Science, pages 199–213. Springer, 2001. 2.2

8. Ricardo Lopes, Vı́tor Santos Costa, and Fernando M. A. Silva. On the beam implementation.
In Fernando Moura-Pires and Salvador Abreu, editors, EPIA, volume 2902 of Lecture Notes
in Computer Science, pages 131–135. Springer, 2003. 2.2

9. Ricardo Lopes and Vı́tor Santos Costa. The BEAM: Towards a first EAM Implementation.
In Proceedings of the Workshop on Parallelism and Implementation Technology for (Con-
straint) Logic Programming Languages, 1997. 2.2

10. Paul Tarau. The BinProlog Experience: Implementing a High-Performance Continuation
Passing Prolog Engine. Technical report, BinNet Corp., 1998. 3

11. David H. D. Warren. The Extended Andorra Model with Implicit Control. ICLP90 Precon-
ference Workshop, June 1990. 1, 2.1, 3

12

172 INForum 2010 Paulo André, Salvador Abreu

Solving Difficult LR Parsing Conflicts by
Postponing Them

L. Garcia-Forte and C. Rodriguez-Leon

Departamento de EIO y Computación,
Universidad de La Laguna, Tenerife, Spain

casiano@ull.es,
WWW home page: http://nereida.deioc.ull.es

Abstract. Though yacc-like LR parser generators provide ways to solve
shift-reduce conflicts using token precedences, no mechanisms are pro-
vided for the resolution of reduce-reduce conflicts. To solve this kind of
conflicts the language designer has to modify the grammar. All the solu-
tions for dealing with these difficult conflicts branch at each alternative,
leading to the exploration of the whole search tree. These strategies dif-
fer in the way the tree is explored: GLR, Backtracking LR, Backtracking
LR with priorities, etc. This paper explores an entirely different path:
to extend the yacc conflict resolution sublanguage with new constructs
allowing the programmers to explicit the way the conflict must be solved.
These extensions supply ways to resolve any kind of conflicts, including
those that can not be solved using static precedences. The method makes
also feasible the parsing of grammars whose ambiguity must be solved in
terms of the semantic context. Besides, it brings to LR-parsing a com-
mon LL-parsing feature: the advantage of providing full control over the
specific trees the user wants to build.

1 Introduction

Yacc-like LR parser generators [1] provide ways to solve shift-reduce mechanisms
based on token precedence. No mechanisms are provided for the resolution of
reduce-reduce conflicts or difficult shift-reduce conflicts. To solve such kind of
conflicts the language designer has to modify the grammar. Quoting Merrill [2]:

Yacc lacks support for resolving ambiguities in the language for which it
is attempting to generate a parser. It does a simple-minded approach to
resolving shift/reduce and reduce/reduce conflicts, but this is not of suffi-
cient power to solve the really thorny problems encountered in a genuinely
ambiguous language

Some context-dependency ambiguities can be solved through the use of lexical
tie-ins: a flag which is set by the semantic actions, whose purpose is to alter the
way tokens are parsed. But it is not always possible or easy to resort to this kind
of tricks to fix some context dependent ambiguity. A more general solution is to
extend LR parsers with the capacity to branch at any multivalued entry of the

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 173–184

LR action table. For example, Bison [7], via the %glr-parser directive and
Elkhound [5] provide implementations of the Generalized LR (GLR) algorithm
[4]. In the GLR algorithm, when a conflicting transition is encountered, the
parsing stack is forked into as many parallel parsing stacks as conflicting actions.
The next input token is read and used to determine the next transitions for
each of the top states. If some top state does not transit for the input token it
means that path is invalid and that branch can be discarded. Though GLR has
been successfully applied to the parsing of ambiguous languages, the handling
of languages that are both context-dependent and ambiguous is more difficult.
The Bison manual [7] points out the following caveats when using GLR:

. . . there are at least two potential problems to beware. First, always
analyze the conflicts reported by Bison to make sure that GLR splitting is
only done where it is intended. A GLR parser splitting inadvertently may
cause problems less obvious than an LALR parser statically choosing the
wrong alternative in a conflict. Second, consider interactions with the
lexer with great care. Since a split parser consumes tokens without per-
forming any actions during the split, the lexer cannot obtain information
via parser actions. Some cases of lexer interactions can be eliminated by
using GLR to shift the complications from the lexer to the parser. You
must check the remaining cases for correctness.

The strategy presented here extends yacc conflict resolution mechanisms with
new ones, supplying ways to resolve conflicts that can not be solved using static
precedences. The algorithm for the generation of the LR tables remains un-
changed, but the programmer can modify the parsing tables during run time.

The technique involves labelling the points in conflict in the grammar spe-
cification and providing additional code to resolve the conflict when it arises.
Crucially, this does not requires rewriting or transforming the grammar, trying
to resolve the conflict in advance, backtracking or branching into concurrent spe-
culative parsers. Instead, the resolution is postponed until the conflict actually
arises during parsing, whereupon user code inspects the state of the underlying
parse engine to decide the appropriate solution. There are two main benefits:
Since the full power of the native universal hosting language is at disposal, any
grammar ambiguity can be tackled. We can also expect - since the conflict han-
dler is written by the programmer - a more efficient solution which reduces the
required amount of backtracking or branching.

This technique can be combined to complement both GLR and backtracking
LR algorithms [6] to give the programmer a finer control of the branching pro-
cess. It puts the user - as it occurs in top down parsing - in control of the parsing
strategy when the grammar is ambiguous, making it easier to deal with efficiency
and context dependency issues. One disadvantage is that it requires a compre-
hensive knowledge of LR parsing. It is conceived to be used when none of the
available techniques - static precedences, grammar modification, backtracking
LR or Generalized LR - produces satisfactory solutions. We have implemented
these techniques in Parse::Eyapp [9], a yacc-like LALR parser generator for

174 INForum 2010 Luis Garcia-Forte and Casiano Rodriguez-Leon

Perl [10, 11]. The Perl language is, quoting Paul Hudak’s article [12] a “domain
specific language for text manipulation”.

This paper is divided in six sections. The next section introduces the Post-
poned Conflict Resolution (PPCR) strategy. The following three sections illus-
trate the way the technique is used. The first presents an ambiguous grammar
where the disambiguating rule is made in terms of the previous context. The
next shows the technique on a difficult grammar that has been previously used
in the literature [7] to illustrate the advantages of the GLR engine: the decla-
ration of enumerated and subrange types in Pascal [13]. The last example deals
with a grammar that can not be parsed by any LL(k) nor LR(k), whatever the
value of k, nor for packrat parsing algorithms [14]. The last section summarizes
the advantages and disadvantages of our proposal.

2 The Postponed Conflict Resolution Strategy

The Postponed Conflict Resolution is a strategy (PPCR strategy) to apply when-
ever there is a shift-reduce or reduce-reduce conflict which is unsolvable using
static precedences. It delays the decision, whether to shift or reduce and by
which production to reduce, to parsing time. Let us assume the eyapp compiler
announces the presence of a reduce-reduce conflict. The steps followed to solve
a reduce-reduce conflict using the PPCR strategy are:

1. Identify the conflict: What LR(0)-items/productions and tokens are invol-
ved?.
Tools must support that stage, as for example via the .output file generated
by eyapp. Suppose we identify that the participants are the two LR(0)-items
A → α↑ and B → β↑ when the lookahead token is @.

2. The software must allow the use of symbolic labels to refer by name to the
productions involved in the conflict. Let us assume that production A → α
has label :rA and production B → β has label :rB. A difference with yacc
is that in Parse::Eyapp productions can have names and labels. In Eyapp
names and labels can be explicitly given using the directive %name, using a
syntax similar to this one:

%name :rA A → α

%name :rB B → β

3. Give a symbolic name to the conflict. In this case we choose isAorB as name
of the conflict.

4. Inside the body section of the grammar, mark the points of conflict using the
new reserved word %PREC followed by the conflict name:

%name :rA A → α %PREC IsAorB

%name :rA B → β %PREC IsAorB

Solving Difficult LR Parsing Conflicts ... INForum 2010 – 175

5. Introduce a %conflict directive inside the head section of the translation
scheme to specify the way the conflict will be solved. The directive is followed
by some code - known as the conflict handler - whose mission is to modify the
parsing tables. This code will be executed each time the associated conflict
state is reached. This is the usual layout of the conflict handler:

%conflict IsAorB {
if (is_A) { $self->YYSetReduce(’@’, ’:rA’); }

else { $self->YYSetReduce(’@’, ’:rB’); }
}

Inside a conflict code handler the Perl default variable $_ refers to the input
and $self refers to the parser object.
Variables in Perl - like $self - have prefixes like $ (scalars), @ (lists), %
(hashes or dictionaries), & (subroutines), etc. specifying the type of the vari-
able. These prefixes are called sigils. The sigil $ indicates a scalar variable,
i.e. a variable that stores a single value: a number, a string or a reference.
In this case $self is a reference to the parser object. The arrow syntax
$object->method() is used to call a method: it is the equivalent of the dot
operator object.method() used in most OOP languages. Thus the call

$self->YYSetReduce(’@’, ’:rA’)

is a call to the YYSetReduce method of the object $self.
The method YYSetReduce provided by Parse::Eyapp receives a token, like
’@’, and a production label, like :rA. The call

$self->YYSetReduce(’@’, ’:rA’)

sets the parsing action for the state associated with the conflict IsAorB to
reduce by the production :rA when the current lookahead is @.
The call to is_A represents the context-dependent dynamic knowledge that
allows us to take the right decision. It is usually a call to a nested parser for
A but it can also be any other contextual information we have to determine
which one is the right production.

The procedure is similar for shift-reduce conflicts. Let us assume we have
identified a shift-reduce conflict between LR-(0) items A → α↑ and B → β ↑ γ
for some token ’@’. Only steps 4 and 5 change slightly:

4’. Again, we must give a symbolic name to A → α and mark with the new
%PREC directive the places where the conflict occurs:

%name :rA A → α %PREC IsAorB

B → β %PREC IsAorB γ

176 INForum 2010 Luis Garcia-Forte and Casiano Rodriguez-Leon

5’. Now the conflict handler calls the YYSetShift method to set the shift
action:

%conflict IsAorB {
if (is_A) { $self->YYSetReduce(’@’, ’:rA’); }
else { $self->YYSetShift(’@’); }

}

3 A Simple Example

The following example1 accepts lists of two kind of commands: arithmetic ex-
pressions like 4-2-1 or one of two associativity commands: left or right. When
a right command is issued, the semantic of the ’-’ operator is changed to be
right associative. When a left command is issued the semantic for ’-’ returns
to its classic left associative interpretation. Here follows an example of input.
Between shell-like comments appears the expected output:

$ cat input_for_dynamicgrammar.txt
2-1-1 # left: 0 = (2-1)-1
RIGHT
2-1-1 # right: 2 = 2-(1-1)
LEFT
3-1-1 # left: 1 = (3-1)-1
RIGHT
3-1-1 # right: 3 = 3-(1-1)

We use a variable $reduce (initially set to 1) to decide the way in which the
ambiguity NUM-NUM-NUM is solved. If false we will set the NUM-(NUM-NUM) inter-
pretation. The variable $reduce is modified each time the input program emits
a LEFT or RIGHT command.

Following the steps outlined above, and after looking at the .output file, we
see that the items involved in the announced shift-reduce conflict are

expr → expr↑ − expr

expr → expr − expr↑

and the lookahead token is ’-’. We next mark the points in conflict in the
grammar using the %PREC directive (see Figure 1)

1 For the full examples used in this paper, see the directory examples/debuggingtut/

in the Parse::Eyapp distribution [9]

Solving Difficult LR Parsing Conflicts ... INForum 2010 – 177

%%

p:

/* empty */ {}

| p c {}

;

c:

$expr { print "$expr\n" }

| RIGHT { $reduce = 0}

| LEFT { $reduce = 1}

;

expr:

’(’ $expr ’)’ { $expr }

| %name :M

expr.left %PREC lOr

’-’ expr.right %PREC lOr

{ $left -$right }

| NUM

;

Fig. 1. An Example of Context Dependent Ambiguity Resolution

The dollar and dot notation used in some right hand sides (rhs) like in
expr.left ’-’ expr.right and $expr is used to associate variable names with
the attributes of the symbols.

The conflict handler lOr defined in the header section is:

%conflict lOr {
if ($reduce) {$self->YYSetReduce(’-’, ’:M’)}
else {$self->YYSetShift(’-’)}

}

If $reduce is true we set the parsing action to reduce by the production labelled
:M, otherwise we choose the shift action.

Observe how PPCR allow us to dynamically change at will the meaning of
the same statement. That is certainly harder to do using alternative techniques,
either problem specific, like lexical Tie-Ins [7], or more general, like GLR [4].

4 Nested Parsing of Unexpended Input and Context

This section illustrates the technique through a problem that arises in the decla-
ration of enumerated and subrange types in the programming language Pascal.
The problem is taken from the Bison manual, (see section ‘Using GLR on Un-
ambiguous Grammars’) where it is used as a paradigmatic example of when to
switch to the GLR engine [7]. Here are some cases:

type subrange = lo .. hi;
type enum = (a, b, c);

The original language standard allows only numeric literals and constant
identifiers for the subrange bounds (lo and hi), but Extended Pascal (ISO/IEC

178 INForum 2010 Luis Garcia-Forte and Casiano Rodriguez-Leon

10206) [13] and many other Pascal implementations allow arbitrary expressions
there. This gives rise to declarations like the following:

type subrange = (a) .. b; type enum = (a);

The corresponding declarations look identical until the ‘..’ token. With nor-
mal LALR(1) one-token lookahead it is not possible to decide between the two
forms when the identifier ‘a’ is parsed. It is, however, desirable for a parser to
decide this, since in the latter case ‘a’ must become a new identifier to represent
the enumeration value, while in the former case ‘a’ must be evaluated with its
current meaning, which may be a constant or even a function call. The Bison
manual considers and discards several potential solutions to the problem to con-
clude that the best approach is to declare the parser to use the GLR algorithm.
To aggravate the conflict we have added the C comma operator inside expr2,
making room for the generation of declarations like:

type subrange = (a, b, c) .. (d, e); type enum = (a, b, c);

which makes the parsing even more difficult.
Here is our modification of the vastly simplified subgrammar of Pascal type

declarations found in [7].

%token ID = /([A-Za-z]\w*)/

%token NUM = /(\d+)/

%left ’,’

%left ’-’ ’+’

%left ’*’ ’/’

%%

type_decl : ’TYPE’ ID ’=’ type ’;’

;

type :

’(’ id_list ’)’

| expr ’..’ expr

;

id_list :

ID

| id_list ’,’ ID

;

expr :

’(’ expr ’)’

| expr ’+’ expr

| expr ’-’ expr

| expr ’*’ expr

| expr ’/’ expr

| expr ’,’ expr /* new */

| ID

| NUM

;

2 Perhaps the language designer wants to extend Pascal with lexicographic ranges

Solving Difficult LR Parsing Conflicts ... INForum 2010 – 179

When used as a normal LALR(1) grammar, eyapp correctly complains about
two reduce/reduce conflicts:

$ eyapp -v pascalenumeratedvsrange.eyp
2 reduce/reduce conflicts

The generated .output file tell us that both conflicts occur in state 11. It also
give us the contents of state 11:

State 11:
id_list -> ID . (Rule 4)
expr -> ID . (Rule 12)

’)’ [reduce using rule 12 (expr)]
’)’ reduce using rule 4 (id_list)
’*’ reduce using rule 12 (expr)
’+’ reduce using rule 12 (expr)
’,’ [reduce using rule 12 (expr)]
’,’ reduce using rule 4 (id_list)
’-’ reduce using rule 12 (expr)
’/’ reduce using rule 12 (expr)

From the inspection of state 11 we can conclude that the two reduce-reduce con-
flicts occur between productions id_list -> ID and expr -> ID in the presence
of tokens ‘)’ and ‘,’. To solve the conflict we label the two involved productions
and set the %PREC directives:

id_list :
...
%name ID:ENUM
ID %PREC rangeORenum
...

expr : ’(’ expr ’)’
...

| %name ID:RANGE
ID %PREC rangeORenum
...

When the conflict point is reached the conflict handler below calls the method
YYLookBothWays(a, b).

180 INForum 2010 Luis Garcia-Forte and Casiano Rodriguez-Leon

%conflict rangeORenum {
my $s = $self->YYLookBothWays(’TYPE’, ’;’);
if ($s =~ /^TYPE ID = \(ID (, ID)* \) ;$/x)

{ $self->YYSetReduce([’,’, ’)’], ’ID:ENUM’); }
else { $self->YYSetReduce([’,’, ’)’], ’ID:RANGE’); }

}

The substring from the right sentential form3 between ’TYPE’ and ’;’ is stored
in $s. If the string of tokens $s in Σ∗ conforms to the syntax of an enumerated
type

/^TYPE ID = \(ID (, ID)* \) ;$/

we set the parsing action to reduce by the production id list → ID for the two
conflictive tokens ’,’ and ’)’. Otherwise the input represents a range type.

In most cases, as occurs in this example, the nested parsing step required
to decide which action must be taken can be accomplished through a simple
regular pattern. Nested parsing is extraordinarily eased by the fact that Perl
5.10 standard regular patterns permit the description of context free languages.
Even more, modules like Regexp::Grammar [15] bring Perl 6 [11] regular patterns
to Perl 5, extending Perl 5 regular patterns beyond the capabilities of Packrat
parsing [14].

The call YYLookBothWays(a, b) returns the string that is the concatenation
of the transition tokens in the stack after token a followed by the tokens in the
unexpended input before token b. It does not alter the current parsing position.

To be more precise, suppose that at the time of the call the pair

(s0X1s1X2s2 · · ·Xmsm, aiai+1 · · · an$) (1)

is the configuration of the LR parser. Here Xj ∈ Σ ∪ V is a token or a syn-
tactic variable, ak ∈ Σ are tokens and si are the states of the LR automata.
Remember that the equation δ(sk,Xk+1) = sk+1 for each k is hold by any con-
figuration, δ being the transition function. This configuration corresponds to the
right sentential form

X1X2 · · ·Xm, aiai+1 · · · an$ (2)

which must be in the rightmost derivation from the grammar start symbol being
built. The call YYLookBothWays(a, b) returns

Xj · · ·Xmaiai+1 · · · as$ (3)

where j is the shallowest index in the stack such that Xj = a and s is the nearest
index in the unexpended input such that as = b.
3 A string α ∈ (Σ ∪V)∗ is said a right sentential form for a grammar G = (Σ, V, P, S)

if, and only if, exists a rightmost derivation from the start symbol S to α

Solving Difficult LR Parsing Conflicts ... INForum 2010 – 181

5 Conflicts Requiring Unlimited Look-ahead

The following unambiguous grammar can not be parsed by any LL(k) nor LR(k),
whatever the value of k, nor for packrat parsing algorithms [14].

%%
S: x S x | x ;
%%

Though it is straighforward to find equivalent LL(1) and LR(1) grammars (the
language is even regular: /x(xx)*/), both GLR [4] and Backtrack LR parsers [2]
for this grammar will suffer of a potentially exponential complexity in the input
size. The unlimited number of look-aheads required to decide if the current x is
in the middle of the sentence, leads to an increase in the number of branches to
explore. The challenge is to make the parser work without changing the grammar.
Figure 2 shows a solution using PPCR:

%conflict isInTheMiddle {

my $nxs = $self->YYSymbolStack(0,-1, ’x’); # number of visited ’x’s

my $nxr = (unexpendedInput() =~ tr/x//); # number of remaining ’x’s

if ($nxs == $nxr+1) { $self->YYSetReduce(’x’, ’:MIDx’) }

else { $self->YYSetShift(’x’) }

}

%%

S:

x %PREC isInTheMiddle S x

| %name :MIDx

x %PREC isInTheMiddle ;

Fig. 2. Parsing a Non LL(k) nor LR(k) nor packrat grammar

A call $self->YYSymbolStack(a, b, [filter]) returns the list of symbols as-
sociated with the parser stack states between a and b. A negative value of a
or b refers to the position from the end of the list. Thus, a call like $self->
YYSymbolStack(0,-1) returns the whole list of symbols in the parsing stack.
The optional filter argument can be a string, a closure4 or a regular pattern.
4 A closure is a first-class function with free variables that are bound in the lexical

environment

182 INForum 2010 Luis Garcia-Forte and Casiano Rodriguez-Leon

When it is a pattern the sublist for which the pattern matches is selected. If
it is a closure, it returns the sublist of symbols for which the evaluation of
the code is true. If it is a string, as in $self->YYSymbolStack(0,-1, ’x’),
the sublist of symbols equal to the string is selected. Since the assignment
$nxs = $self->YYSymbolStack(0,-1, ’x’) is evaluated in a scalar context,
the length of the resulting sublist is stored in the variable $nxs. The copy of
the unexpended input - returned by the call to unexpendedInput() - is then
scanned for ’x’s and its number is stored in $nxr. When $nxs equals $nxr +1 it
is time to reduce by S → x. It may seem that this solution cannot be generalized
when ’x’ is an arbitrary grammar. Remember however that Perl 5.10 regular
patterns can parse any context free grammar [15].

We can now compile the former program nopackratSolved.eyp to generate
a script nopackratSolved.pl containing the parser. When executed with input
xxx it outputs a description of the abstract syntax tree:

$ eyapp -TC -o nopackratSolved.pl nopackratSolved.eyp
$./nopackratSolved.pl -t -i -c ’xxx’
S(TERMINAL[x],S(TERMINAL[x]),TERMINAL[x])

Option -T instructs eyapp to automatically insert semantic actions to pro-
duce a data structure representing the abstract syntax tree. Option -C tells the
compiler to produce an executable (by default it produces a class containing the
parser). Eyapp provides default lexical analyzer, error handler and main sub-
routines for the generated program. The default main subroutine admits several
command line options, like: -t (print the AST), -i (print the semantic values
of the tokens) and -c arg (take the input from arg).

6 Conclusions

The strategy presented in this paper extends the classic yacc precedence mecha-
nisms with new dynamic conflict resolution mechanisms. These new mechanisms
provide ways to resolve conflicts that can not be solved using static precedences.
They also provides finer control over the conflict resolution process than existing
alternatives, like GLR and backtracking LR. There are no limitations to PPCR
parsing, since the conflict handler is implemented in a universal language and it
then can resort to any kind of nested parsing algorithm. The conflict resolution
mechanisms presented here can be introduced in any LR parsing tools, since they
are independent of the implementation language and the language used for the
expression of the semantic actions. One disadvantage of PPCR is that it requires
some knowledge of LR parsing. Though the solution may be more efficient, it
certainly involves more programmer work than branching methods like GLR or
backtracking LR.

Solving Difficult LR Parsing Conflicts ... INForum 2010 – 183

Acknowledgments

This work has been supported by the ec (FEDER) and the Spanish Ministry
of Science and Innovation inside the ’Plan Nacional de i+d+i’ with the contract
number tin2008-06491-c04-02. It has also been supported by the Canary Gov-
ernment project number pi2007/015.

References

1. Steven C. Johnson. Yacc: Yet another compiler compiler. In UNIX Programmer’s
Manual, volume 2, pages 353–387. Holt, Reinhart, and Winston, 1979. AT&T Bell
Laboratories Technical Report July 31, 1978.

2. Gary H. Merrill. Parsing Non-LK(k) Grammars with Yacc. Software, Practice
and Experience 23(8): 829-850 (1993).

3. Kernighan & Ritchie. The C Programming Language. Prentice Hall.
4. Tomita, M. (1990). The Generalized LR Parser/Compiler - Version 8.4. In Pro-

ceedings of International Conference on Computational Linguistics (COLING’90),
pages 59–63, Helsinki, Finland.

5. Mcpeak, Scott. September 2004. Elkhound: A Fast, Practical GLR Parser Gener-
ator. http://scottmcpeak.com/elkhound/

6. Adrian D. Thurston and James R. Cordy. A Backtracking LR Algorithm for Pars-
ing Ambiguous Context-Dependent Languages. 2006 Conference of the Centre for
Advanced Studies on Collaborative Research (CASCON 2006), pp. 39-53, Toronto,
October 2006.

7. Charles Donnelly and Richard M. Stallman. Bison: the yacc-compatible parser
generator. Technical report, Free Software Foundation, 675 Mass Ave, Cambridge,
MA 02139, Tel: (617) 876-3296, 1988.

8. Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley, Reading, Massachussetts, 1990.

9. Rodŕıguez-León Casiano. Parse::Eyapp Manuals. 2007.
CPAN: http://search.cpan.org/dist/Parse-Eyapp/
google-code: http://code.google.com/p/parse-eyapp/

10. Wall, L., Christiansen, T., Schwartz, R. (1996). Programming Perl. O’Reilly & As-
sociates.

11. Allison Randal, Dan Sugalski, Leopold Totsch. Perl 6 and Parrot Essentials.
O’Reilly Media. June 2004.

12. Hudak, P. Modular Domain Specific Languages and Tools. ICSR ’98: Proceedings
of the 5th International Conference on Software Reuse. IEEE Computer Society.
Pages 134-142, June 1998.

13. ISO. Extended Pascal ISO 10206:1990.
http://www.standardpascal.org/iso10206.txt.

14. Bryan Ford. Functional Pearl: Packrat Parsing: Simple, Powerful, Lazy, Linear
Time.
http://pdos.csail.mit.edu/ baford/packrat/icfp02/packrat-icfp02.pdf

(2002).
15. Damian Conway. Regexp::Grammars. Add grammatical parsing features to Perl

5.10 regexes. http://search.cpan.org/dist/Regexp-Grammars/.

184 INForum 2010 Luis Garcia-Forte and Casiano Rodriguez-Leon

Using ontology in the development of domain-specific
languages

Ines Čeh, Matej Črepinšek, Tomaž Kosar, Marjan Mernik

Faculty of electrical engineering and computer science, Smetanova 17,

2000 Maribor, Slovenia
{Ines.Ceh, Matej.Crepinsek, Tomaz.Kosar, Marjan.Mernik}@uni-mb.si

Abstract. Domain-specific languages (DSL) are programming languages
devoted to solve problems in a specific domain. Development of a DSL
includes the following phases: decision, analysis, design, implementation and
deployment. The least known and examined are analysis and design. Although
various formal methodologies exist, the domain analysis is still done
informally, most of the time. A common reason why formal methodologies are
not used as often as they could be is that they are very demanding. Instead of
developing a new, less complex methodology, we propose that domain analysis
could be replaced with a previously existing analysis in some other form. A
particularly suitable form for such is ontology. This paper focuses on ontology
based domain analysis and how it can be incorporated into the DSL design
phase. We present preliminary results of the Ontology2DSL framework, which
can be used to help transform ontology to DSL grammar.

Keywords: domain-specific language, domain analysis, ontology

1 Introduction

Programming languages are used for human-computer interaction. Depending on the
purpose of their use, programming language can be divided into general-purpose
languages (GPL) and DSL [1]. GPL, such as Java, C and C#, are designed to solve
problems from any problem area. In contrast to GPLs, DSLs, such as Latex, SQL and
BNF, are tailored to a specific application domain.

When developing new software a decision must be made as to which type of
programming language will be used; GPL or DSL. The issue is further complicated if
an appropriate DSL does not exist. Then, the decision is whether to start to develop
with a GPL language or to start with the development of the required DSL and then
develop the software system with it. Reasons for the use of DSL are as follows: easier
programming, re-use of semantics, the easier verification and programmability for the
end-users. However, DSL also have their disadvantages, for example high
development costs. The key is to answer the question: “When to develop a DSL?”
The simplest answer to this question is: a DSL should be developed whenever it is
necessary to solve the problem, which belongs to a problem family and we expect that

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 185–196

in the future more problems from the same problem family will appear. A more
detailed response can be found in [1].

DSL development consists of the following phases: decision, analysis, design,
implementation and deployment [1]. DSL development phases are not equally
researched. The least known and examined phases are the analysis and design.

The knowledge on the problem domain and its definition is achieved at the domain
analysis phase. Various methodologies for domain analysis have been developed.
Examples of such methodologies include: DSSA (Domain Specific Software
Architectures) [2], FODA (Feature-Oriented Domain Analysis) [3], and ODM
(Organization Domain Modeling) [4]. Often, formal methodologies are not used due
to complexity and the domain analysis is done informally. This has the consequence
of complicating future DSL development. Even if the domain analysis is done with a
formal methodology, there aren’t any clear guidelines how the output from domain
analysis can be used in a language design process. The outputs of domain analysis
consist of domain-specific terminology, concepts, commonalities and variabilities.
Variabilities would have been entries in the design of DSL, while terminology and
concepts should reflect in the DSL constructs, and commonalities could be
incorporated into the executing DSL environment. Although it is known where the
outputs of the domain analysis should be used, there is a need for clear instructions on
how to make good use of the information, which are retrieved during the analysis
phase, in the design stage of the DSL.

To partially solve aforementioned problems, we propose that domain analysis
(hereinafter referred to as classic domain analysis (CDA)) can be performed with the
use of existing techniques from other fields of computer science. A particularly
suitable is ontology [5]. Ontology provides a vocabulary of a specialized domain.
This vocabulary represents the domain objects, concepts and other entities. Some type
of domain knowledge can be obtained from the relationships of the entities, presented
by the vocabulary. Ontologies in the CDA have already been used in [6]. Whereas
Tairas et al. apply ontology in the early stages of domain analysis to identify domain
concepts; we propose that ontology replaces the CDA. They [6] also investigated how
ontologies contribute to the design of the language. Ontologies in connection with
DSL are also used by other authors. Guizzardi et al. [7] propose the usage of an upper
ontology (top-level ontology) [8] to design and evaluate domain concepts. Walter et
al. [9] apply ontologies to describe DSL. Bräuer and Lochmann [10] propose an upper
ontology to describe interoperability among DSLs.

The proposed solution of the first problem, the use of ontologies, has a significant
effect on the second problem related to CDA. It translates the problem »How to make
good use of the information, retrieved during the analysis phase, in the design stage of
the DSL?« into the problem »How to make good use of the information contained in
an ontology in the design stage of DSL?« This paper focuses on ontology based
domain analysis (OBDA) and how it can be incorporated into the DSL design phase.
We present preliminary results of the Ontology2DSL framework, which can be used
to help transform ontology to DSL grammar.

The organization of this paper is as follows. Section 2 is intended to represent the
similarities and variabilities between the CDA and OBDA. Section 3 presents the
development of grammar from ontology as well as the framework Ontology2DSL.
The conclusion and future work are summarized in Section 4.

186 INForum 2010 Ines C̆eh, Matej C̆repins̆ek, Tomaz̆ Kosar, Marjan Mernik

2 Domain analysis

2.1 Classic Domain Analysis (CDA)

The goal of CDA is to select and define the domain of focus and collect appropriate
domain information and integrate them into a coherent domain model; the result of
CDA [11]. A representation of the domain system properties and their dependencies is
the domain model. The properties are either common or variable which is represented
in the model along with the dependencies between the variable ones [11]. Beside the
development of the domain model, CDA also includes domain planning,
identification and scoping [11].

CDA can incorporate different methodologies. Methodologies differ based on the
degree of formality, information extraction techniques or their products. We have
listed the most known methodologies in the introduction. FODA has been proven as
the most commonly used formal methodology in DSL development.

FODA is a CDA method that was developed by the Software Engineering Institute.
It is known for its models and feature modeling. In FODA, feature is an end-user
characteristic of a system. A FODA process consists of two phases: context analysis
and domain modeling. The goal of context analysis is to determine the boundaries
(scope) of the analyzed domain. The purpose of domain modeling is to develop a
domain model. FODA domain modeling phase is comprised of the following steps:
information analysis, features analysis and operational analysis. The main goal of
information analysis is to capture domain knowledge in the form of domain entities
and links between them. The result of information analysis is the information model.
The result of feature analysis is feature model, which is presented below. Operational
analysis results in the operational model. It represents how the application works and
covers the links between objects in the informational model and the features in the
feature model. An important product from the phase of domain modeling is the
domain dictionary. It defines the terminology used in the domain and it also includes
textual definitions of domain concepts and features.

A feature model consists of:
• Feature diagram (FD) represents a hierarchical decomposition of features

and their kinds (mandatory, alternative, and optional feature). Mandatory
features are features that each system must have in the domain. Alternative
features are features of which a system can possess only one at a time.
Optional features are features that system may or may not have. A system
can also have more than one feature at a time. These features are called or-
features. Features are also classified as atomic or composite. Whereas atomic
features cannot be further subdivided in other features, composite features
are defined in terms of other features. The root node of the diagram
represents a concept and the remaining nodes represent features. An example
of a feature diagram is shown in Fig. 1.

• Feature definitions describe all features (semantics).
• Composition rules for features describe which combinations are valid or

invalid.

Using ontology in the development of ... INForum 2010 – 187

• Rationale for features represents reasons for choosing a feature.

Fig. 1. Feature Diagram for a concept of a pizza.

Fig. 1 represents a simple FD of a pizza. The root node of the diagram, Pizza,
represents a concept; the remaining nodes represent its features. Whereas mandatory
features are indicated by a filled circle, optional features are indicated by an empty
circle. Alternative and or-features are both indicated by a triangle, the former with an
empty one and the latter with a filled triangle. The names of atomic features are
written in lower-case while the composite features are written with their first letter in
upper-case. Each pizza is composed of the pizza-base and at least one topping. The
pizza-base is either “DeepPan” or “ThinAndCrispy”, never both in the same pizza.
The toppings are one or more of the following: “Cheese”, “Meat” or “Vegetable”.
One pizza can have multiple toppings as well as multiple toppings of the same type
(cheese topping of both “mozzarella” and “parmezan”). The pizza can be hot, medium
or mild according to its spiciness (only one at the time).

Feature models are not only represented in the visual form of FDs but also in the
textual form. Van Deursen and Klint [12] have proposed the feature description
language (FDL) for the textual representation. The FDL definition constitutes of the
feature definitions followed by a colon (“:”) and the features expression. Possible
feature expression forms are presented in [12]. FDL exceeds the graphic feature
diagram in the terms of expressive power and is appropriate for automatic processing.
FD for pizza in FDL is listed below:
Pizza: all (PizzaBase, PizzaTopping,
SpicinessValuePartition)
PizzaBase: one-of (deepPan, thinAndCrispy)
PizzaTopping: more-of (Cheese, Meat, Vegetable)
Cheese: more-of (mozzarella, parmezan)
Meat: all (salami?)
Vegetable: more-of (tomato, Pepper, onion, olive)
Pepper: more-of (green, jalapeno, red)
SpicinessValuePartition: one-of (hot, medium, mild)

188 INForum 2010 Ines C̆eh, Matej C̆repins̆ek, Tomaz̆ Kosar, Marjan Mernik

An important role of the FDs is to describe the variability of the programming
system. The number of all possible configurations per system can be calculated with
the use of variability rules, presented in [12].

Constraints, which are intended for variability reduction, are an optional
component of the FDs. The constraints are enforced with the satisfaction rules [12].
The constraints are of two types [12]: diagram constraints and user constraints. The
former include the “A1 requires A2” (if feature A1 is presented, then feature A2
should also be presented) and “A1 excludes A2” (if feature A1 is presented, then
feature A2 should not be presented) constraints, while the latter include the “include
A” (feature A should be present) and “exclude A” (feature A should not be present)
constraints.

2.2 Ontology based Domain Analysis (OBDA)

There are many definitions of ontology in the literature and one of the most
commonly used definitions is that of Gruber. He defined ontology as a "formal,
explicit specification of shared conceptualization" [5]. Formal refers to the fact that it
is machine readable. The specification is explicit because it summarizes the concepts,
properties and relations between concepts. Furthermore, shared conceptualization
contains knowledge that a group of experts has agreed upon. Conceptualization refers
to the fact that it incorporates the target domain completely.

Ontologies are commonly encoded using ontology languages. Ontology languages
can be divided in two major groups: traditional (i.e. Flogic, Ontolingua) and web-
based languages (i.e. RDF(S), OWL, OWL 2) [13]. Recently, a new group of
languages, rule-based (i.e. RuleML, SWRL), has emerged. These languages differ in
their purpose and in their expressive power. The main requirements for an ontology
language are: well defined syntax, well defined semantics, efficient reasoning
support, sufficient expressive power and convenience of expression [14].

OWL is the most commonly used ontology language. It has three sublanguages;
OWL Full, OWL DL and OWL Lite [14], [15]. These sublanguages have different
levels of expressiveness. Whereas OWL Full is the most expressive, OWL Lite is the
least expressive. Only OWL-DL allows automated reasoning.

The three components of OWL are: classes, properties, and individuals. Classes are
interpreted as sets that contain individuals. Classes may be organized into a hierarchy.
This means that a class can subsume other classes or it can be subsumed by other
classes. The consequence of the subsumption relation is inheritance. Inheritance refers
to the inheritance of properties which the children inherit from their parents. Whereas
some ontologies only allow single inheritance, most ontologies, like OWL, allow
multiple inheritance. OWL defines two special classes called „Thing“ and „Nothing“.
Class Thing is the most general class and it is the superclass of every class that is
included in ontology. Class Nothing is the empty and it is subclass of every included
class. The class hierarchy for the truncated version of the previously existing Pizza
ontology (PO) is shown in Fig. 2. The PO is used as an example in a practical guide to
building OWL ontologies using Protégé [15]. PO has been choosen as an example
because it includes the majority of the OWL features. The PO, written in OWL-DL,
describes various pizzas based on their toppings.

Using ontology in the development of ... INForum 2010 – 189

Fig. 2. Class hierarchy of Pizza Ontology.

Fig. 2 shows the class hierarchy of the PO used in this paper. The classes are
represented with ellipses. All the classes are subclasses of the Thing class.

The second component, the properties, is a binary relation. OWL defines two main
kinds of properties; object properties (i.e. hasTopping) and datatype properties (i.e.
hasCaloricContentValue). Whereas object properties relate objects to other objects,
datatype properties relate an object to datatype values. OWL supports XML schema
primitive datatypes. The third component, the individuals, is the basic component of
ontology. They represent objects in the domain of discourse. They can be concrete
individuals (i.e. animals, airplanes, and people) as well as abstract individuals (i.e.
words and numbers).

The relationships between classes are the means of the class definition in OWL.
Such classes can be defined with the use of restrictions. Three main categories of
restrictions that exist in OWL: quantifier restrictions (existential and universal),
cardinality restrictions and „hasValue“ restrictions [15].

190 INForum 2010 Ines C̆eh, Matej C̆repins̆ek, Tomaz̆ Kosar, Marjan Mernik

2.2 Comparison of CDA and OBDA

Both analysis incorporate a concept vocabulary, enable the display of property and
class hierarchies, and provide a constraint mechanism. The CDA uses this mechanism
for variability reduction while the OBDA uses it for the description of class
properties. Both types of analysis describe semantics and are machine readable. The
CDA differs from OBDA in its capability to record the reasons for the use of
particular property (rationale) and the calculation of all possibilities. OBDA, on the
other hand, provides the existence of objects, reasoning and querying. Numerous tools
are available for it and ontologies are created across diverse research areas and are
therefore available for use. The comparison shows that OBDA is capable of most of
what the CDA is capable. The advantages of ontology are reasoning and querying,
because they enable the validation of ontology. Valid ontology significantly reduces
or prevents errors in DSL development. Semantics, that are inherently defined with
the ontology, is also of great use when developing language semantics. Existing tools
provide easy access to the ontology and enable efficient information extraction
procedures. It is also a very important fact that ontologies are present in different
research areas. That provides the method for elimination of domain analysis phase in
DSL development and might significantly reduce the time needed for the language
development.

Table 1. Comparison of CDA and OBDA

Property FD + FDL OWL ontology
Concept vocabulary
Hierarchy

Features names
Feature diagram

Name Class or property
Class hierarchy

Constraints FDL constraints Restrictions
Rationale FD rationale properties No
Objects
Possible combinations
Reasoning support
Machine readable
Tools
Semantics
Domain analysis in use
Query support

No
Variability rules (FDL)
No
Yes
In its infancy
Yes
No
No

Individuals
No
Reasoners (i.e. FaCT++)
Yes
Yes (i.e. Protege)
Sets of relations
Existing ontologies
Yes (DL Query)

Using ontology in the development of ... INForum 2010 – 191

The comparison leads to the conclusion that the CDA can indeed be replaced with
OBDA, primarily because the ODBA provides everything needed for DSL
development and adds new capabilities.

3 Language design

The grammar design is a feature of the Ontology2DSL framework. The framework
enables the transformation of the OWL document to an appropriate internal data
structure. The data structure is then transformed with the use of transformation
patters. The resulting output is in the form of grammar and one or more programs. A
DSL engineer that uses various tools at his/her disposal reviews them. If irregularities
are found, they are resolved in accordance to their type in either the ontology or the
transformational patterns. With regard to the type of the fix applied, the tool then uses
new patterns on the old ontology, old patterns on the new ontology or new patterns on
the new ontology. The process is repeated until the engineer finds no more
irregularities, which finally results in the language grammar definition and one or
more programs. The framework, besides the grammar development, can be supported
with the development of DSL tools. They can be developed by the DSL engineer with
the language development tools such as LISA [16]. Ontology2DSL framework is
presented as a workflow diagram on Fig. 3.

Fig. 3. Ontology2DSL framework.

3.1 Designing DSL grammar

Before starting with an explanation of basic steps of Ontology to DLS transformation
(O2DSL), target ontology needs to be well understood. Language designer must
understand what ontology describes and why it was designed. Moreover, language
designer needs to know what are DSL requirements and what is the purpose of DSL.
In most cases the DSL requirements and the ontology, do not overlap in all concepts.

In this paper, methodology O2DSL is demonstrated on a PO example. Single
ontology, as well as PO example, can be used to develop many different DSLs. The
purpose of the one presented here is a DSL to describe pizzas that can be queried by
pizzas characteristics. Concepts of the simple pizza query language are not described

192 INForum 2010 Ines C̆eh, Matej C̆repins̆ek, Tomaz̆ Kosar, Marjan Mernik

in the given PO, therefore are omitted from this example transformation. The DSL is
named as Pizza Language (PL) and a result of O2DSL is the obtained language
grammar [17]. As a side effect of transformation, domain data that is described in
DSL programs is extracted.

Basic concept transformation. Ontology classes are interpreted as abstract groups
and represent production rules in grammar non-terminals. In transformation classes,
names have been used for grammar non-terminal names. Sequences and alternatives
that describe production rules are obtained through class dependences and class
hierarchy. For example, class hierarchy for PizzaTopping (Fig. 2) describes the
group of toppings CheeseTopping, MeatTopping and VegetableTopping.
Subgroup CheeseTopping includes subgroup of classes ParmesanTopping and
MozzarellaTopping. In O2DSL transformation class hierarchy is transformed
into production alternatives. Grammar example:
PizzaTopping ::= CheeseTopping | MeatTopping |
 VegetableTopping
CheeseTopping ::= ParmesanTopping | MozzarellaTopping

Generalization extraction. This pattern extracts abstract group from ontology and
presents it as a configurable external element (program or constant attribute). In most
cases this pattern is used for leaf classes in class hierarchy. For example in
PizzaTopping (Fig. 2) leafs can be in general named Topping, that represents
terminal in DSL grammar. Information of ParmesanTopping is then moved in
DSL program as Topping instance (parmesan). For ontology class
CheeseTopping, the following production is derived:
CheeseTopping ::= Topping and Topping ::= #string
Program fragment examples: ‘parmesan’ and ‘mozzarella’.

Often, desired feature of DSL is its scalability. Therefore, the ability to define more
instances of class CheeseToping is added to our DSL. The right side of
CheeseTopping production is defined as a set of toppings:
CheeseTopping ::= {Topping}

Multi class generalization. It is common in the ontology that more than one class
represents a similar domain concept, usually the only difference between these classes
is in their derivation hierarchy. For example, in PO classes ParmesanTopping,
SalamiTopping, OnionTopping, etc. they describe the same concept of
topping, but they derive from different classes. In DSL grammar, this can be
described with the same non-terminal. Grammar example:
CheeseTopping ::= Topping
MeatTopping ::= Topping
VegetableTopping ::= Topping
Topping ::= #string
Program fragment examples: ‘parmesan’, ‘salami’ and ‘onion’.

Because of generalization we can get ambiguous grammar (one topping belongs to
different abstract groups). To solve that problem, an enriching syntax can be used.

Using ontology in the development of ... INForum 2010 – 193

Enriching the syntax. One of the goals of DSL is to have a clear and easy to
understand syntax with intuitive semantic. To achieve that, different patterns for
enumerations, concepts that are seperated with brackets, adding reserved words, etc.
have been used in O2DSL. For example in the PizzaTopping class reserved word
topping is used. After all patterns are applyed, the following grammar is obtained:
PizzaTopping ::= topping
(CheeseTopping|MeatTopping|VegetableTopping)
CheeseTopping ::= cheese ToppingList
MeatTopping ::= meat ToppingList
VegetableTopping ::= vegetable ToppingList
ToppingList ::= '(' Topping {',' Topping} ')'
Topping ::= #string
Program fragment examples:
topping cheese (‘parmesan’ , ‘mozzarella’)
topping meat (‘salami’)

In some cases, multi class generalization has an additional level in class hierarchy
(additional abstract group between two classes). For example,
VegetableTopping has an additional subclass PepperTopping that has
subclasses RedPepperTopping, GreenPepperTopping and
JalapenoPepperTopping (Fig. 2). One way to express an additional abstract
group is to add a new alternative on VegetableTopping level with associated
productions, other is by skipping this level and expect additional information in
derivation of non-terminal Topping. Program fragment example:
topping vegetable (‘red pepper’, ‘green pepper’,
‘jalapeno pepper’)

Object properties and restriction transformations. Additional information about
class relations can be obtained from ontology’s object and class properties. For
example RedPepperTopping has relations with SpicinessValue-
Partition that has subclasses: Hot, Mild and Medium. In PO example, the
relation is described by property hasSpiciness Hot. Class PepperTopping
owns the property, therefore non-terminal Topping gets additional information.
This property is not set for all PizzaTopping derivations and therefore it is
optional. Following production is obtained:
Topping ::= #string [is SpicinessValuePartition]
Program fragment examples:
topping vegetable (‘red pepper’ is hot, ‘green pepper’ is
mild, ‘jalapeno pepper’ is medium, ‘onion’)

All class restrictions can be transformed in DSL by the similar transformation. In
case that some restrictions are in addition defined by logical expression, support for
logical expressions can also be added as part of DSL.

194 INForum 2010 Ines C̆eh, Matej C̆repins̆ek, Tomaz̆ Kosar, Marjan Mernik

Obtained grammar. The appropriate order (sequence) of domain main concepts is
defined from class hierarchy and class restrictions. For example, in case of PL,
different instances of PizzaTopping must be defined before the definition of
NamedPizza. Part of final PL grammar:
PL ::= {PizzaTopping} {Pizza} {Individual} {Query}
PizzaTopping ::= topping
(CheeseTopping|MeatTopping|VegetableTopping)
CheeseTopping ::= cheese ToppingList
MeatTopping ::= meat ToppingList
VegetableTopping ::= vegetable ToppingList
ToppingList ::= '(' Topping {',' Topping} ')'
Topping ::= #string [is SpicinessValuePartition]
SpicinessValuePartition ::= mild | hot | medium
Pizza ::= pizza (Interesting | Vegetarian | NonVegetarian
 | HighCalorie | LowCalorie | Named | Cheesy | Spicy)
…

Obtained DSL syntax is easy to understand and gives all flexibility and usability of
DSLs. Obtained grammar and program fragments are used as a base for language
development tool frameworks.

4 Conclusion and future work

In this paper, we have focused on the presentation of a new design methodology that
enables the development of the language grammar, based on the OBDA. The
limitations of the CDA have been examined and the replacement in the form of
OBDA has been proposed. Both analysis have been presented and compared for
similarities and differences. Grammar development, based on the OBDA, and the
Ontology2DSL has also been briefly presented.

The results of the comparison between both analysis show that the OBDA is
comparable to the CDA and also provides some additional information that can be
used to specify language behavior. As such, it is also suitable as an alternative to
CDA for grammar development. The framework Ontology2DSL is still under
development. Currently, the framework supports the import of OWL ontology to an
internal data structure and the transformation rules have been defined. The continuing
development of the framework is a part of our future work. More specifically, we will
focus on validation of the developed grammar and the use of previously unused
information (i.e. for semantics development) that has been acquired with OBDA. The
results of our research work will also be the transformation of the developed DSL to a
form that is compatible with the compiler generators, such as LISA [16]. One of the
future activities, to complete the methodology O2DSL, is evaluation of DSLs. As
shown in the study [18], this activity is often underestimated by language developers.
There is a plan to support this activity with tool based on questionnaire similar to [19]
that will further improve the language.

Using ontology in the development of ... INForum 2010 – 195

References

1. Mernik, M., Heering, J., Sloane, A. M.: When and how to develop domain-specific
languages. ACM Computing Surveys (CSUR) 37, 316--344 (2005)

2. Taylor, R. N., Tracz, W., Coglianese, L.: Software development using domain-specific
software architectures. ACM SIGSOFT Software Engineering Notes 20, 27--38 (1995)

3. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-Oriented Domain Analysis
(FODA). Technical report, (1990)

4. Simos, M., Anthony, J.: Weaving the Model Web: A Multi-Modeling Approach to Concepts
and Features in Domain Engineering. In: Proceedings of the 5th International Conference on
Software Reuse, pp. 94--102. IEEE Computer Society, (1998)

5. Gruber, T.R.: A translation approach to portable ontology specification. Knowledge
Acquisition 5, 199--220 (0993)

6. Tairas, R., Mernik, M., Gray, J.: Using Ontologies in the Domain Analysis of Domain-
Specific Languages. In: Models in Software Engineering. LNCS, vol. 5421, pp. 332--342.
Springer, (2009)

7. Ontology-Based Evaluation and design of domain-specific visual modeling languages,
http://www.loa-cnr.it/Guizzardi/ISD2005.pdf

8. Guarino, N.: Semantic Matching: Formal ontological distinctions for information
organization, extraction, and integration. In: Information Extraction A Multidisciplinary
Approach to an Emerging Information Technology. LNCS, vol. 1299, pp. 139--170.
Springer, (1997)

9. Walter, T., Parreiras, F. S., Staab, S.: OntoDSL: An Ontology-Based Framework for
Domain-Specific Languages. In: Model Driven Engineering Languages and Systems.
LNCS, vol. 5795, pp. 408--422. Springer, (2009)

10. Bräuer, M., Lochmann, H.: An Ontology for Software Models and Its Practical Implications
for Semantic Web Reasoning. In: The Semantic Web: Research and Applications. LNCS,
vol. 5021, pp. 34--48. Springer, (2008)

11. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools and Applications.
ACM Press/Addison-Wesley Publishing Co., (2000)

12. Van Deursen, A., Klint, P.: Domain-specific Language Design Requires Feature
Descriptions. Journal of Computing and Information Technology 10, 1--17 (2002)

13. Corcho, Ó., Gómez-Pérez, A.: A Roadmap to Ontology Specification Languages. In:
Knowledge Engineering and Knowledge Management Methods, Models, and Tools. LNCS,
vol. 1937, pp. 80--96. Springer, (2000)

14. Antoniou, G., van Harmelen, F.: Handbook on Ontologies. Springer, Heidelberg (2009)
15. A Practical Guide to Building OWL Ontologies Using Protégé 4 and CO-ODE Tools,

http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/resources/ProtegeOWLTutorialP
4_v1_2.pdf

16. Mernik, M., Lenič, M., Avdičauševič, E., Žumer, V.: LISA: An Interactive Environment for
Programming Language Development. In: Horspool, N. (ed.) Compiler Construction.
LNCS, vol. 2304, pp. 1-4. Springer, (2002)

17. Aho, A. V., Lam, M. S., Sethi, R., Ullman, J. D.: Compilers: Principles, Techniques, and
Tools. Addison Wesley, (2007)

18. Gabriel, P., Goulão, M., Amaral, V.: Do Software Languages Engineers Evaluate their
Languages? In: Proceedings of the XIII Congreso Iberoamericano en "Software
Engineering" (CIbSE'2010), pp. 149--162. CIbSE2010 (Ecuador), (2010)

19. Haugen, O., Mohagheghi, P.: A Multi-dimensional Framework for Characterizing Domain
Specific Languages. In: Proceedings of the 7th OOPSLA Workshop on Domain-Specific
Modeling (DSM’07), Montréal, Canada, (2007)

196 INForum 2010 Ines C̆eh, Matej C̆repins̆ek, Tomaz̆ Kosar, Marjan Mernik

AGile, a structured editor, analyzer, metric evaluator,
and transformer for Attribute Grammars

André Rocha, André Santos, Daniel Rocha, Hélder Silva, Jorge Mendes, José Freitas,
Márcio Coelho, Miguel Regedor2, Daniela da Cruz, and Pedro Rangel Henriques1

1 University of Minho - Department of Computer Science,
Campus de Gualtar, 4715-057, Braga, Portugal
{danieladacruz,prh}@di.uminho.pt

2 University of Minho - Department of Computer Science,
Master Course on Language and Grammar Engineering (1.st year)

Abstract. As edit, analyze, measure or transform attribute grammars by hand
is an exhaustive task, it would be great if it could be automatized, specially for
those who work in Language Engineering. However, currently there are no editors
oriented to grammar development that cover all our needs.
In this paper we describe the architecture and the development stages of AG-
ile, a structured editor, analyzer, metric calculator and transformer for attribute
grammars. It is intended, with this tool, to fill the existing gap.
An AnTLR based attribute grammar syntax was used to define the input for this
system. As soon as the user types the grammar, the input is parsed and kept in an
intermediate structure in memory which holds the important information about
the input grammar. This intermediate structure can be used to calculate all the
metrics or to transform the input grammar.
This system can be a valorous tool for those who need to improve the perfor-
mance or functionalities of their language processor, speeding up the difficult
task of defining and managing a language. Features like highlighting, automatic
indentation, on-the-fly error detection, etc., also adds efficiency.

1 Introduction

Editing an Attribute Grammar is a long and complex hard task. So it is important to pro-
vide basic support to make the editing easier. However, even more important is to assist
the language engineering in designing and developing a language with quality. This
requires that the grammar development environment (GDE) incorporates knowledge
from grammar engineering, like analysis, visualization, metric evaluation, and transfor-
mation.
This article describes AGile, a text editor built to assist in the grammar writing process,
comprising four main features as follows: Syntax and lexical awareness: syntax high-
lighting, automatic indentation, lexical integrity checking, syntactic integrity check-
ing; Metrics evaluation for quality assessment (derivation Rules analysis: both size
and structural parameters should be measured and metrics evaluated; attribute analysis:
evaluate attribute-related metrics and other tasks — generate dependence graph, ...);

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 197–200

Derivation Rules transformation: transformations upon types of rules, namely elimi-
nating unitary rules, eliminate left/right recursion, ...; Visualization: dependence graphs,
for both the syntactic and the semantics components, will be built and displayed.
AGile GDE is a project under development in the context of a master course on Lan-
guage Engineering. The motivation for this work is the application of all the theoretical
concepts on grammar engineering (quality assessment and metrics) and on software
analysis and transformation (analyzers, internal representations, transformers and visu-
alizers).
AGile parses the input grammar to check its syntactic and semantics compliance with
the meta-language defined (in our case, we have adopted AnTLR [1] meta-language
syntax); if errors are detected during this phase, descriptive messages will be generated.
Other important AGile components are the metrics evaluator, the grammar transfor-
mation and the visualizer. To support all these operations, the system generates, dur-
ing parsing, an attributed abstract syntax tree (AST) and creates an Identifier Table
(IdTab)). The operations referred above will be executed on this intermediate represen-
tation.
The paper has, after this, 5 sections. Section 2 describes the syntax-directed editor.
Section 3 discusses the metrics evaluated by AGile. Section 4 introduces the rule trans-
formations implemented by the GDE proposed. Section 5 very briefly present the visu-
alization provided at moment. As usual, Section 6 closes the paper.

2 Editor

The first component of AGile is a text editor. Editors are tools that give us the ability to
collect, prepare and arrange material for storing objects in a computer to be processed
afterwards.
In our project the objects we want to edit are structured documents instead of unstruc-
tured text; actually, we need to process structured texts representing grammars. So we
decided to developed an editor that could help to create and maintain that structure.
Structure text editors can be classified into different categories [2–4]: structure-aware
editors; syntax-directed editors; language-based editors.
Our editor falls on the second category and it treats grammar rules in an analytical
way, meaning that we are using an intermediate representation to offer the user the
functionality described bellow.
To help in the process of writing a grammar, our editor uses the knowledge about the
meta-grammar to offer the following set of features: line numbering — useful for de-
bugging, allowing a quick identification of a line; syntax highlighting — the editor
sends the text to the analyzer producing an intermediate structure obtained from the
abstract syntax tree, then this structure is traversed producing tokens colored differently
according to their lexical/syntactic role; automatic indention of the text according to the
hierarchical relationship between components.

198 INForum 2010 André Rocha et al

3 Metrics Evaluator

Among other factors that affect the software quality, its complexity has a large influence,
and thus metrics were designed to assess the software complexity.
In the context of grammar quality, Power and Malloy have defined in [5] a set of metrics,
derived from the above mentioned software metrics. In this paper, we do not follow
strictly Power and Malloy’s approach. We took there classification as a basis, but we go
further, defining a set of 10 metrics classified in 3 types: size, shape and lexicography
metrics.
One of the main components of AGile is the evaluation of size metrics on a context-free
grammar, edited under this grammar processing environment. The first set of metrics is
related with the size of the grammar G, and the second one is concerned with the size
the Parser derived from the grammar G.
The set of metrics metrics evaluated by AGile are the following: #T — Number of
terminal symbols; #NT — Number of non-terminal symbols; #P — Number of pro-
ductions; #PU — Number of unitary productions; $RHSavg — Average size of the
right hand side; $Altavg — Average number of alternatives for each symbol; Fan-in
& Fan-out — Number of dependencies between symbols from the dependence graph;
#TabLL(1) — Size of the LL(1) parse table; #RD — Size of the Recursive Descendant
parser.
In this way the user obtains easily and in an interactive mode immediate feedback about
his grammar. Thus, the user is aware of the options that is doing when constructing the
grammar.

4 Transformer

When we are writing a grammar for a certain language, the one that we wrote is not
always the best when taking into account factors like: grammar metrics, grammar com-
prehension, or even the efficiency of the future parser. In this context, it is important to
consider some transformation techniques in order to make our grammar a better one.
In AGile were introduced two different types of transformations. the rename of the name
of a Terminal, a Non-Terminal, or Attributes; the elimination of Unitary Productions.
The first transformation can increase significantly the clarity of the grammar, making
easier the comprehension and maintenance tasks – it increases the grammar quality.
When we have a long grammar and we want to change the name of a symbol that is
mentioned in a lot of productions, it would be a time consuming and exhausting task
to change all of them by hand. Automatizing it, reduces effort and at the end assures a
complete replacement. The second transformation produces a grammar more difficult to
understand, but the advantage is that from the reduced grammar (with less Productions
and Non-Terminals) we can generate a more efficient Processor.
AGile computes automatically the metrics for the new grammar, allowing the user to
compare both version (the original and the transformed).

AGile INForum 2010 – 199

5 Visualizer

To complement the comprehension of the grammar under development, this AGile com-
ponent produces and displays a visual representation of a grammar. It is well known
from the literature and practice that the visualization of dependence graphs offers an
effective help for program comprehension. Extending the same idea to grammars, our
GDE also offers a functionality to show the Dependence Graphs between Symbols,
marking in each node its values of Fan-in and Fan-out.

6 Conclusion

This paper introduced AGile, a structured editor, analyzer, metric calculator and trans-
former for attribute grammars. Mainly, this tool allows the user to write a grammar,
based on its specific syntax, and apply several actions over it.
Features like syntactic-directed edition, metrics evaluation and form transformations
make AGile a useful tool for studying and formal grammars.
According to [6], grammar metrics have been introduced to measure the quality and
complexity of a given grammar in order to direct the grammar engineering. Computing
metrics since the early stages of the development of a given grammar, allows to im-
prove the grammar and to avoid some undesirable features that otherwise would only
be perceived later on.
Dependence graphs, for syntactic dependencies between grammar symbols or semantic
ones between attributes, can also be generated and displayed to simplify the understand-
ing of the grammar edited.
A lot of work still needs to be done to realize all our ideas, however the theoretical
foundations are established and the prototype is promising.

References

1. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages. First edn.
Pragmatic Programmers. Pragmatic Bookshelf (Maio 2007)

2. Donzeau-Gouge, V., Huet, G., Kahn, G., Lang, B.: Programming environments based on
structured editors: the mentor experience. Rapport de Recherche 26, INRIA, Rocquencourt
(July 1980)

3. Teitelbaum, T., Reps, T.: The cornell program synthesizer: A syntax-directed programming
environment. Communications of the ACM 24(9) (Setembro 1981)

4. Reps, T.: Generating Language-Based Environments. PhD thesis, Cornell University (1982)
5. Power, J.F., Malloy, B.A.: A metrics suite for grammar-based software: Research articles. J.

Softw. Maint. Evol. 16(6) (2004) 405–426
6. Cervelle, J., Crepinsek, M., Forax, R., Kosar, T., Mernik, M., Roussel, G.: On defining quality

based grammar metrics. In: Proceedings of the 2nd Workshop on Advances in Programming
Languages (WAPL’2009), Mragowo, Poland, IEEE Computer Society Press (October 2009)
651–658

200 INForum 2010 André Rocha et al

Efficient Retrieval of Subsumed Subgoals in
Tabled Logic Programs

Flávio Cruz and Ricardo Rocha?

CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

{flavioc,ricroc}@dcc.fc.up.pt

Abstract. Tabling based systems use call similarity to decide when a
tabled subgoal should produce or consume answers. Most tabling en-
gines do that by using variant checks. A more refined method, named
call subsumption, considers that a subgoal A will consume answers from
a subgoal B if A is subsumed by B, thus allowing greater answer reuse.
Recently, we have developed an extension, called Retroactive Call Sub-
sumption, that improves upon call subsumption by supporting bidirec-
tional sharing of answers between subsumed/subsuming subgoals. In this
paper, we present an algorithm to efficiently retrieve the set of currently
evaluating subgoals that are subsumed by a more general subgoal.

1 Introduction

Tabled resolution methods solve some of the shortcomings of Prolog because
they can considerably reduce the search space, avoid looping and have better
termination properties than SLD resolution based methods [1]. Tabling works
by memorizing generated answers and then by reusing them on similar calls that
appear during the resolution process. In a nutshell, first calls to tabled subgoals
are considered generators and are evaluated as usual, using SLD resolution, but
their answers are stored in a global data space, called the table space. Similar
calls are called consumers and are resolved by consuming the answers already
stored for the corresponding generator, instead of re-evaluating them against the
program clauses. There are two main approaches to determine if a subgoal A is
similar to a subgoal B: call variance and call subsumption.

In call variance, A and B are similar if they can be identical through variable
renaming. For example, p(X, 1, Y) and p(Y, 1, Z) are variants because both can
be transformed into p(V AR0, 1, V AR1). Tabling by call subsumption is based on
the principle that if A is subsumed by B (i.e., if A is an instance or more specific
than B) and SA and SB are the respective answer sets, therefore SA ⊆ SB . For
example, subgoal p(X, 1, 2) is subsumed by subgoal p(Y, 1, Z) because there is a
substitution {Y = X, Z = 2} that makes p(X, 1, 2) an instance of p(Y, 1, Z). For
some types of programs, call subsumption yields superior time performance, as it
? This work has been partially supported by the FCT research projects STAMPA

(PTDC/EIA/67738/2006) and HORUS (PTDC/EIA-EIA/100897/2008).

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 201–204

allows greater reuse of answers, and better space usage, since the answer sets for
the subsumed subgoals are not stored. Arguably, the most successful approach
for subsumption-based tabling is the TST (Time-Stamped Trie) design [2].

Despite the advantages of using subsumption-based tabling, the degree of
answer reuse depends on the call order of subgoals. If a more general subgoal
is called before specific subgoals, answer reuse will happen, but if more spe-
cific subgoals are called before a more general subgoal, no reuse will occur. To
solve this problem, we implemented an extension to the original TST design,
called Retroactive Call Subsumption (RCS) [3], that supports subsumption-based
tabling by allowing full sharing of answers between subsumptive subgoals, in-
dependently of the order they are called. RCS works by selectively pruning the
evaluation of subsumed subgoals when a more general subgoal appears later on.
In this paper, we describe the modifications made to the table space data struc-
tures and we discuss the new algorithm developed to efficiently retrieve the set
of currently evaluating instances of a subgoal.

2 Retrieval of Subsumed Subgoals

2.1 Table Space Data Structures

Arguably, the most successful data structure for representing the table space
is tries [4]. Tries are trees in which common prefixes are represented only once.
Tries provide complete discrimination for terms and permit lookup and insertion
to be done in a single pass. In a trie-based tabling system, each tabled predicate
has a table entry that points to a subgoal trie. In the subgoal trie, each distinct
trie path represents a tabled subgoal call and each leaf trie node points to a
subgoal frame, a data structure containing information about the subgoal call.

In our new approach, each subgoal trie node was extended with a new field,
named in eval, which stores the number of subgoals, represented below the node,
that are in evaluation. This field is used to, during the search for subsumed
subgoals, prune the subgoal trie branches without evaluating subgoals, i.e., the
ones with in eval = 0.

When a subgoal starts being evaluated, all subgoal trie nodes in its subgoal
trie path get the in eval field incremented. When a subgoal completes its evalua-
tion, the path is decremented. Hence, for each subgoal leaf trie node, the in eval
field can be equal to either: 1, when the corresponding subgoal is in evaluation;
or 0, when the subgoal is completed. For the root subgoal trie node, we know that
it will always contain the total number of subgoals being currently evaluated.

When a chain of sibling nodes is organized in a linked list, it is easy to
select the trie branches with evaluating subgoals by looking for the nodes with
in eval > 0. But, when the sibling nodes are organized in an hash table, it can
become very slow to inspect each node as the number of siblings increase. In
order to solve this problem, we designed a new data structure, called evaluation
index, in a similar manner to the time stamp index [2] of the TST design. An
evaluation index is a double linked list that is built for each hash table and is

202 INForum 2010 Flávio Cruz, Ricardo Rocha

used to chain the subgoal trie nodes where the in eval field is greater than 0.
The evaluation index makes the operation of pruning trie branches much more
efficient by providing direct access to trie nodes with evaluating subgoals. While
advantageous, the operation of incrementing or decrementing a subgoal trie path
is more costly, because these indexes must be maintained.

2.2 Matching Algorithm

The algorithm that finds the currently running subgoals that are subsumed by
a more general subgoal S works by matching the subgoal arguments SA of S
against the trie symbols in the subgoal trie T . By using the in eval field as
described previously, we can prune irrelevant branches as we descend the trie.
When reaching a leaf node, we append the corresponding subgoal frame in a
result list that is returned once the process finishes. If the matching process fails
at some point or if a leaf node was reached, the algorithm backtracks to try
alternative branches, in order to fully explore the subgoal trie T .

When traversing T , trie variables cannot be matched against ground terms
of SA. Ground terms of SA can only be matched with ground terms of T . For
example, if matching the trie subgoal p(V AR0, V AR1) with the subgoal p(2, X),
we cannot match the constant 2 against the trie variable V AR0, because p(2, X)
does not subsume p(V AR0, V AR1).

When a variable of SA is matched against a ground term of T , subsequent
occurrences of the same variable must also match the same term. As an example,
consider the trie subgoal p(2, 4) and the subgoal p(X, X). The variable X is first
matched against 2, but the second matching, against 4, must fail because X is
already bound to 2.

Now consider the trie subgoal p(V AR0, V AR1) and the subgoal p(X, X).
Variable X is first matched against V AR0, but then we have a second match
against a different trie variable, V AR1. Again, the process must fail because
p(X,X) does not subsume p(V AR0, V AR1). This last example evokes a new rule
for variable matching. When a variable of SA is matched against a trie variable,
subsequent occurrences of the same variable must always match the same trie
variable. This is necessary, because the found subgoals must be instances of S.
Therefore, this problem can be reduced to the task of finding all instances of S
in trie T . To implement this algorithm, we use the following data structures:

– WAM data structures: we take advantage of the existent Prolog data struc-
tures based on WAM machinery: heap, trail, and associated registers. The
heap is used to build structured terms, in which the subgoal arguments are
bound. Whenever a new variable is bound, we trail it using the WAM trail;

– term stack : stores the remaining terms to be matched against the subgoal
trie symbols;

– term log stack : stores already matched terms from the term stack and is used
to restore the state of the term stack when backtracking;

– variable enumerator vector : used to mark the term variables that were matched
against trie variables;

Efficient Retrieval of ... INForum 2010 – 203

– choice point stack : stores choice point frames, where each frame contains
information needed to restore the computation in order to search for alter-
native branches.

The procedure that traverses a subgoal trie and collects the set of subsumed
subgoals of a given subgoal call can be summarized in the following steps:

1. setup WAM machinery and push subgoal arguments into the term stack.
2. fetch a term T from the term stack;
3. search for a trie node N where the in eval field is not 0.
4. search for the next node with a valid in eval field to be pushed on the choice

point stack, if any;
5. match T against the trie symbol of N ;
6. proceed into the child of N or, if steps 3 or 5 fail, backtrack by popping a

frame from the choice point stack and use the alternative trie node;
7. once a leaf is reached, add the corresponding subgoal frame to the resulting

subgoal frame list. If there are choice points available, backtrack to try them;
8. if no more choice point frames exist, return the found subsumed subgoals.

3 Conclusions

We presented a new algorithm for the efficient retrieval of subsumed subgoals
in tabled logic programs. Our proposal takes advantage of the existent WAM
machinery and data areas and extends the subgoal trie data structure with
information about the evaluation status of the subgoals in a branch, which allows
us to prune the search space considerably. We therefore argue that our approach
can be easily ported to other tabling engines, as long they are based on WAM
technology and use tries for the table space.

Initial experiments using the YapTab tabling engine with support for retroac-
tive call subsumption, showed low overheads on programs that do not benefit
from the new algorithm, when compared to traditional call subsumption, and
very good results when applied to programs that take advantage of it [3].

References

1. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43(1) (1996) 20–74

2. Johnson, E., Ramakrishnan, C.R., Ramakrishnan, I.V., Rao, P.: A Space Efficient
Engine for Subsumption-Based Tabled Evaluation of Logic Programs. In: Fuji In-
ternational Symposium on Functional and Logic Programming. Number 1722 in
LNCS, Springer-Verlag (1999) 284–300

3. Cruz, F., Rocha, R.: Retroactive Subsumption-Based Tabled Evaluation of Logic
Programs. In: European Conference on Logics in Artificial Intelligence. LNCS,
Springer-Verlag (2010) To appear.

4. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access
Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38(1) (1999)
31–54

204 INForum 2010 Flávio Cruz, Ricardo Rocha

Mixed-Strategies for Linear Tabling in Prolog

Miguel Areias and Ricardo Rocha?

CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

{miguel-areias,ricroc}@dcc.fc.up.pt

Abstract. Tabling is an implementation technique that solves some lim-
itations of Prolog’s operational semantics in dealing with recursion and
redundant sub-computations. Arguably, the SLDT and DRA strategies
are the two most successful extensions to standard linear tabled evalua-
tion. In this work, we propose a new strategy for linear tabling, named
DRS, and we present a framework, on top of the Yap system, that sup-
ports the combination of variants of these three strategies.

1 Introduction

Tabled evaluation is a recognized and powerful technique that can considerably
reduce the search space, avoid looping and have better termination properties
than SLD resolution [1]. Tabling consists of storing intermediate solutions for
subgoals so that they can be reused when a repeated subgoal appears during
the resolution process. We can distinguish two main categories of tabling mech-
anisms: suspension-based tabling and linear tabling.

Suspension-based tabling mechanisms need to preserve the computation state
of suspended tabled subgoals in order to ensure that all solutions are correctly
computed. Linear tabling mechanisms use iterative computations of tabled sub-
goals to compute fix-points. While suspension-based mechanisms are considered
to obtain better results in general, they have more memory space requirements
and are more complex and hard to implement than linear tabling mechanisms.

Arguably, the SLDT [2] and DRA [3] strategies are the two most successful
extensions to standard linear tabling evaluation. As these strategies optimize
different aspects of the evaluation, they are, in principle, orthogonal to each other
and thus it should be possible to combine both in the same system. In this work,
we propose a new strategy, named Dynamic Reordering of Solutions (DRS), and
we present a framework, on top of the Yap Prolog system, that integrates and
supports the combination of these three strategies. Our implementation shares
the underlying execution environment and most of the data structures used to
implement tabling in Yap. We thus argue that all these common support features
allow us to make a first and fair comparison between these different linear tabling
strategies and, therefore, better understand the advantages and weaknesses of
each, when used solely or combined with the others.
? This work has been partially supported by the FCT research projects STAMPA

(PTDC/EIA/67738/2006) and HORUS (PTDC/EIA-EIA/100897/2008).

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 205–208

2 Standard Linear Tabled Evaluation

Tabling works by storing intermediate solutions for tabled subgoals so that they
can be reused when a repeated call appears. In a nutshell, first calls to tabled
subgoals are considered generators and are evaluated as usual, using program
resolution, but their solutions are stored in a global data space, called the table
space. Repeated calls to tabled subgoals are considered consumers and are not
re-evaluated against the program clauses because they can potentially lead to
infinite loops, instead they are resolved by consuming the solutions already stored
for the corresponding generator. During this process, as further new solutions
are found, we need to ensure that they will be consumed by all the consumers,
as otherwise we may miss parts of the computation and not fully explore the
search space. To do that, linear tabling mechanisms maintain a single execution
tree where tabled subgoals are iteratively computed until reaching a fix-point.

A generator call C thus keeps trying its matching clauses until reaching a
fix-point. If no new solutions are found during one cycle of trying the matching
clauses, then we have reached a fix-point and we can say that C is completely
evaluated. However, if a number of subgoal calls is mutually dependent, thus
forming a Strongly Connected Component (SCC), then completion is more com-
plex and we can only complete the calls in a SCC together. SCCs are usually
represented by the leader call, i.e., the generator call which does not depend on
older generators. A leader call defines the next completion point, i.e., if no new
solutions are found during one cycle of trying the matching clauses for the leader
call, then we have reached a fix-point and we can say that all subgoal calls in
the SCC are completely evaluated.

3 Linear Tabling Strategies

The standard linear tabling mechanism uses a naive approach to evaluate tabled
logic programs. Every time a new solution is found during the last round of
evaluation, the complete search space for the current SCC is scheduled for re-
evaluation. However, some branches of the SCC can be avoided, since it is possi-
ble to know beforehand that they will only lead to repeated computations, hence
not finding any new solutions. Next, we present three different approaches for
optimizing standard linear tabled evaluation.

3.1 Dynamic Reordering of Execution

The first optimization, that we call Dynamic Reordering of Execution (DRE),
is based on the original SLDT strategy, as proposed by Zhou et al. [2]. The
key idea of the DRE strategy is to let repeated calls to tabled subgoals execute
from the backtracking clause of the former call. A first call to a tabled subgoal
is called a pioneer and repeated calls are called followers of the pioneer. When
backtracking to a pioneer or a follower, we use the same strategy, first we explore
the remaining clauses and only then we try to consume solutions. The fix-point
check operation is still only performed by pioneer calls.

206 INForum 2010 Miguel Areias, Ricardo Rocha

3.2 Dynamic Reordering of Alternatives

The key idea of the Dynamic Reordering of Alternatives (DRA) strategy, as
originally proposed by Guo and Gupta [3], is to memorize the clauses (or al-
ternatives) leading to consumer calls, the looping alternatives, in such a way
that when scheduling an SCC for re-evaluation, instead of trying the full set of
matching clauses, we only try the looping alternatives. Initially, a generator call
C explores the matching clauses as in standard evaluation and, if a consumer
call is found, the current clause for C is memorized as a looping alternative.
After exploring all the matching clauses, C enters the looping state and from
this point on, it only tries the looping alternatives until reaching a fix-point.

3.3 Dynamic Reordering of Solutions

The last optimization, that we named Dynamic Reordering of Solutions (DRS),
is a new proposal that can be seen as a variant of the DRA strategy, but applied
to the consumption of solutions. The key idea of the DRS strategy is to memorize
the solutions leading to consumer calls, the looping solutions. When a non-leader
generator call C consumes solutions to propagate them to the context of the
previous call, if a consumer call is found, the current solution for C is memorized
as a looping solution. Later, if C is scheduled for re-evaluation, instead of trying
the full set of solutions, it only tries the looping solutions plus the new solutions
found during the current round. In each round, the new solutions leading to
consumer calls are added to the previous set of looping solutions.

4 Experimental Results

To the best of our knowledge, Yap is now the first tabling engine that integrates
and supports the combination of different linear tabling strategies. We have thus
the conditions to better understand the advantages and weaknesses of each strat-
egy when used solely or combined with the others. In what follows, we present
initial experiments comparing linear tabled evaluation with and without support
for the DRE, DRA and DRS strategies. To put the performance results in per-
spective, we used the well-known path/2 predicate, that computes the transitive
closure in a graph, combined with several different graph configurations.

Next, we show in Table 1 the execution time ratios of standard linear tabled
evaluation to DRE, DRA and DRS solely and combined strategies. Ratios higher
than 1.00 mean that the respective strategies have a positive impact on the exe-
cution time. The results obtained are the average of 5 runs for each configuration.

Globally, the results in Table 1 show that, for most of these experiments, DRE
evaluation has no significant impact in the execution time. On the other hand,
the results indicate that the DRA and DRS strategies are able to effectively
reduce the execution time for most of the experiments, when compared with
standard evaluation, and that by combining both strategies it is possible to
reduce even further the execution time of the evaluation. In most cases, this

Mixed-Strategies for Linear Tabling in Prolog INForum 2010 – 207

Table 1. Execution time ratios of standard to DRE, DRA and DRS strategies

Strategy
Pyramid Cycle Grid

1000 2000 3000 1000 2000 3000 20 30 40

DRE 0.98 1.00 0.88 0.94 0.95 1.04 0.83 0.99 0.99
DRA 1.60 1.59 1.58 1.18 1.20 1.22 1.08 1.09 1.07
DRS 0.99 0.98 0.99 1.14 1.18 1.25 1.20 1.20 1.21
DRE+DRA 1.58 1.66 1.63 1.22 1.24 1.22 1.12 1.10 1.07
DRE+DRS 1.00 1.01 1.01 1.22 1.23 1.23 0.95 1.14 1.14
DRA+DRS 1.63 1.64 1.62 1.56 1.59 1.69 1.40 1.32 1.32
DRE+DRA+DRS 1.59 1.57 1.56 1.61 1.55 1.60 1.36 1.33 1.30

reduction is higher than the sum of the reductions obtained with each strategy
individually. This shows the potential of our framework and suggests that the
overhead associated with this combination is negligible. When DRE is present,
the results are, in general, worst than the results obtained with the DRA/DRS
strategies solely. A possible explanation for this behavior is the fact that, as DRE
has more space requirements, this leads to more expansions of the execution
stacks, which in turn can lead to higher ratios of cache and page misses. Still,
these results require further study and analysis.

5 Conclusions

We have presented a new strategy for linear tabled evaluation of logic programs,
named DRS, and a framework, on top of the Yap system, that integrates and
supports the combination of different linear tabling strategies. Our experiments
for DRS evaluation showed that, the strategy of avoiding the consumption of non-
looping solutions in re-evaluation rounds, can be quite effective for programs that
can benefit from it, with insignificant costs for the other programs. Preliminary
results for the combined framework were also very promising. In particular,
the combination of the DRA and DRS strategies showed the potential of our
framework to reduce even further the execution time of a linear tabled evaluation.

References

1. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43(1) (1996) 20–74

2. Zhou, N.F., Shen, Y.D., Yuan, L.Y., You, J.H.: Implementation of a Linear Tabling
Mechanism. In: Practical Aspects of Declarative Languages. Number 1753 in LNCS,
Springer-Verlag (2000) 109–123

3. Guo, H.F., Gupta, G.: A Simple Scheme for Implementing Tabled Logic Program-
ming Systems Based on Dynamic Reordering of Alternatives. In: International
Conference on Logic Programming. Number 2237 in LNCS, Springer-Verlag (2001)
181–196

208 INForum 2010 Miguel Areias, Ricardo Rocha

Parser Generation in Perl:
an Overview and Available Tools

Hugo Areias1, Alberto Simões2, Pedro Henriques1, and Daniela da Cruz1

1Departamento de Informática, Universidade do Minho
2Escola Superior de Estudos Industriais e de Gestão, Instituto Politécnico do Porto

hugomsareias@gmail.com,pedrorangelhenriques@gmail.com
alberto.simoes@eu.ipp.pt,danieladacruz@di.uminho.pt

Abstract. There are some modules on Comprehensive Perl Archive
Network to help with the parser generation process in Perl. Unfortu-
nately, some are limited, only supporting a particular parser algorithm
and do not covering some developer needs. In this document we will
analyse some of these modules, testing them in terms of performance
and usability, allowing a proper evaluation of the results and careful
considerations about the state of art of parser generation using Perl.

Keywords: Parser generators, Perl, grammars

1 Introduction

The primary aim of this paper is to provide an overview of the particular con-
dition of parser generation in Perl and analyse some of the available tools.
In the Comprehensive Perl Archive Network (CPAN1) there are some modules
available to automate the process of generating a parser. However, the user
should choose carefully according to his needs and because the lack of mainte-
nance and efficiency of some of them.
We chose four tools, the most used, the more robust, the more elaborate and the
more recent:

– Parse::RecDescent (v 1.962.2) – one of the most used tools, generate on-
the-fly a recursive-descent parser;

– Parse::Yapp (v 1.05) – can be compared with the well known yacc parser
generator tool in terms of algorithm and syntax;

– Parse::Eyapp (v 1.154) – an extended version of Parse::Yapp including
new recursive constructs;

– Regexp::Grammars (v 1.002) – an implementation of the future Perl 6
grammars2

1 http://www.cpan.org/
2 This tool is only supported in recent Perl versions (> 5.10).

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 209–212

1.1 Parse::RecDescent

Parse::RecDescent [3] supports LL(1) parsers [1] and generates recursive-
descent parsers on-the-fly. It is a powerful module that provides useful mech-
anisms to create parsers with ease, such as auto-actions (automatically adding
pre-defined actions) and named access to semantic rule values (allowing the re-
trieve of data from an associative array using the symbol name instead of the
usual array indexes). To create the parser, Parse::RecDescent generates rou-
tines in runtime, doing the lexical and syntactic analysis, and achieving the re-
sults on the fly. The drawbacks are the incapacity to deal with left recursion and
its efficiency when dealing with large inputs. Therefore, it is not recommendable
for cases where the performance is an issue.

1.2 Parse::Yapp

Parse::Yapp [5] is one of the oldest parser generators in Perl and probably still
one of the most robust. It is based on yacc [2]. Just like yacc, it is well known
for supporting LALR parsers [1] and for its parsing speed. Such traits makes
it an obvious choice for the users. As an addition, it also provides a command-
line script that, when executed over an input grammar file, generates a Perl
Object Oriented (OO) parser. This module only supports Backus-Naur Form
(BNF) rules to write the grammar. Also, Parse::Yapp does not include lexical
analyser features, forcing the user to provide one. Gratefully, there are some
useful modules on CPAN to help in this process, such as Text::RewriteRules [8].

1.3 Parse::Eyapp

Parse::Eyapp [6] is an extension of Parse::Yapp. Just like yapp, it only sup-
ports LALR parsers, but is able to parse extended BFN rules. While it introduces
a lot of new useful features, it still keeps the same structure of Parse::Yapp al-
lowing parsers made for the second to run when executed by the first. The most
relevant features from Parse::RecDescent implemented in this module include
auto-actions and named access to semantic rule values.

1.4 Regexp::Grammars

Regexp::Grammars [4] is a module that tries to implement Perl 6 grammar
support with Perl 5. This is possible given the new recursive regular expressions
introduced in Perl 5.10. The module extends the regular expressions in a way
that makes them similar to typical grammars. While it is easy to use, it has
some efficiency problems, very similar to the presented for Parse::RecDescent,
given that it also generates recursive-descent parsers. Also, Regexp::Grammars
creates automatically abstract data structures for the grammar, reducing the
number of visible semantic actions.

210 INForum 2010 Hugo Areias, Alberto Simões, P. R. Henriques, Daniela Cruz

2 Analysis and Tests

Three different grammars3 were chosen to help testing the four modules de-
scribed earlier: The Swedish Chef, a simple grammar but relatively large with
an high number of semantic actions; The Lavanda, a Domain Specific Language
(DSL) to describe the laundry bags daily sent to wash by a launderette com-
pany; and an highly recursive grammar to match s-expressions. These tests were
performed by a machine with an Intel Pentium 4 with a clock rate of 3.4 GHz
and 3Gb of RAM .
Looking to the following tables it is possible to understand the most efficient
modules. Parse::RecDescent and Regexp::Grammars both use regular expres-
sions to perform the lexical analysis but they store the parsing functions in
memory as they are generated on-the-fly. So, even with the advantages of using
regular expressions, these modules take too long. This also has to do with a few
recursive-descent parser limitations in Perl.

Table 1. User time evolution of the four approaches for the Lavanda grammar.

Nr. Lines Parse::Yapp Parse::Eyapp Parse::RecDescent Regexp::Grammars
10 0.031 s 0.090 s 0.123 s 0.069 s
100 0.115 s 0.184 s 0.258 s 0.163 s
1000 1.240 s 1.380 s 4.041 s 1.399 s
10000 34.896 s 37.640 s 331.814 s out of memory
100000 > 2488.348 s > 4973.639 s
1000000

Table 2. Memory consumption (in megabytes) of the four approaches for the Lavanda
grammar.

Nr Lines Parse::Yapp Parse::Eyapp Parse::RecDescent Regexp::Grammars
10 0.933 3.866 3.583 3.490
100 1.934 4.867 4.607 22.545
1000 12.141 15.214 15.175 181.809
10000 108.697 113.242 115.383 out of memory
100000
1000000

Table 3 show a final analysis of the modules. From these results, it is easy to
realise that Parse::Yapp is the most efficient module available for Perl, mainly
due to the fact that it is based on LALR grammars, slightly more powerful
than LL algorithms. It also offers the best support for integration of the parser
with other code. In the other hand, it does not offer any support for attribute
grammars and for the construction of AST. The lack of documentation makes
it not very easy to start with, increasing the development time. Also, it does
not provides the best support for semantic actions when compared to the other
modules and it requires the lexical analyser to be provided by the user.
3 All grammars, test files and generated parsers are available at http://www.di.

uminho.pt/~gepl/PARSINGinPERL

Parser Generation in Perl INForum 2010 – 211

Table 3. Module Analysis.

Module Debugging
Generated

Parser
Readability

Integration with
External Code

Development
Time

Parse::Yapp +/− +/− ++ +/−
Parse::Eyapp +/− +/− + +/−
Parse::RecDescent + NA + −
Regexp::Grammars ++ NA +/− −−

3 Conclusions

Parser generators in Perl still lacks valuable mechanisms to make them chal-
lengeable when compared with other languages, like C. There is no valid sup-
port for attribute grammars and, according to the research made, there is only
one module on CPAN that supports attribute grammars that, however, lacks of
maintenance for several years now.
The modules that support recursive-descent parsers provide several useful mech-
anisms but due to the lack of efficiency, they are not recommendable for process-
ing large input streams. LALR parsers provide a more efficient solution, however
the lexical analyser must be provided by the user and their efficiency is not the
best when compared with other language solutions [7].
An alternative solution could be combining the Perl modules with other tools
written in another languages to achieve better results. This solution would re-
quire a bridge between both tools and its evaluation would be dependable on the
effort and difficulty level of implementing this bridge. This is precisely the ob-
jective of a master thesis that aims at retargeting AnTLR (a well known LL(K)
compiler generator from attribute grammars) to generate Perl compilers.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Principles, Techniques and Tools.
Addison-Wesley, 1986.

2. Stephen Johnson Bell and Stephen C. Johnson. Yacc: Yet another compiler-
compiler. Technical report, 1979.

3. Damian Conway. Parse::recdescent. http://search.cpan.org/dist/

Parse-RecDescent/lib/Parse/RecDescent.pm, 1997.
4. Damian Conway. Regexp::grammars. http://search.cpan.org/~dconway/

Regexp-Grammars-1.001005/lib/Regexp/Grammars.pm, 2009.
5. Francois Desarmenien. Parse::yapp. http://search.cpan.org/dist/Parse-Yapp/

lib/Parse/Yapp.pm, 1998.
6. Casiano Rodriguez-Leon. Parse::eyapp. http://search.cpan.org/dist/

Parse-Eyapp/lib/Parse/Eyapp.pod, 2006.
7. Alberto Simoes. Parsing with perl. Copenhaga, Aug 2008. Yet Another Perl Con-

ference Europe.
8. Alberto Simoes and José Joao Almeida. Text::rewriterules. http://search.cpan.

org/~ambs/Text-RewriteRules-0.21/lib/Text/RewriteRules.pm, 2004.

212 INForum 2010 Hugo Areias, Alberto Simões, P. R. Henriques, Daniela Cruz

Realizing Bidirectional Transformations in
Attribute Grammars

João Saraiva1 and Eric Van Wyk2

1 University of Minho, Braga, Portugal
2 University of Minnesota, Minneapolis, Minnesota, USA

Abstract. This position paper considers the possibility of implement-
ing bidirectional transformations in modern attribute grammar systems.
Such systems support features such as higher-order attributes, reference
attributes, and forwarding of attribute queries. In the 1980’s Yellin con-
sidered bidirectional transformations in attribute grammars lacking these
features. But these features may open the door to automatically gener-
ating more expressive and powerful bidirectional transformations; this
paper discusses the prospects of doing so.

1 Introduction

Interest in bidirectional transformations has increased in the past few years and
has been studied in a number of computing disciplines [2]. In the bidirectional
transformation literature the function that maps the source to the target, also
called the view, is called the forward or “get” transformation. The function
mapping the target back to the source is called the backward or “put” trans-
formation. Of special interest is computing the put transformation after some
modification of the target; this is illustrated in Figure 1.

The most interesting bidirectional trans-

source

source ′

view

view ′)

-
forward

transformation

�
backward

transformation

?

Fig. 1. Bidirectional Transfor-
mations

formations are those in which the source lan-
guage is the richer of the two languages. Con-
sider, for example, transformations between
the concrete (source) and abstract (target)
context free grammars of arithmetic expres-
sions. The source language is the concrete
syntax; the additional richness of the source
(realized as more nonterminals and produc-
tions than in the target) is used to express
the precedence and association of the infix
binary operators. In many cases, a related
collection of concrete nonterminals map to a single nonterminal in the abstract
syntax. It is also often the case that several distinct source language constructs
map to the same construct in the target. In the arithmetic expression example
we may treat the unary negation of an expression e in the source as syntactic
sugar for 0 − e in the target. Thus the source concrete subtraction and unary
negation both map to subtraction in the target abstract syntax.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 213–216

As another example consider transformations between HTML tables and an
ASCII representation of them. In this case we may like to translate tables to
text to allow easier editing by users not familiar with HTML and then translate
back to HTML. Additional richness in the source language HTML should not be
lost after the translation to text and back to HTML. Thus, it is often necessary
to include the original source program as input to the put transformation. The
idea being that a source phrase is mapped to the target, modified in some way,
and then mapped back to the source. By including the original source phrase as
input to the put transformation a more accurate or realistic source phrase can
be computed from the modified target.

In the late 1980’s Yellin [8] showed how attribute grammars can specify bidi-
rectional transformations. His reverse-inverse form grammars were such that the
put transformation could be automatically generated from the get transforma-
tion, specified as attribute definitions. Yellin’s approach was proposed before
higher order attribute grammars and other modern attribute grammar features
were introduced. Thus his get and put attributes compute phrases as strings
of symbols instead of well-typed syntax trees and assumes that only the ter-
minal symbols of the target language are known. Furthermore, the generated
put transformation does not take as input the original source phrase.

This raises some interesting questions. What if higher-order attributes [7]
could be used? What if the nonterminals and productions of the target language
are known and used in the definition of the get transformation? Furthermore,
what if in computing the put transformation some information about the source
construct is known? For example, is it beneficial to know the source language
non-terminal type a target phrase needs to translate back to, or what produc-
tion in the source language should be used to construct the translation back in
the source? Also how can the actual source tree be taken into account by the
generated put transformation to compute more appropriate translations back to
the source? More questions can be raised for bidirectional transformations when
additional modern attribute grammars are considered. For example, what bene-
fit do remote [1] and reference [3] attributes provide? What about collection [1]
attributes, forwarding [6], and generics [4]? With such features, how can the
source be effectively used in computing the put transformation?

2 Bi-directional Transformations in Attribute Grammars

To get some idea how answers to these questions might play out consider Fig-
ure 2. On the left is the concrete syntax tree for the expression −2 + 3 ∗ 4
and on the right is the corresponding abstract syntax tree, generated by the
get transformation. This transformation is implemented by a collection of higher-
order attributes [7] that decorate the source (concrete) nonterminals. These trees
correspond to the grammars in Figure 3; nonterminals and productions in the
concrete grammar are sub-scripted by “c” to distinguish them from their coun-
terparts in the abstract grammar. Interior nodes of the trees are labelled by the
productions that define them. The dashed edges from the abstract to the con-

214 INForum 2010 João Saraiva, Eric van Wyk

Fig. 2. Concrete and abstract syntax trees, with links back to the source, for −2+3∗4.

addc : Ec ::= Ec ‘ +′ Tc

subc : Ec ::= Ec ‘−′ Tc

etc : Ec ::= Tc

mulc : Tc ::= Tc ‘ ∗′ Fc

tfc : Tc ::= Fc

intc : Fc ::= IntLitt
nstc : Fc ::= ‘(′ Ec ‘)′

negc : Fc ::= ‘−′ Fc

add : E ::= E E
sub : E ::= E E
mul : E ::= E E
int : E ::= IntLitt

Fig. 3. Concrete grammar (first two columns) and abstract (third column) grammar.

crete tree are used to provide access to the original concrete (source) tree to be
used by the abstract (target) tree to compute the put transformation. These can
be realized in attribute grammars as reference [3] or remote [1] attributes. These
are effectively pointers to remote nodes in the tree, or in this case, another tree.

We need some mechanism to ensure that the these links are not lost when
subtrees are moved or otherwise modified by transformations or optimizations
that are performed on the target tree. Such transformations are represented by
the downward arrow in Figure 1. One way to accomplish this is to use forward-
ing [6] and create what amounts to new “wrapper” productions for each original
abstract production; this new production takes an extra argument - the refer-
ence attribute pointing back to the original source tree. These are “primed” in
Figure 2 to distinguish them from the original abstract productions. Attributes
defining the get transformation can be automatically modified to use these new
productions. To compute the put transformation of the abstract tree created by
the sub′ production, we examine the link to the source and determine if this sub′

tree was created by negc or subc .
Consider the rather contrived transformation that switches the order of the

two expressions under add - a semantically safe transformation given the com-
mutativity of addition. Processes that create the modified tree would use the
original add production since there would not be an appropriate link back to
any source tree that created it. Thus, the new tree node created by the original
add production would not have a link back to the source, but, for example, its
second child (rooted at sub) would maintain its link back to the source.

The point here is that modern attribute grammars contain features that can
quite naturally be used to specify bidirectional transformations.

Realizing Bidirectional Transformations ... INForum 2010 – 215

We would like to automatically generate the put transformation from the
specification of the get transformation. This has the disadvantage of restricting
the specification of the get transformation to fall into the class for which a
put transformation can be generated, but it has the advantage over hand-written
put transformations in that we can generate put transformations that are more
complex and sophisticated than one would want to write by hand. For example,
in the expression example multiple concrete constructs (Ec, Tc, and Fc) all map
to the same abstract construct (E). If we create a put attribute on E for each
target type, say putEc

, putTc
, and putFc

we can generate a more realistic mapping
back to the target in which we do not need to unnecessarily wrap all expressions
in parenthesis (the nstc production) but can do so only when it is required.

3 Conclusion

Yellin’s work [8] scratched the surface of what is possible in implementing bidirec-
tional transformations in attribute grammars. With the development of modern
attribute grammar features new opportunities are opening for easily implement-
ing expressive transformations between source and target languages. Silver [5]
is an extensible attribute grammar system supporting these modern features
in which we intend to develop new notations for specifying bidirectional trans-
formations. There are also additional areas of application, specifically in model
driven engineering in which transformations between models and programs are
common. New mechanisms for implementing bidirectional transformations and
new opportunities for their application provide what we believe is a promising
vein of research that we are beginning to explore.

References

1. J. T. Boyland. Remote attribute grammars. J. ACM, 52(4):627–687, 2005.
2. K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. F. Terwilliger.

Bidirectional transformations: A cross-discipline perspective. In ICMT ’09: Proc.
of the 2nd Intl. Conf. on Theory and Practice of Model Transformations, volume
5563 of LNCS, pages 260–283. Springer-Verlag, 2009.

3. G. Hedin. Reference attribute grammars. Informatica, 24(3):301–317, 2000.
4. J. Saraiva and D. Swierstra. Generic Attribute Grammars. In 2nd Workshop on

Attribute Grammars and their Applications, pages 185–204, 1999.
5. E. Van Wyk, D. Bodin, J. Gao, and L. Krishnan. Silver: an extensible attribute

grammar system. Science of Computer Programming, 75(1–2):39–54, January 2010.
6. E. Van Wyk, O. de Moor, K. Backhouse, and P. Kwiatkowski. Forwarding in at-

tribute grammars for modular language design. In Proc. Intl. Conf. on Compiler
Construction, volume 2304 of LNCS, pages 128–142. Springer-Verlag, 2002.

7. H. Vogt, D. Swierstra, and M. Kuiper. Higher order attribute grammars. In
ACM SIGPLAN ’89 Conf. on Programming Language Design and Implementation
(PLDI), pages 131–145. ACM, July 1989.

8. D. M. Yellin. Attribute Grammar Inversion and Source-to-source Translation. Num-
ber 302 in LNCS. Springer-Verlag, 1988.

216 INForum 2010 João Saraiva, Eric van Wyk

Computação Distribúıda e de Larga Escala

217

Curiata : Uma arquitectura P2P
auto-organizável para uma localização flex́ıvel e

eficiente de recursos

João Alverinho, João Leitão, João Paiva, and Luis Rodrigues ?

{jalveirinho,jleitao,jgpaiva,ler}@gsd.inesc-id.pt, INESC-ID/IST

Resumo As arquitecturas entre pares têm vindo a emergir como uma
solução viável para suportar serviços de localização de recursos em sis-
temas distribúıdos de larga escala. A maioria das soluções baseia-se em
redes estruturadas (DHT s) ou não-estruturadas. As DHTs são mais efici-
entes para procuras exactas, enquanto que as soluções não-estruturadas
apesar de menos eficientes são mais flex́ıveis. Neste artigo propomos
uma nova solução auto-organizável que combina as abordagens estrutu-
rada e não-estruturada. Resultados experimentais extráıdos através de
simulação mostram que a nossa solução consegue oferecer uma boa pre-
cisão nas respostas às interrogações, com reduzido custo de mensagens e
baixa latência.

Abstract Peer-to-Peer arquitectures have emerged as a viable solution
to support resource location services in large-scale distributed systems.
Most solutions are based on either structured (DHT s) or unstructured
overlay networks. DHTs excel on exact-match queries, whilst unstructu-
red solutions despite being less efficient are more flexible. In this paper we
propose a novel self-organizing solution that combines both structured
and unstructured approaches. Experimental results through simulation
show that our solution is able to offer good precision in query responses,
while keeping a low message cost as well as a low latency.

1 Introdução

Desde o aparecimento do Napster[4] em 1999, os sistemas entre-pares (P2P)
têm sido alvo de desenvolvimento e investigação, tanto na academia como na
indústria. As aplicações deste tipo de tecnologia incluem partilha de ficheiros[3,1],
distribuição de conteúdos[2], partilha de processamento[11], voz sobre IP[5], en-
tre outras. Um serviço fundamental em qualquer sistema P2P, é a localização de
recursos. Dado que os sistemas P2P tipicamente almejam suportar um número
extremamente elevado de participantes em que cada um destes pode partilhar
múltiplos recursos (tempo de CPU, espaço em disco, ficheiros,etc), o espaço de
procura pode ser enorme. Soluções centralizadas têm-se provado inviáveis de-
vido a limitações na sua capacidade de escala e fiabilidade. Por outro lado, uma

? Este trabalho foi parcialmente suportado pelo financiamento pluri-anual
do INESC-ID através do programa PIDDAC e pelos projectos “Redico”
(PTDC/EIA/71752/2006) e “HPCI” (PTDC/EIA-EIA/102212/2008).

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 219–230

procura exaustiva em todos os participantes também não é viável. Assim sendo,
o desenho e concretização de serviços distribúıdos de localização de recursos é
de enorme relevância.

Existem dois tipos principais de sistemas entre-pares: estruturados e não es-
truturados. Tipicamente, os sistemas P2P estruturados concretizam uma tabela
de dispersão distribúıda (DHT). Estes sistemas suportam procuras exactas de
forma muito eficiente. Contudo, os sistemas estruturados fornecem suporte re-
duzido à execução de interrogações complexas e/ou inexactas. Adicionalmente,
os sistemas estruturados podem ter uma manutenção dispendiosa em ambientes
altamente dinâmicos. Uma alternativa passa por usar sistemas não-estruturados,
que têm custos de manutenção reduzidos e suportam a execução de qualquer tipo
de interrogações sem custos adicionais. No entanto, estes sistemas não conseguem
resolver interrogações de forma eficiente. De facto, nos sistemas não-estruturados
a localização de recursos é tipicamente realizada através de soluções de procura
não guiada (cega), que não produzem resultados satisfatórios no caso geral. Es-
tas abordagens usam mecanismos baseados em inundação (do Inglês, flooding),
uma solução extremamente dispendiosa e ineficiente; ou em encaminhamento
aleatório de uma única mensagem (conhecido como Random Walk), uma es-
tratégia com elevada latência e que pode exibir uma fraca Recolha1 (do Inglês,
Recall) nos resultados da procura de recursos que não sejam extremamente co-
muns.

Este artigo apresenta o Curiata, um sistema de localização de recursos es-
calável e eficiente que combina os benef́ıcios das abordagens estruturadas e não-
estruturadas. A nossa solução permite flexibilidade nas interrogações, como na
maioria das abordagens não-estruturadas, mantendo a rapidez e eficiência provi-
denciada pelas soluções estruturadas (baseadas em DHT’s). O modo de operação
do Curiata inspira-se na organização das sociedades humanas. Durante as duas
primeiras décadas da república romana, a população organizava-se em unida-
des chamadas curia de natureza étnica; as curia reuniam-se numa assembleia,
a comitia curiata, para fins legislativos, eleitorais e judiciais, onde os cônsules
tinham uma papel especial. De modo análogo, na nossa solução, os participantes
organizam-se autonomamente numa rede sobreposta não estruturada onde os nós
com recursos semelhantes estabelecem relações de vizinhança através de um pro-
cesso de baixo custo executado em segundo plano (a curia). Para além disto, os
nós de cada curia elegem representantes para se juntarem a uma rede sobreposta
estruturada (a curiata). Os membros da rede estruturada são utilizados como
ponto de contacto para outros nós com conteúdos semelhantes. Assim sendo, a
camada estruturada é utilizada para encaminhar eficientemente as interrogações
para regiões da camada não-estruturada que contenham nós que partilhem o tipo
de recursos que são procurados. Após ser encaminhada na rede estruturada, a
interrogação é propagada pelos membros da curia utilizando técnicas de redes
não estruturadas como inundação limitada ou encaminhamento aleatório. Além
de fornecer uma infra-estrutura que permite a execução eficiente e flex́ıvel de
interrogações, o Curiata também pretende atingir uma recolha elevada, com um
reduzido custo de mensagens, independentemente da raridade dos recursos.

1 Esta métrica é defenida em detalhe na secção 4.

220 INForum 2010 João Alverinho, João Leitão, João Paiva, Luis Rodrigues

Este artigo está organizado da seguinte forma. A Secção 2 fornece uma pa-
norâmica geral dos trabalho relacionado. A Secção 3 descreve o nosso sistema em
maior pormenor. Na Secção 4 apresenta-se os resultados da avaliação, enquanto
que na Secção 5 registam-se alguns comentários finais que concluem o artigo.

2 Trabalho Relacionado

Os algoritmos de localização de recursos para sistemas P2P têm sido estudados
intensivamente existindo diversas soluções propostas na literatura. A abordagem
mais simples consiste em adoptar um esquema centralizado, onde um único nó
é responsável por manter informação acerca da localização de todos os recursos
dispońıveis no sistema[4,15]. Dado que um ı́ndice central mantém conhecimento
global dos recursos dispońıveis em todo o sistema, este pode facilmente processar
interrogações complexas. Contudo, o custo de processamento imposto a um único
nó, para manter informação actualizada sobre todos os recursos do sistema e
para processar todas as interrogações geradas por cada participante, pode ser
demasiado elevado num ambiente dinâmico de larga escala.

Os sistemas P2P estruturados, que concretizam tabelas de dispersão dis-
tribúıdas, suportam procuras exactas com um custo em número de mensagens
logaŕıtmico com o tamanho do sistema[16,19,18]. No entanto, as DHTs forne-
cem pouco suporte para interrogações inexactas, dado que decompor uma inter-
rogação complexa em várias interrogações exactas não é trivial e pode até ser
imposśıvel. A maioria das soluções existentes (por exemplo [6] e [17]) apesar de
permitirem pesquisas mais complexas, apresentam ainda assim uma flexibilidade
reduzida ou custos de sinalização e comunicação maiores que os do Curiata

Dadas as limitações das redes sobrepostas estruturadas no suporte a inter-
rogações inexactas, torna-se atractivo utilizar redes não-estruturadas, dada a
sua maior flexibilidade e menor custo de manutenção. O recurso à inundação
com raio limitado é a técnica mais imediata para realizar a localização de re-
cursos sobre redes não-estruturadas[20]. Contudo, esta técnica é muito dispen-
diosa (devido à duplicação de mensagens) e pode ser ineficiente na localização
de recursos raros. As interrogações podem também ser disseminadas recorrendo
a percursos aleatórios[14,9], ou encaminhamento informado[8], técnicas menos
dispendiosas mas com maior latência e menor recolha. A eficiência das inter-
rogações pode ser melhorada utilizando técnicas como o enviesamento da rede
sobreposta para que esta se aproxime de uma rede pequeno-mundo (do inglês,
small-world), replicando todos os ı́ndices de recursos na vizinhança directa de
cada nó, e encaminhando as interrogações para nós com maior grau. O GIA[7] é
um exemplo conhecido de um sistema que combina estas técnicas. Estas soluções,
para além de obrigarem os nós a manter estado adicional, degeneram em confi-
gurações onde as interrogações são apenas processadas por uma pequena fracção
dos participantes. Adicionalmente, estas soluções não são desenhadas para lidar
convenientemente com interrogações que visem recursos raros.

Alguns sistemas propõem a utilização de super-nós[22], onde os participantes
se organizam numa hierarquia com dois ńıveis. Os nós no ńıvel superior mantêm
ı́ndices consolidados dos recursos partilhados pelos participantes do ńıvel infe-
rior que se ligam a si. Nestes sistemas os super-nós processam a maioria das
interrogações e os custos de manutenção dos ı́ndices podem facilmente tornar-se

Curiata INForum 2010 – 221

proibitivos num ambiente dinâmico. Apesar de também usarmos uma topolo-
gia hierárquica com dois ńıveis, no Curiata, todos os participantes contribuem
activamente para a disseminação e processamento das interrogações. Adicional-
mente, os participantes não necessitam de manter ı́ndices relativos aos seus vi-
zinhos, sendo que, apenas informação genérica sobre as categorias dos recursos
dos vizinhos é necessária de forma a enviesar a topologia.

3 Curiata

A arquitectura do Curiata combina uma camada não-estruturada (a curia) com
uma camada estruturada (a comitia curiata). A nossa solução apresenta cinco
componentes principais: i) O ı́ndice de recursos, que descreve os recursos dis-
pońıveis localmente no participante. ii) A camada de rede não-estruturada envi-
esada, que utiliza um protocolo distribúıdo e auto-organizável para garantir que
os participantes estabelecem relações de vizinhança com outros participantes cu-
jos recursos sejam similares. iii) A camada da rede estruturada, que é activada
somente quando um participante é eleito como cônsul. iv) O módulo de eleição
de cônsules, que utiliza um protocolo colaborativo para seleccionar os partici-
pantes que fazem parte da rede estruturada. v) O módulo de encaminhamento
das procuras.

Índice de Recursos No Curiata, assumimos que os recursos podem ser clas-
sificados num conjunto de categorias. O ı́ndice de recursos mantém um registo
local de todas as categorias dos recursos do participante assim como o número
de recursos dispońıvel para cada uma dessas categorias. Esta informação é uti-
lizada para identificar participantes que possuem recursos similares. O esquema
de classificação utilizado é ortogonal ao nosso sistema. Por exemplo, uma biblio-
teca distribúıda de artigos sobre informática poderia utilizar o ACMComputing
Classification System para classificar o conteúdo. Um repositório de música po-
deria extrair as categorias necessárias para classificar o conteúdo das etiquetas
mais utilizadas em aplicações populares como o “Last.fm” (http://last.fm).

Adicionalmente, o ı́ndice de recursos mantém também, para cada categoria c
dos recursos de um participante, a fracção de recursos desse participante que se
enquadram nessa categoria. Este valor é denominado como fracc. As categorias
são ordenadas de acordo com os valores de frac. As primeiras t categorias são
utilizadas para definir as relações de vizinhança estabelecidas pelo participante
na rede não-estruturada.

Camada de Rede Não-Estruturada O propósito desta camada é organizar
todos os participantes que têm recursos dispońıveis numa rede sobreposta não-
estruturada enviesada. Mais especificamente, propomos que cada participante
execute um algoritmo distribúıdo auto-organizável, para adaptar a topologia
da rede sobreposta de acordo com os recursos dispońıveis em cada nó. O nosso
algoritmo consiste numa versão especializada do X-BOT [12], adaptada para ir de
encontro a alguns dos requisitos da nossa arquitectura. O X-BOT é um protocolo
distribúıdo que enviesa a topologia de uma rede não-estruturada simétrica (com
as caracteŕısticas descritas em [13]) dada uma função de proximidade que forneça
uma medida de “distância” entre dois nós no sistema. No caso particular do
Curiata, a função de proximidade reflecte a similaridade entre os recursos que

222 INForum 2010 João Alverinho, João Leitão, João Paiva, Luis Rodrigues

dois nós disponibilizam. O objectivo desta estratégia é o de conseguir processar
interrogações eficientemente, limitando a procura à área da rede onde existe
maior probabilidade de existirem os recursos.

Mais precisamente, a camada da curia opera do seguinte modo. Cada nó
mantém dois conjuntos de vizinhos, designados por vista activa e vista passiva.
O conjunto de vizinhos da vista activa define a rede que é utilizada para pro-
pagar as interrogações. Assim, o tamanho da vista activa d define o grau do
nó na curia. Os vizinhos da vista passiva são utilizados para explorar a rede e
encontrar outros participantes com recursos similares. A vista passiva é actua-
lizada periodicamente por um processo de actualização aleatória das vistas de
baixo custo [13]. A vista activa é actualizada através do processo de coordenação
introduzido pelo X-BOT utilizando a estratégia que se descreve a seguir.

A curia divide a vista activa em t segmentos; cada um destes segmentos
dedica-se a uma das primeiras t categorias. O segmento para a categoria c tem
uma dimensão segmentoc no intervalo dsmin, d · fracce. Onde smin é o tama-
nho mı́nimo de um segmento, e é definido como d

2t . Por exemplo considere-se
um sistema onde a curia está configurada para seleccionar vizinhos de acordo
com as primeiras 5 categorias (t = 5). Considere-se um participante p tal
que as primeiras 5 categorias (c1, . . . , c5) têm as seguintes fracções associadas:
(0.5, 0.2, 0.1, 0.1, 0.1). Se o participante p apresentar um grau d = 20, a sua vista
activa seria dividida da seguinte maneira: (10, 4, 2, 2, 2). Considerando este par-
ticionamento da vista activa, um nó utiliza o seguinte algoritmo para enviesar
os seus vizinhos:

1. O primeiro objectivo do participante quando se junta à rede não estrutu-
rada é preencher a sua vista activa, independentemente da similaridade dos
seus potenciais vizinhos. Assim sendo, enquanto o número de vizinhos for
menor que d, o nó preenche a sua vista activa sem levar em consideração os
segmentos definidos para cada categoria.

2. Após ter a vista activa cheia, a próxima prioridade para o participante é ter
vizinhos que pertençam às suas t categorias.

3. De seguida, o participante tenta substituir os seus vizinhos por novos vi-
zinhos de modo a que cada segmento da vista activa seja preenchida por
participantes com recursos que correspondam à categoria desse segmento.

4. Finalmente, assim que este último critério seja atingido, o participante deixa
de executar o algoritmo de auto-organização e mantém os seus vizinhos inal-
terados enquanto estes não abandonarem a rede.

A selecção do protocolo X-BOT é justificada pela capacidade que este proto-
colo exibe de enviesar a topologia sem no entanto permitir que a rede apresente
um coeficiente de aglomeração excessivo, nomeadamente este protocolo opera de
forma a proteger a conectividade global da rede não estruturada (a rede não se
particiona em “sub-redes” desconexas entre si). Adicionalmente a operação do
protocolo X-BOT garante que o número de vizinhos dos nós se mantém cons-
tante.

Camada Estruturada O objectivo da camada estruturada consiste em enca-
minhar as procuras para zonas da curia onde exista maior probabilidade de se

Curiata INForum 2010 – 223

encontrarem os recursos desejados. Para tal, uma fracção dos nós que perten-
cem à rede não-estruturada também se juntam a uma DHT (como o Chord [19]
ou o Pastry [18]). Estes nós são eleitos de forma a representarem uma categoria
associada aos recursos dos nós numa dada região da rede não-estruturada, e são
designados por cônsules regionais. A camada estruturada (a DHT), opera como
uma assembleia de representantes de cada uma das diferentes regiões no espaço
não-estruturado.

Eleição de Cônsules Em cada região de raio r na rede não-estruturada, se
existe uma categoria c que é a principal categoria de um nó (ou seja, a categoria
com a maior fracção na vista activa desse participante) nessa região, existe um
participante que representa c na DHT. Esse participante designa-se por cônsul
regional para a categoria c, ou simplesmente c-cônsul. Um c-cônsul junta-se à
DHT com um identificador constrúıdo através da concatenação dos bits mais
significativos de hash(c) com os bits menos significativos de hash(node id). Isto
garante que múltiplos contactos para a mesma categoria, em diferentes regiões,
têm identificadores diferentes mas, posicionam-se numa região consecutiva no
espaço de endereços da DHT.

Um c-cônsul usa a rede não-estruturada para periodicamente enviar um sinal
para os nós na sua vizinhança de raio r. Nós que recebem este sinal abstêm-se de
competir para se tornarem c-cônsules. Se um nó que possui a categoria c como
a sua principal categoria não receber nenhum sinal durante um determinado
intervalo de tempo, este decide competir com outros potenciais candidatos para
se tornar um contacto regional para c.

Para tal, esse nó envia para os nós na sua vizinhança de raio r um sinal de
promoção a cônsul. Passado um intervalo de tempo t pré-definido, caso o nó não
tenha recebido nenhum sinal de promoção proveniente de outro nó, ele considera
que a sua promoção teve sucesso e tenta juntar-se à camada estruturada. Quando
múltiplos nós competem, um protocolo de eleição (tipo bully) é utilizado para
seleccionar que nó se torna c-cônsul. Por exemplo, dando prioridade ao nó que
possua mais recursos da categoria a que se candidata.

Um nó que é eleito para ser um c-cônsul, pode utilizar um outro cônsul
de uma categoria c′ como ponto de contacto para se juntar à DHT ou, se não
conhecer nenhum, realiza um percurso aleatório na rede não-estruturada para
encontrar um nó que tenha o contacto de um cônsul.

Procuras Seguidamente descreve-se a forma como são executadas procuras no
nosso sistema. A nossa arquitectura não restringe o formato nem a linguagem
utilizada nas interrogações. Existe apenas um requisito: a partir da interrogação
deve ser posśıvel extrair o conjunto Q de categorias relevantes aos recursos alvo
da interrogação se direcciona. Por exemplo, assuma-se que a interrogação procura
por uma música por Aldina Duarte; assim sendo, terá que ser posśıvel extrair
categorias como Música, Fado e Portugal.

Uma procura é executada do seguinte modo: i) Primeiro, a interrogação é
encaminhada para um membro da DHT; ii) Seguidamente uma cópia da inter-
rogação é encaminhada para cada categoria c ∈ Q utilizando a DHT. Cada cópia
será recebida por um c-cônsul para essa categoria. De modo a promover balance-
amento de carga, para cada categoria c, a interrogação é encaminhada para um

224 INForum 2010 João Alverinho, João Leitão, João Paiva, Luis Rodrigues

identificador composto por hash(c)||{s bits aleatórios}. Isto garante que diferen-
tes interrogações são injectadas na camada não-estruturada através de diferentes
representantes dessa categoria; iii) Cada c-cônsul inicia um percurso aleatório de
comprimento k

|Q| na sua vizinhança. Estes percursos são guiados, sendo a inter-
rogação apenas encaminhada para vizinhos que possuam recursos da categoria
c; iv) Cada nó visitado pela interrogação executa-a e, caso possua os recursos
procurados, adiciona o seu identificador à interrogação; v) Finalmente, quando
a interrogação efectua um número máximo de saltos na rede, é retornada à fonte
a lista de todos os nós encontrados que satisfazem a interrogação.

O objectivo é processar cada interrogação com um custo de mensagem apro-
ximado k. No protótipo actual, o valor de k é estático. Contudo, k poderia ser
ajustado dinamicamente consoante uma estimativa da raridade do recurso a ser
procurado (por exemplo, baseado nos resultados retornados por procuras an-
teriores). Para recursos mais comuns um valor de k mais limitado poderá ser
suficiente para a localização dos mesmos, enquanto que para recursos raros pode
ser útil aumentar o número de saltos que o percurso aleatório pode efectuar na
rede.

O custo total de mensagens de uma interrogação é a soma de k
|Q| × |Q|, com

o custo de chegar a um membro da DHT a partir da fonte (tipicamente 1 salto),
e o número de saltos na DHT necessários para chegar ao c-cônsul respectivo (na
ordem de c · ln T onde T é o número de nós na DHT).

É posśıvel configurar o sistema de modo a promover um valor baixo de T ,
ajustando os valores de d (número de vizinhos de cada nó) e de r (raio do
sinal enviado pelos cônsules). Como trabalho futuro, pretendemos estudar formas
de ajustar os valores destes parâmetros em tempo de execução, por exemplo
de forma a diminuir o valor de r no caso de existir um pico ao número de
interrogações efectuadas, promovendo um aumento do número de cônsules e
assim, um melhor balanceamento de carga ao ńıvel dos nós na DHT.

4 Avaliação Experimental

Nesta secção apresentam-se os resultados obtidos com uma concretização do
nosso sistema para o simulador Peersim[10]. Para as experiências foi utilizada
uma rede com 10.000 nós e 11 categorias. A cada nó no sistema é atribúıda
uma categoria das onze. Os recursos na rede estão também eles associados a
uma única categoria e possuem um identificador único. Os recursos de cada ca-
tegoria c são alocados aleatoriamente em nós nessas categorias, existindo 5 nós
distintos na rede que tenham esse recurso. Configuraram-se os nós para terem
d = 20. A Tabela 1 sumariza o número de nós em cada categoria e o número
total de recursos únicos associados a cada categoria. O raio das regiões para
eleição de cônsules foi configurado com um valor de 2 e, neste cenário aproxi-
madamente 200 participantes são eleitos como cônsules e juntam-se à camada
estruturada(DHT). Consideramos ainda que cada categoria se insere numa das
3 classes de popularidade que se seguem: Categorias Raras: categorias com me-
nos de 100 nós (Categorias G a K); Categorias Intermédias: categorias com 100
a 1.000 nós (Categorias D a F); Categorias Comuns: categorias com mais de
1.000 nós (Categorias A a C).

Curiata INForum 2010 – 225

Nestas experiências foram realizadas 10.000 procuras, com origem em nós
aleatórios na rede, que foram definidas de forma a possúırem um único recurso
alvo. Mais à frente serão apresentados os resultados para categorias comuns e
raras.
Arquitecturas Avaliadas Comparamos o desempenho de quatro arquitectu-
ras diferentes:

Percursos Aleatórios numa Topologia Aleatória (PATA): Corresponde a um
sistema que utiliza apenas uma rede não-estruturada aleatória, onde não se aplica
um processo de auto-organização. Nesta arquitectura, não existe DHT e os vizi-
nhos não dependem da similaridade dos seus recursos.

Percursos Aleatórios Guiados numa Topologia Aleatória (PAGTA): Corres-
ponde a um sistema que usa uma rede não-estruturada aleatória, onde não existe
enviesamento da topologia. Contudo, nesta arquitectura as procuras são guiadas
utilizando um mecanismo similar ao utilizado no Curiata.

Percursos Aleatórios Guiados numa Topologia Enviesada (PAGTE): Cor-
responde a um sistema que utiliza uma rede não-estruturada enviesada pelo
mesmo processo de auto-organização utilizado no Curiata. Nesta arquitectura
as procuras também são guiadas. Contudo não existe DHT para encaminhar as
interrogações.

Curiata: Concretização completa da arquitectura descrita neste artigo.
Interrogações Nas simulações, cada interrogação é concretizada recorrendo a
um único percurso aleatório guiado com comprimento k = 128 ou k = 256. Este
comprimento é medido a partir do nó que produz a interrogação. Assim, todos
os saltos na rede são considerados, incluindo os saltos necessários para atingir o
cônsul mais perto na DHT para a categoria referente a cada interrogação.

Para simplificar a análise dos resultados, cada interrogação nas simulações
procura apenas por um único recurso. Dado que cada recurso está associado a
apenas uma categoria, esta categoria é utilizada para guiar a interrogação tanto
na arquitectura PAGTA, como na arquitectura PAGTE e também no Curiata.
Note-se que o facto de os recursos possúırem identificadores únicos é apenas
um artefacto de simulação. Como referido anteriormente, o Curiata permite a
utilização de interrogações arbitrariamente complexas. Assim, a procura por um
recurso espećıfico simula uma qualquer interrogação complexa que é satisfeita
apenas pelo recurso com esse identificador.
Métricas Nesta avaliação experimental consideramos as seguintes métricas:
i) Taxa de Sucesso: Percentagem de interrogações que encontram pelo menos

Categoria Nm. de nós Recursos Únicos Categoria Nm. de nós Recursos Únicos

A 5000 5 G 75 5
B 2500 5 H 40 5
C 1250 5 I 30 5
D 625 5 J 20 4
E 300 5 K 10 2
F 150 5

Tabela 1. Distribuição de recursos na rede

226 INForum 2010 João Alverinho, João Leitão, João Paiva, Luis Rodrigues

uma cópia do recurso procurado; ii) Recolha: Percentagem de cópias do recurso
procurado que é encontrada pela interrogação (em comparação com o número
total de cópias desse recurso existentes no sistema); iii) Latência: Número de
saltos necessários para encontrar x cópias do recurso procurado. Em particular,
estamos interessados nos valores de latência associados a encontrar 1, 2 e 3 cópias
do recurso.

Desempenho Global Apresentam-se agora os resultados globais para as in-
terrogações no cenário descrito acima. Neste caso os resultados não são discrimi-
nados de acordo com as diferentes classes de popularidade das categorias, dado
que o objectivo é fornecer uma visão geral do desempenho do Curiata.

Como ilustrado nas figuras Fig 1(a) e Fig 1(b), o Curiata possui um de-
sempenho superior às restantes arquitecturas em termos de taxas de sucesso e
recolha. Os valores de recolha para a arquitectura PATA quase duplicam quando
k passa de 128 para 256 dado que os percursos aleatórios conseguem explorar o
dobro dos nós. Note-se no entanto que o desempenho do Curiata é muito melhor
que as restantes soluções com k = 128. Isto é um claro sinal de que o Curiata
consegue atingir bons resultados mesmo com valores mais conservadores de k.

Naturalmente, num caso limite em que k seja um valor suficientemente grande,
todas as arquitecturas (PATA,PAGTA,PAGTE e Curiata) conseguiriam encon-
trar todos os recursos existentes na rede, atingindo taxas de Recolha e Sucesso
de 100%. No entanto a eficiência do Curiata, atingindo elevadas taxas de sucesso
e recolha, para valores baixos de k é um sinal claro do menor custo (em termos
de comunicação) da nossa solução.

(a) Recolha e Taxa de Sucesso (k = 128) (b) Recolha e Taxa de Sucesso(k = 256)

(c) Latência (k = 128) (d) Latência(k = 256)

Figura 1. Desempenho Global

Curiata INForum 2010 – 227

As figuras Fig 1(c) e Fig 1(d) apresentam os valores de latência. Devido ao
encaminhamento na DHT, o Curiata apresenta valores de latência significati-
vamente menores. Note-se que a falta de suporte da DHT leva a um cenário
onde não existem diferenças significativas no número de saltos necessários para
encontrar o primeiro resultado para uma interrogação. Adicionalmente, o envi-
esamento da topologia da curia combinado com a utilização da DHT permite
ao Curiata apresentar valores de latência mais baixos associados à localização
do segundo e terceiro resultados para cada interrogação. Note-se que o valor
de latência para o terceiro resultado utilizando PATA é igual a zero dado que
esta solução não localiza 3 resultados numa mesma interrogação para k=128. O
mesmo não sucede para k=256.

Dado que o rácio de sucesso não é de 100%, quando se altera o valor de k
de 128 para 256 o número de saltos na rede aumenta. Isto sucede devido ao au-

(a) Taxa de Sucesso (comuns) (b) Taxa de Sucesso (raras)

(c) Recolha (comuns) (d) Recolha (raras)

(e) Latência (comuns) (f) Latência (raras)

Figura 2. Desempenho das Procuras na Categorias Raras e Comuns

228 INForum 2010 João Alverinho, João Leitão, João Paiva, Luis Rodrigues

mento do número de interrogações que de facto conseguem localizar pelo menos
um resultado. Note-se que estes resultados apenas tomam em consideração o
número de saltos para interrogações que tiveram sucesso (isto explica os resulta-
dos apresentados na Fig 1(d), onde o número de saltos na rede necessários para
o terceiro resultado é menor do que para o segundo resultado quando k = 256
utilizando o Curiata).

Desempenho por Popularidade da Categoria A Fig 2 apresenta os resulta-
dos para interrogações que visam recursos em categorias raras (nomeadamente,
as categorias G, H, I, J , e K) e categorias comuns (as categorias A, B, e C). De-
vido a constrangimentos de espaço apenas exibimos os resultados para k = 256,
já que este é o melhor cenário para as restantes soluções consideradas.

Os resultados obtidos mostram que o Curiata não oferece vantagens signifi-
cativas para interrogações que visam recursos em categorias comuns. Isto sucede
porque a DHT não é necessária quando as categorias são muito populares (dado
que os recurso de categorias comuns estão dispońıveis em todas as regiões).
De facto, a performance do Curiata para categorias comuns é até ligeiramente
inferior à das arquitecturas PAGTE e PAGTA. Tal sucede dado que se torna des-
necessária a utilização da camada estruturada para encaminhar as interrogações
para zonas da curia correspondentes a essas categorias (dado estas serem muito
comuns).

Em contraste, o Curiata distingue-se no caso particular de interrogações rela-
tivas a recursos pertencentes a categorias raras. Neste caso, o Curiata consegue
atingir uma recolha e uma taxa de sucesso perfeitos sendo o seu desempenho
superior a todas as outras soluções em termos de latência. A Fig 2(f) mostra
pormenorizadamente os resultados para a latência apenas para as categorias ra-
ras J e K. Os resultados mostram que o Curiata oferece um ganho ao ńıvel
da latência muito significativo quando comparado com as restantes alternativas.
Isto advém do facto de a DHT posicionar as interrogações na região relevante da
camada não-estruturada de uma forma bastante precisa. Dado que estas regiões
são pequenas, o Curiata consegue facilmente visitar todos os nós relevantes e
assim localizar eficientemente todas as cópias dos recursos que são visados por
cada interrogação.

5 Conclusões

Neste artigo introduzimos o Curiata, uma arquitectura para localização de re-
cursos em sistemas P2P de larga escala. O Curiata combina técnicas de redes
estruturadas e não-estruturadas de modo a oferecer uma elevada recolha e baixa
latência para interrogações complexas que visam localizar recursos raros. O Cu-
riata não apresenta uma perda de desempenho na resolução de interrogações
relativas a recursos raros em categorias comuns quando comparado com outros
esquemas. Estes resultados indicam que, quando se procura por um recurso que
pertence a múltiplas categorias, são obtidos melhores resultados quando as ca-
tegorias mais raras são utilizadas de forma preferencial. Como trabalho futuro,
planeamos explorar mais aplicações para o Curiata. Por exemplo, planeamos
integrar a DHT Cubit [21] no Curiata para desenvolver uma infra-estrutura des-
centralizada de rastreio e localização de torrents que consiga lidar com erros
cometidos pelos utilizadores quando descrevem e classificam os conteúdos.

Curiata INForum 2010 – 229

Referências

1. Bittorrent. http://bittorrent.org/beps/bep_0003.html.
2. Coral. http://www.coralcdn.org/.
3. Gnutella. http://rfc-gnutella.sourceforge.net/.
4. Napster. http://www.napster.com.
5. An Analysis of the Skype Peer-to-Peer Internet Telephony Protocol, 2006.
6. A. Andrzejak and Z. Xu. Scalable, efficient range queries for grid information

services. In In Proc. of the 2nd P2P’02, page 33, Washington, DC, USA, 2002.
IEEE Comp. Society.

7. Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making
gnutella-like p2p systems scalable. In SIGCOMM ’03: Proc. of the 2003 conference,
pages 407–418, New York, NY, USA, 2003. ACM.

8. A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In
Proc. of the 22nd ICDCS’02, pages 23–32, 2002.

9. C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in peer-to-peer networks:
algorithms and evaluation. Perform. Eval., 63(3):241–263, 2006.

10. M. Jelasity, A. Montresor, G. P. Jesi, and S. Voulgaris. The Peersim simulator.
http://peersim.sf.net.

11. E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Leboisky. Seti@home-
massively distributed computing for seti. Computing in Science and Engineering,
3(1):78–83, Jan/Feb 2001.

12. J. Leitão, J. P. Marques, J. Pereira, and L. Rodrigues. X-bot: A protocol for
resilient optimization of unstructured overlays. In Proc. of the 28th IEEE SRDS’09,
pages 236–245, Niagara Falls, New York, U.S.A., September 2009.

13. J. Leitão, J. Pereira, and L. Rodrigues. Hyparview: a membership protocol for
reliable gossip-based broadcast. In Proc. of the 37th IEEE/IFIP DSN’07, pages
419–429, Edinburgh, UK, June 2007.

14. Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in uns-
tructured peer-to-peer networks. In ICS ’02: Proceedings of the 16th international
conference on Supercomputing, pages 84–95, New York, NY, USA, 2002. ACM.

15. R. Raman, M. Livny, and M. Solomon. Matchmaking: An extensible framework
for distributed resource management. Cluster Computing, 2(2):129–138, 1999.

16. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable
content-addressable network. In Proc. of the 2001 ACM SIGCOMM Conference,
volume 31, pages 161–172, New York, NY, USA, October 2001. ACM.

17. P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword searching. In (Unpu-
blished Manuscript), pages 21–40, 2002.

18. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In IFIP/ACM Int. Conf. on Distri-
buted Systems Platforms, pages 329–350, November 2001.

19. I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. In SIGCOMM ’01,
pages 149–160, New York, NY, USA, 2001. ACM.

20. D. Tsoumakos and N. Roussopoulos. Analysis and comparison of p2p search
methods. In InfoScale ’06: Proceedings of the 1st international conference on Sca-
lable information systems, page 25, New York, NY, USA, 2006. ACM.

21. B. Wong, A. Slivkins, and E. G. Sirer. Approximate matching for peer-to-peer over-
lays with cubit. Technical report, Computing and Information Science Technical
Report, Cornell University, Dec. 2008.

22. Beverly Yang and Hector Garcia-Molina. Designing a super-peer network. Data
Engineering, International Conference on, 0:49, 2003.

230 INForum 2010 João Alverinho, João Leitão, João Paiva, Luis Rodrigues

Evaluating Data Freshness in
Large Scale Replicated Databases?

Miguel Araújo and José Pereira

Universidade do Minho

Abstract. There is nowadays an increasing need for database replica-
tion, as the construction of high performance, highly available, and large-
scale applications depends on it to maintain data synchronized across
multiple servers. A particularly popular approach, used for instance by
Facebook, is the MySQL open source database management system and
its built-in asynchronous replication mechanism. The limitations imposed
by MySQL on replication topologies mean that data has to go through
a number of hops or each server has to handle a large number of slaves.
This is particularly worrisome when updates are accepted by multiple
replicas and in large systems.
It is however difficult to accurately evaluate the impact of replication in
data freshness, since one has to compare observations at multiple servers
while running a realistic workload and without disturbing the system
under test. In this paper we address this problem by introducing a tool
that can accurately measure replication delays for any workload and then
apply it to the industry standard TPC-C benchmark. This allows us to
draw interesting conclusions about the scalability properties of MySQL
replication.

Keywords: Databases, Replication, MySQL, Data Freshness

1 Introduction

With the rapid growth of the Internet, availability has recently became critical
due to large amounts of data being captured and used each day with the emerg-
ing online services. Large companies such as Google, eBay, or Amazon handle
exabytes of data per year. Facebook claims to be one of the largest MySQL
installations running thousands of servers handling millions of queries, comple-
mented by its own Cassandra data store for some very specific queries. These
Internet-based services have become a standard in our information society, sup-
porting a wide range of economic, social, and public activities. And in this glob-
alized era, since large organizations are present in different places all over the
world, information must be always online and available. The loss of information
or its unavailability can lead to serious economic damages. So, high-availability,
performance, and reliability are all critical requirements in such systems.
? Partially funded by project ReD – Resilient Database Clusters (PDTC / EIA-EIA

/ 109044 / 2008).

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 231–242

Both of these challenges are commonly addressed by means of the same tech-
nique, namely data replication. Application components must be spread over a
wide area network, providing solutions that enable high availability through net-
work shared contents. Since databases are more and more deployed on clusters
and over wide area networks, replication is a key component. Replicating data
improves fault-tolerance since the failure of a site does not make a data item
inaccessible. Available sites can take over the work of failed ones. And also im-
proves performance since data access can be localized over the database network,
i.e. transaction load is distributed across the replicas, achieving load balancing,
and in the other hand it can be used to provide more computational resources, or
allow data to be read from closer sites reducing the response time and increasing
the throughput of the system.

There are however several different replication protocols, differing first and
foremost whether propagation takes place within transaction boundaries [3]: Lazy
schemes use separate transactions for execution and propagation, in contrast to
eager schemes that distribute updates to replicas in the context of the origi-
nal updating transaction. Thus, the eager method makes it easy to guarantee
transaction properties, such as serializability but, since such transactions are
distributed and relatively long-lived, the approach does not scale well [2]. On
the other hand, lazy replication reduces response times as transactions can be
executed and committed locally and only then propagated to other sites [4]. In
detail, being replicated asynchronously, data is first written on the master server
and then is propagated to slaves, and so, specially in the case of hundreds of
servers, slaves will take some time to obtain the most recent data. Lazy propa-
gation thus opens up the possibility of having stale data in replicas and makes
data freshness a key issue for correctness and performance.

Most database management systems implement asynchronous master-slave
replication. The systems provide mechanisms for master-slave replication that
allows configuring one or more servers as slaves of another server, or even to
behave as master for local updates. MySQL in particular allows almost any
configuration of master and slaves, as long as each server has at most one master.
As described in Section 2, this usually leads to a variety of hierarchical replication
topologies, but includes also a ring which allows updates to be performed at any
replica, as long as conflicts are avoided.

It is thus interesting to assess the impact of replication topology in MySQL,
towards maximizing scalability and data freshness. This is not however easy to
accomplish. First, it requires comparing samples obtained at different replicas
and thus on different time referentials, or, when using a centralized probe, net-
work round-trip has to be accounted for. Second, the number of samples that
can be obtained has to be small in order not to introduce a probing overhead.
Finally, the evaluation should be performed while the system is running a real-
istic workload, which makes it harder to assess the point-in-time at each replica
with a simple operation. In this paper we address these challenges by making
the following contributions:

232 INForum 2010 Miguel Araújo and José Pereira

– We describe a tool that obtains a small number of samples of log sizes using
a centralized probe at different points in time. It then selects particularly
interesting periods of time and computes a freshness value with the distance
between lines fitted to these points.

– We apply the tool to two representative MySQL configurations with a vary-
ing number of replicas and increasingly large workloads using the industry
standard TPC-C on-line transaction processing benchmark [1]. This allows
us to derive conclusions on the scalability of MySQL replication.

The rest of the paper is structured as follows: Section 2 describes the MySQL
replication architecture in detail. In Section 3, the method and tool used to
achieve this goal is presented. Section 4 presents the results obtained and Sec-
tion 5 concludes the paper.

2 Background

MySQL, as most database management systems do, implements asynchronous
master-slave replication. It allows configuring each server as slave of any other
server while simultaneously behaving as master for local updates. The config-
uration of replication allows an arrangement of masters and slaves in different
topologies and it is possible to replicate the entire server, replicate only certain
databases or to choose what tables to replicate.

2.1 Replication Mechanism

The replication mechanism of MySQL, works at a high level in a simple three-
part process:

1. The master records changes to its data in its binary log (these records are
called binary log events).

2. The slave copies the master’s binary log events to its own log (relay log).
3. The slave replays the events in the relay log, applying the changes to its own

data.

Briefly, after writing the events to the binary log, the master tells the storage
engine to commit the transactions. The next step is for the slave to start an I/O
thread to start the dump. This process reads events from the master’s binary
log. If there are events on the master, the thread writes them on the relay log.
Finally, a thread in the slave called SQL thread reads and replay events from
the relay log, thus updates slave’s data to match the master’s data. To notice
that the relay log usually stays in the operating system’s cache, having very low
overhead.

This replication architecture decouples the processes of fetching and replaying
events on the slave, which allows them to be asynchronous. That is, the I/O
thread can work independently of the SQL thread. It also places constraints
on the replication process, the most important of which is that replication is

Evaluating Data Freshness ... INForum 2010 – 233

(a) Master and multiple slaves (b) Ring

(c) Chain (d) Tree

Fig. 1. Sample MySQL replication topologies.

serialized on the slave. This means updates that might have run in parallel (in
different threads) on the master cannot be parallelized on the slave, which is a
performance bottleneck for many workloads.

2.2 Replication Topologies

The simplest topology besides Master-Slave is Master and Multiple Slaves
(Figure 1(a)). In this topology, slaves do not interact with each other at all, they
all connect only to the master. This is a configuration useful for a system that
has few writes and many reads. However, this configuration is scalable to the
limit that the slaves put too much load on the master or network bandwidth
from the master to the slaves becoming a problem.

Other possible configuration is Master-Master in Active-Active Mode.
This topology involves two servers, each configured as both a master and slave
of the other. The main bottleneck in this configuration resides on how to handle
conflicting changes.

A variation on master-master replication that avoids the problems of the pre-
vious is the Master-Master in Active-Passive mode replication. The main
difference is that one of the servers is a read-only ”passive” server. This configu-
ration permits swapping the active and passive server roles back and forth very

234 INForum 2010 Miguel Araújo and José Pereira

easily, because the servers configurations are symmetrical. This makes failover
and failback easy.

The related topology of the previous ones is Master-Master with Slaves.
The advantage of this configuration is extra redundancy. In a geographically
distributed replication topology, it removes the single point of failure at each
site.

One of the most common configuration in database replication, is the Ring
topology (Figure 1(b)). A ring has three or more masters. Each server is a slave of
the server before it in the ring, and a master of the server after it. This topology
is also called circular replication. Rings do not have some of the key benefits of a
master-master setup, such as symmetrical configuration and easy failover. They
also depend completely on every node in the ring being available, which greatly
increases the probability of the entire system failing. And if you remove one of
the nodes from the ring, any replication events that originated at that node can
go into an infinite loop. They will cycle forever through the topology, because
the only server that will filter out an event based on its server ID is the server
that created it. In general, rings are brittle and best avoided. Some of the risks
of ring replication can be decreased by adding slaves to provide redundancy at
each site. This merely protects against the risk of a server failing, though.

Another possibility, regarding some certain situations where having many
machines replicating from a single server requires too much work for the master,
or the replication is to spread across a large geographic area that chaining the
closest ones together gives better replication speed, is the Daisy Chain (Figure
1(c)). In this configuration each server is set to be a slave server to one machine
as as master to another in a chain. Again, like the ring topology the risk of losing
a server can the decreased by adding slaves to provide redundancy at each site.

The other most common configuration is the Tree or Pyramid topology
(Figure 1(d)). This is very useful in the case of replicating a master to a very
large number of slaves. The advantage of this design is that it eases the load on
the master, just as the distribution master did in the previous section. The dis-
advantage is that any failure in an intermediate level will affect multiple servers,
which would not happen if the slaves were each attached to the master directly.
Also, the more intermediate levels you have, the harder and more complicated
it is to handle failures.

2.3 Data Freshness

Data replication must ensure ACID properties and copy consistency must be
preserved through global isolation [6]. To ensure global isolation a transaction
that modifies data must update all its copies before any other transaction can
access the data. Property known as 1-copy serializability. This property can be
ensured with synchronous replication, in which a transaction updates all repli-
cas, enforcing the mutual consistency of all replicas. However, this replication
model increases the transaction latency because extra messages are added to the
transaction (distributed commit protocol).

Evaluating Data Freshness ... INForum 2010 – 235

On the other hand, lazy replication updates all the copies in separate trans-
actions, so the latency is reduced in comparison with eager replication. A replica
is updated only by one transaction and the remain replicas are updated later on
by separate refresh transactions [7].

Although there are concurrency control techniques and consistency criterion
which guarantee serializability in lazy replication systems, these techniques do
not provide data freshness guarantees. Since transactions may see stale data,
they may be serialized in an order different from the one in which they were
submitted.

So, asynchronous replication leads to periods of time that copies of the same
data diverge. Some of them have already the latest data introduced by the last
transaction, and others have not. This divergence leads to the notion of data
freshness: The lower the divergence of a copy in comparison with the other
copies already updated, the fresher is the copy [5].

MySQL replication is commonly known as being very fast, as it depends
strictly on the the speed that the engine copies and replays events, the network,
the seize of the binary log, and time between logging and execution of a query [8].
However, there have not been many systematic efforts to precisely characterize
the impact on data freshness.

One approach is based on the use of a User Defined Function returning the
system time with microsecond precision [8]. Inserting this function’s return value
on the tables we want to measure and comparing it to the value on the respective
slave’s table we can obtain the time delay between them. But this measurements
can only be achieved on MySQL instances running on the same server due to
clock inaccuracies between different machines.

A more practical approach uses a Perl script and the Time::HiRes module to
get the system time with seconds and microseconds precision.1 The first step is
to insert that time in a table on the master, including the time for the insertion.
After this, the slave is queried to get the same record and immediately after
the attainment of it the subtraction between system’s date and time got from
the slave’s table is made, obtaining the replication time. As with the method
described above this one lacks of accuracy due to the same clock inaccuracies.

3 Measuring Propagation Delay

3.1 Approach

Our approach is based on using a centralized probe to periodically query each
of the replicas, thus discovering what has been the last update applied. By
comparing such positions, it should be possible to discover the propagation delay.
There are however several challenges that have to be tackled to obtain correct
results, as follows.

1 http://datacharmer.blogspot.com/2006/04/measuring-replication-speed.html

236 INForum 2010 Miguel Araújo and José Pereira

Master

Slave

Monitor

Fig. 2. Impossibility to probe simultaneously master and slaves.

x

o

x

o
ox

o
o

x

x
sample

o - slave
x - master

Lo
g

po
s i

tio
n

Time

Fig. 3. Log position over the time

Measuring updates. The first challenge is to determine by how much two replicas
differ and thus when two replicas have applied exactly the same amount of
updates. Instead of trying to compare database content, which would introduce
a large overhead, or using a simple database schema and workload that makes
it easy, we use the size of the transactional log itself. Although this does not
allow us to measure logical divergence, we can determine when two replicas are
exactly with the same state.

Non-simultaneous probing. The second challenge is that, by using a single cen-
tralized probe one cannot be certain that several replicas are probed at exactly
the same time. Actually, as shown in (Figure 2), if the same monitor periodically
monitors several replicas it is unlikely that this happens at all. This makes it
impossible to compare different samples directly.

Instead, as shown in (Figure 3) we consider time–log position pairs obtained
by the monitor and fit a line to them (using the least-squares method). We can
then compute the distance of each point obtained from other replicas to this line
along the time axis. This measures how much time such replica was stale.

Evaluating Data Freshness ... INForum 2010 – 237

Master

Slave

Monitor

Fig. 4. Sampling twice without updates erroneously biases the estimate.

Eliminating quiet periods. Moreover, as replication traffic tends to be bursty. If
one uses repeated samples of a replica that stands still at the same log position,
the estimate is progressively biased towards a (falsely) higher propagation delay,
as shown in (Figure 4). This was solved by selecting periods where line segments
obtained from both replicas have a positive slope, indicating activity.

Dealing with variability. Finally, one has to deal with variability of replication
itself and over the network used for probing. This is done by considering a
sufficient amount of samples and assuming that each probe happens after half of
the observed round-trip. Moreover, a small percentage of the highest round-trips
observed is discarded, to remove outliers.

3.2 Implementation

An application to interrogate the master instance and several replicas of the
distributed database scheme was developed. This tool stores the results in a file
for each instance. To obtain the log position it uses the MySQL API in order to
obtain the replication log position. The temporal series of observed log positions
are then stored in separate files, one for each node of the distributed database.

Results are then evaluated off-line using the Python programming language
and R statistics package. This script filters data as described and then adjusts
a line to the values of the log files and compares them. This includes looking for
periods of heavy activity and fitting line segments to those periods. With these
line segments, the script compares each slave points with the corresponding
segment on the master, if the segment does not exist for the selected point,
the point is ignored. In the end, average is calculated based on the difference
of values between slave points and corresponding segments on the master. A
confidence interval can also be computed, using the variance computed from the
same data.

238 INForum 2010 Miguel Araújo and José Pereira

4 Experiments

4.1 Workload

In order to assess the distributed database used in the case study, we have chosen
the workload model defined by TPC-C benchmark [1], a standard on-line trans-
action processing (OLTP) benchmark which mimics a wholesale supplier with a
number of geographically distributed sales districts and associated warehouses.
Specifically, we used the Open-Source Development Labs Database Test Suit 2
(DBT-2), a fair usage implementation of the specification.

Although TPC-C includes a small amount of read-only transactions, it is
composed mostly by update intensive transactions. This choice makes the master
server be almost entirely dedicated to update transactions even in a small scale
experimental setting, mimicking what would happen in a very large scale MySQL
setup in which all conflicting updates have to be directed at the master while
read-only queries can be load-balanced across all remaining replicas.

Each client is attached to a database server and produces a stream of trans-
action requests. When a client issues a request it blocks until the server replies,
thus modeling a single threaded client process. After receiving a reply, the client
is then paused for some amount of time (think-time) before issuing the next
transaction request. The TPC-C model scales the database according to the
number of clients. An additional warehouse should be configured for each addi-
tional ten clients. The initial sizes of tables are also dependent on the number
of configured clients.

During a simulation run, clients log the time at which a transaction is sub-
mitted, the time at which it terminates, the outcome (either abort or commit)
and a transaction identifier. The latency, throughput and abort rate of the server
can then be computed for one or multiple users, and for all or just a subclass of
the transactions. The results of each DBT-2 run include also CPU utilization,
I/O activity, and memory utilization.

4.2 Setting

Two replication schemes were installed and configured. A five machines topology
of master and multiple slaves, and a five machine topology in daisy chain.

The hardware used included six HP Intel(R) Core(TM)2 CPU 6400 - 2.13GHz
processor machines, each one with one GByte of RAM and SATA disk drive. The
operating system used is Linux, kernel 2.6.31-14, from Ubuntu Server, and the
database engine used is MySQL 5.1.39. All machines are connected through a
LAN, and are named PD01 to PD06. Being PD01 the master instance, PD04
the remote machine in which the interrogation client executes, and the others
the slave instances.

The following benchmarks were done using the workload TPC-C with the
scale factor (warehouses) of two, number of database connections (clients) one
hundred and the duration of twenty minutes.

Evaluating Data Freshness ... INForum 2010 – 239

Replica PD02 PD03 PD05 PD06

Number of samples 15238 15121 15227 15050
Average delay (µs) 10133 10505 10249 10260
99% confidence interval (±) 363 373 412 378

Table 1. Results for master and multiple slaves topology with 100 clients.

0

1100

2200

3300

4400

5500

6600

7700

8800

9900

11000

Clients

PD02 PD03 PD05 PD06

D
el

ay
 A

ve
ra

ge
 (
µs
)

20 40 60 80 100

Fig. 5. Scalability of master and multiple slaves topology.

4.3 Results

Results obtained with 100 TPC-C clients and the master and multiple slaves
topology are presented in (Table 1). It can be observed that all replicas get
similar results and that the propagation delay is consistently measured close to
10 ms with a small variability. This represents an upper bound on the worst case
scenario staleness that a client can observe by reading from the master and any
other replica if the replication connection is operational.

Results with an different numbers of TPC-C clients can be found in (Figure
5). They show that propagation delay grows substantially with the load imposed
on the master. At the same time, as idle periods get less and less frequent due
to the higher amount of information to transfer, the probability of a client being
able to read stale data grows accordingly.

Results obtained with 100 TPC-C clients and the chain topology are pre-
sented in (Table 2). In contrast to master and multiple slaves, the delay now
grows as the replica is farther away for the master. This configuration also gives
an indication of how the ring topology would perform: As any replica would

240 INForum 2010 Miguel Araújo and José Pereira

Replica PD02 PD03 PD05 PD06

Number of samples 12423 12819 12937 14004
Average delay (µs) 12353 19767 25698 30688
99% confidence interval (±) 557 700 864 984

Table 2. Results for chain topology with 100 clients.

0

3200

6400

9600

12800

16000

19200

22400

25600

28800

32000

20 40 60 80 100

PD02 PD03 PD05 PD06

Clients

D
el

ay
 A

ve
ra

ge
 (
µs
)

Fig. 6. Scalability of the chain topology.

be, on average, half way to other masters, one should expect the same delay as
observed here on replicas PD03 and PD05.

Results with an increasing number of TPC-C clients can also be found in
(Figure 6), showing that propagation delay still grow substantially with the load
imposed on the master. This means that using the ring configuration for write
scalability with suffer the same problem, thus limiting its usefulness.

5 Conclusions

Asynchronous, or lazy, database replication is often the preferred approach for
achieving large scale and highly available database management systems. In
particular, the replication mechanism in MySQL is at the core of some of the
largest databases in use today for Internet applications. In this paper we set
out to evaluate the consequences on data freshness of the choice of replication
topologies and of a growing workload.

Evaluating Data Freshness ... INForum 2010 – 241

In short, our approach measures freshness in terms of time required for up-
dates performed at the master replica to reach each slave while using a realistic
update-intensive workload, as the proposed tool can infer freshness from a small
number of samples taken at different points in time at different replicas. Ex-
perimental results obtained with this tool show that, in both tested replication
topologies, the delay grows with the workload which limits the amount of up-
dates that can be handled by a single replica. Moreover, we can also conclude
that in circular replication the delay grows as the number of replicas increases,
which means that spreading updates across several replicas does not improve
update scalability. Finally, the delay grows also with the number of slaves at-
tached to each master, which means that read scalability can also be achieved
only at the expense of data freshness.

The conclusion is that the apparently unlimited scalability of MySQL using
a combination of different replication topologies can only be achieved at the
expense of an increasing impact in data freshness. The application has thus to
explicitly deal with stale data in order to minimize or prevent the user from
observing inconsistent results.

References

1. Transaction Processing Performance Council. TPC BenchmarkTM C standard spec-
ification revision 5.11, February 2010.

2. K. Daudjee and K. Salem. Lazy database replication with ordering guarantees.
Proceedings of the 20th International Conference on Data Engineering (ICDE 2004),
30:424–435, 2004.

3. J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and
a solution. Proceedings of the 1996 ACM SIGMOD international conference on
Management of data, page 173, 1996.

4. B. Kemme. Database replication for clusters of workstations. PhD thesis, Technische
Wissenschaften ETH Zürich, Zürich, 2000.

5. C. Le Pape, S. Gancarski, and P. Valduriez. Data quality management in a database
cluster with lazy replication. Journal of Digital Information Management (JDIM),
3(2), 2005.

6. M. Özsu and P. Valduriez. Distributed and parallel database systems. ACM Com-
puting Surveys (CSUR), 28(1):125–128, 1996.

7. E. Pacitti, P. Minet, and E. Simon. Fast algorithms for maintaining replica con-
sistency in lazy master replicated databases. Research Report RR-3654, INRIA,
1999.

8. B. Schwartz, J. D. Zawodny, D. J. Balling, V. Tkachenko, and P. Zaitsev. High Per-
formance MySQL: Optimization, Backups, Replication, and More; 2nd ed. O’Reilly,
2008.

242 INForum 2010 Miguel Araújo and José Pereira

Exploring Fault-tolerance and Reliability in a
Peer-to-peer Cycle-sharing Infrastructure

João Paulino ?, Paulo Ferreira, and Lúıs Veiga

INESC-ID/IST
Rua Alves Redol No9, 1000-029, Lisboa, Portugal

joaopaulino@ist.utl.pt,{paulo.ferreira, luis.veiga}@inesc-id.pt

Abstract. The partitioning of a long running task into smaller tasks
that are executed separately in several machines can speed up the exe-
cution of a computationally expensive task. This has been explored in
Clusters, in Grids and lately in Peer-to-peer systems. However, transpos-
ing these ideas from controlled environments (e.g., Clusters and Grids)
to public environments (e.g., Peer-to-peer) raises some reliability chal-
lenges: will a peer ever return the result of the task that was submitted
to it or will it crash? and even if a result is returned, will it be the ac-
curate result of the task or just some random bytes? These challenges
demand the introduction of result verification and checkpoint/restart
mechanisms to improve the reliability of high performance computing
systems in public environments. In this paper we propose and analyse a
twofold approach: i) two checkpoint/restart mechanisms to mitigate the
volatile nature of the participants; and ii) various flavours of replication
schemes for reliable result verification.

Keywords: fault-tolerance, result verification, checkpoint/restart, cycle-
sharing, public computing

1 Introduction

The execution of long running applications has always been a challenge. Even
with the latest developments of faster hardware, the execution of these is still
infeasible by common computers, for it would take months or even years. Even
though super-computers could speed up these executions to days or weeks, al-
most no one can afford them. The idea of executing these in several common
machines parallely was firstly explored in controlled environments [19, 3, 9, 4] and
was later transposed to public environments [2, 12]. Although they are based on
the same principles, new challenges arise from the characteristics of public envi-
ronments.

Clusters [19, 3] and Grids [9, 4, 13] have been very successful in accelerat-
ing computationally intensive tasks. The major difference between these is that
? This work was supported by FCT (INESC-ID multiannual funding) through the

PIDDAC Program funds. João Paulino and this work were supported by FCT re-
search project GINGER - PTDC/EIA/73240/2006

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 243–254

while clusters use dedicated machines in a local network, grids consider the op-
portunistic use of workstations owned by institutions around the Globe. Both
systems are composed by well managed hardware, trusted software and a near
24 hour per day uptime. Public computing [2, 12, 1, 5, 10, 15] stems from the fact
that the World’s computing power and disk space is no longer exclusively owned
by institutions. Instead, it is distributed in the hundreds of millions of personal
computers and game consoles belonging to the general public. These systems face
new challenges inherent to their characteristics: less reliable hardware, untrusted
software and unpredictable uptime.

One of the several public computing projects is GINGER (Grid Infrastruc-
ture for Non Grid EnviRonments), in the context of which the work of this paper
has been developed. GINGER [20] proposes an approach based on a network of
favours where every peer is able to submit his work-units to be executed on other
peers and execute work-units submitted by other peers as well. A specific goal of
GINGER is that in order to be able to run an interesting variety of applications
without modifying them, GINGER proposes the concept of Gridlet, a semantics-
aware unit of workload division and computation off-load (basically the data, an
estimate of the cost, and the code or a reference to it). Therefore, GINGER is
expected to run applications such as audio and video compression, signal pro-
cessing related to multimedia content (e.g., photo, video and audio enhancement,
motion tracking), content adaptation (e.g., transcoding), and intensive calculus
for content generation (e.g., ray-tracing, fractal generation).

The highly transient nature of the participants in the system may origin a
constant loss of already performed work when a peer fails/leaves or even the
never ending of a task, if no peer is ever enough time available to accomplish
it. To mitigate this, checkpointing/restart mechanisms shall be able to save the
state of a running application to safe storage during the execution. Allowing it
to be resumed in another peer from the point when it was saved if necessary.

The participants of the system are not trusted, so are the results they return.
Results may be invalid (e.g., either corrupted data or format non-compliance), or
otherwise valid but in disagreement with input data (e.g., repeated results from
previous executions with different input, especially one computationally lighter).
Therefore, result verification mechanisms shall be able to check the correctness
of the results.

In the next Section, we address the relevant related work to ours. In Section
3, we propose result verification techniques and checkpoint/restart mechanisms.
In Section 4 we provide a description of our implementation. In Section 5, we
evaluate the proposed techniques. Section 6 concludes.

2 Related Work

In Section 2.1 we review the main approaches to provide an application with
checkpoint/restart capabilities; in Section 2.2 we analyse the techniques that
are mainly used to verify the correctness of the results.

244 INForum 2010 João Paulino, Paulo Ferreira,Lúıs Veiga

2.1 Checkpoint/Restart

Checkpoint/restart is a primordial fault-tolerance technique. Long running ap-
plications usually implement checkpoint/restart mechanisms to minimize the
loss of already performed work when a fault occurs [16, 8]. Checkpoint consists
in saving a program’s state to stable storage during fault-free execution. Restart
is the ability to resume a program that was previously checkpointed. To provide
an application with these capabilities, various approaches have been proposed:
Application-level [2, 12] , Library-level [18, 14] and System-level [21].

Application-level Checkpoint/Restart Systems. These systems do not use
any operating system support. These are usually more efficient and produce
smaller checkpoints. They also have the advantage of being portable1. These
checkpointing mechanisms are implemented within the application code, requir-
ing a big programming effort. Checkpointing support built in the application is
the most efficient, because the programmer knows exactly what must be saved
to enable the application to restart. Though, this approach has some drawbacks:
it requires major modifications to application’s source code (its implementation
is not transparent 2 to the application); the application will take checkpoints by
itself and there is no way to order the application to checkpoint if needed; it
may be hard, if not impossible, to restart an application that was not initially
designed to support checkpointing; and it is a very exhaustive task to the pro-
grammer. This programming effort can be minimized using pre-processors that
add checkpointing code to the application’s code, though they usually require the
programmer to state what needs to be saved (e.g., through flagged/annotated
code). Public computing systems like Seti@home [2] and Folding@home [12] use
this checkpointing solution.

Library-level Checkpoint/Restart Systems. This approach consists in link-
ing a library with the application, that creates a layer between the application
and the operating system. This layer has no semantic knowledge of the applica-
tion and cannot access kernel’s data structures (e.g., file descriptors), so this layer
has to emulate operating system calls. The major advantage is that a portable
generic checkpointing mechanism could be created, though it is very hard to
implement a generic model to checkpoint any application. This checkpointing
method requires none or very few modifications to the application’s code. This
approach has been explored by libckpt [18] and Condor [14].

System-level Checkpoint/Restart Systems. These systems are built as an
extension of the operating system’s kernel [21], therefore they can access kernel’s
data structures. Checkpointing can consist in flushing all the process’s data and
control structures to stable storage. Since these mechanisms are external to the
application they do not require specific knowledge of it, and they require none

1 Portability is the ability of moving the checkpoint system from one platform to
another.

2 Transparency is the ability of checkpointing an application without modifying it.

Exploring Fault-tolerance ... INForum 2010 – 245

or minimal changes to the application. They have the obvious disadvantage of
not being portable and usually more inefficient than application-level.

2.2 Result Verification

The results returned by the participants may be wrong due either to failures or
malicious behaviour. Failures occasionally produce erroneous results that must
be identified. Malicious participants create bad results that are intentionally
harder to detect. Their motivation is to discredit the system, or to grow a rep-
utation for work they have not executed (i.e., to cheat the public computing
system and exploit other participants’ resources).

Replication. One of the most effective methods to identify bad results is through
redundant execution. In these schemes the same job is performed by N different
participants (N being the replication factor). The results are compared using
voting quorums, and if there is a majority the corresponding result is accepted.
Since, it is virtually impossible for a fault or independent byzantine behaviour
to produce the same bad result more than once, this technique easily identifies
and discards the bad ones. However, if a group of participants colludes it may
be hard to detect a bad result [17, 6]. Another disadvantage is the massive over-
head it generates. Most of the public computing projects [2, 12] use replication
to verify their results, it is a high price they are willing to pay to ensure their
results are reliable. However, when there is no collusion, it is virtually capable
of identifying all the bad results with 100% certainty.

Hash-trees. Cheating participants can be defeated if they are forced to cal-
culate a binary hash-tree from their results, and return it with them [7]. The
submitting peer only has to execute a small portion of a job and calculate its
hash. Then, when receiving results, the submitting peer compares the hashes
and verifies the integrity of the hash-tree. This dissuades cheating participants
because finding the correct hash-tree requires more computation than actually
performing the required computation and producing the correct results. The
leafs of the hash tree are the results we want to check. The hash is calculated us-
ing two consecutive parts of the result concatenated, starting by the leafs. Once
the tree is complete, the submitting peer executes a random sample of the whole
work that corresponds to a leaf. Then this result is compared to the returned
result and the hashes of the whole tree are checked. Hash-trees make cheating
not worthwhile. They have a relative low overhead: a small portion of the work
has to be executed locally and the hash tree must be checked.

Quizzes. Quizzes are jobs whose result is known by the submitter a priori.
Therefore, they can test the honesty of a participant. Cluster Computing On
the Fly [15] proposed two types of quizzes: stand-alone and embedded quizzes.

Stand-alone quizzes are quizzes disguised as normal jobs. They can test if the
executing peer executed the job. These quizzes are only useful when associated
with a reputation mechanism that manages the trust levels of the executing peers

246 INForum 2010 João Paulino, Paulo Ferreira,Lúıs Veiga

[11]. Though, the use of the same quiz more than once can enable malicious peers
to identify the quizzes and to fool the reputation mechanisms. The generation
of infinite quizzes with known results incurs considerable overhead.

Embedded quizzes are smaller quizzes that are placed hidden into a job, the
job result is accepted if the results of the embedded-quizzes match the previ-
ously known ones. These can be used without a reputation system. Though, the
implementation tends to be complex in most cases. Developing a generic quiz
embedder is a software engineering problem that has not been solved so far.

3 Architecture

In section 3.1 we propose two checkpointing mechanisms that enable GINGER
to checkpoint and restart any application; in section 3.2 we discuss result verifi-
cation techniques that we implemented in GINGER, we consider various flavours
of replication and a straightforward sampling technique.

3.1 Checkpoint/Restart Mechanisms

In GINGER we want to provide a wide range of applications with checkpoint/restart
capabilities, while keeping them portable to be executed on cycle-sharing par-
ticipant nodes, and without having to modify them. Library-level is the only ap-
proach in the related work that would fit. However, an approach simply stating
these goals is still far from being able to checkpoint any application. Therefore,
we propose two mechanisms that will enable us to checkpoint any application.

Generic Checkpoint/Restart. An application can be checkpointed if we run
it on top of virtual machine with checkpoint/restart capabilities (e.g., qemu),
being the application state saved within the virtual machine state. This also pro-
vides some extra security to the clients, since they can be executing untrusted
code. The major drawback of this approach is the size of the checkpoint data,
incurring considerable transmission overhead. To attenuate this: 1) we assume
that one base-generic running checkpoint image is accessible to all the peers;
2) the applications start their execution on top of this image once it is locally
resumed; and 3) at checkpoint time we only transmit the differences between
the current image and the base-image. The checkpoint data size can be further
reduced using various techniques: optimized operating systems (e.g., just enough
operating system or JeOS); differencing not only the disk but also the volatile
state; and applying compression to the data. This approach does not have se-
mantic knowledge of the applications, it cannot preview results. However we
may be able to show some statistical data related to the execution and highlight
where changes have occurred.

Result Checkpoint/Restart. This technique will only be fit for some appli-
cations and demands the implementation of specific enabling mechanisms for
each application. The idea behind this technique is that the applications pro-
duce final results incrementally during their execution. Therefore, if we are able

Exploring Fault-tolerance ... INForum 2010 – 247

to capture the partial results during execution and resume execution from them
later, such result files can actually serve as checkpoint data. This creates a very
efficient checkpointing mechanism. This technique can be implemented using
two different approaches: by monitoring the result file that is being produced by
the application; or by dividing the gridlet work into subtasks in the executing
peer. Since this approach has semantic knowledge of the application result it can
checkpoint whenever it is more convenient (e.g., every 10 lines in an image writ-
ten by a ray-tracer); rather than on a predefined time interval. This awareness
of the semantics of the application also enables the monitoring of the execution
and the previewing of the results in the submitter.

3.2 Result Verification Mechanisms

In order to accept the results returned by the participants we propose replication
with some extra considerations and a complementary sampling technique.

Incremental Replication. The insight of assigning the work iteratively ac-
cording to some rules, instead of putting the whole job to execution at once can
provide some benefits with only minor drawbacks.

The major benefit stems from the fact that lots of redundant execution is
not even taken into consideration when the correct result is being chosen by the
voting quorums. For example, for replication factor 5, if 3 out of the 5 results are
equal the system will not even mind looking at the other 2 results. Then, those
could and should have never been executed. And if so, the overall execution
power of the system would have been optimized by avoiding useless repeated
work. This replication scheme has additional benefits in colluding scenarios. In
these, the same bad result is only returned once the colluders have been able
to identify that they have the same job to execute. If a task is never being
redundantly executed at the same time, colluders can only be successful if they
submit a bad result and wait for the replica of that task to be assigned to one
of them, enabling them to return the same bad result. If that does not happen,
the bad result submitted by them will be detected and they might be punished
by an associated reputation mechanism (e.g., blacklisted).

This technique can have a negative impact in terms of time to complete the
whole work: in one hand, the incremental assignment and wait for the retrieval
of results will lower the performance when the system is not overloaded; on the
other hand, if the number of available participants is low it can actually perform
faster than putting the whole work to execution at once. Therefore, the correct
definition of an overloaded environment having into consideration various fac-
tors (e.g., the number of available participants, the maximum number of gridlets,
etc.) makes possible for the system to decide whether to use this technique or
not, enabling it to take the best advantage of the present resources.

Replication with Overlapped Partitioning. Using overlapped partitioning
the tasks are never exactly equal, even though each individual piece of data is still
replicated with the predetermined factor. Therefore, it becomes more complex for

248 INForum 2010 João Paulino, Paulo Ferreira,Lúıs Veiga

the colluders to identify the common part of the task, plus they have to execute
part of the task. Figure 1 depicts the same work divided in in two different
overlapped partitionings. Overlapped partitioning could be implemented in a

Fig. 1. The same work divided differently creating an overlapped partitioning.

relaxed flavour, where only some parts of the job are executed redundantly. This
lowers the overhead, but also lowers the reliability of the results. However, it can
be useful if the system has low computational power available. Figure 2 depicts
a relaxed overlapped partitioning.

Fig. 2. Overlapped tasks for relaxed replication.

Replication with Meshed Partitioning. Some applications can have their
work divided in more than one dimension. Figure 3 depicts the partitioning of
the work for a ray-tracer. Like the overlapped partitioning it influences the way
colluders are able to introduce bad results: more points where they can collude,
with a smaller size too. This partitioning provides lots of points of comparison.
This information might feed an algorithm that is able to choose correct results
according to the reputation of a result, instead of using voting quorums.

Fig. 3. Meshed partitioning using replication factor 2.

Sampling. Replication bases all its result verification decisions in results/info
provided by third parties, i.e., the participant workers. In an unreliable environ-
ment this may not be enough. Therefore, local sampling can have an important
place in the verification of results. Sampling considers the local execution of a
fragment, as small as possible, of each task to be compared with the returned
result. In essence, sampling points act as hidden embedded quizzes. This sample
is the only trusted result, so even if a result that was accepted by the voting

Exploring Fault-tolerance ... INForum 2010 – 249

quorums does not match the local sample it is discarded. Figure 4 depicts the
sampling of an image where a sample is a pixel. We have proposed two check-

Fig. 4. Sampling for an image.

point/restart enabling techniques. Our generic checkpointing technique enables
us to checkpoint any application and resume it later, the overhead it incurs de-
rives from the size of the checkpoint data. Nevertheless, for some applications
our result oriented technique will enable the system to checkpoint and resume an
application with no noticeable overhead, the results are transmitted incremen-
tally, rather than at the end of the execution. For a reliable result verification we
have proposed various flavours of replication that make colluding increasingly
more difficult to achieve and easier to detect. Replication is combined with a
sampling technique that tests the received untrusted results against one result
sample that is known to be correct.

4 Implementation

Our implementation is developed in two different deployments: i) a simulation
environment, that enables us to test result verification approaches with large
populations; and ii) a real environment, that proves that our result verification
and the checkpointing approaches are feasible.

4.1 Simulation Environment

The simulator is a Java application that simulates a scenario where an n-dimensional
job is broken into work-units that are randomly assigned. Among the participants
there is a group of colluders that attempt to return the same bad result (based
on complete or imperfect knowledge, depending on the partition overlapping),
in order to fool the replication based verification mechanisms. The simulator
receives several parameters: number of participants; number of colluders; work-
size as an array of integers (n-dimensional representation), the size as defined in
terms of atoms of execution (i.e., an indivisible portion of execution); number of
gridlets; replication factor; and partitioning mode (standard or overlapped). The
simulator returns several results, being the most important one the percentage
of bad results that were accepted by the system.

4.2 Real Environment
For being able to support a new application, semantic knowledge of it is manda-
tory. Therefore, 3 classes must be programmed: an application manager, a gridlet

250 INForum 2010 João Paulino, Paulo Ferreira,Lúıs Veiga

and a result. The Application Manager is responsible for translating a command
that invokes an application into several executable gridlets and reunite their
partial results once it has verified their correctness. For some applications it also
enable the user to preview the results (e.g., an image being incrementally pro-
duced by a ray tracer). It must extend the abstract class ApplicationManager
and implement a constructor and two methods. The following is an excerpt of
the Pov Ray’s application manager class.

class PovRayManager extends ApplicationManager {

PovRayManager(String command) throws ApplicationManagerException { ... }

ArrayList<Gridlet> createGridlets(int nGridlets) { ... }

void submitResult(Result result) { ... }
}

The Gridlet class must implement the Serializable and Runnable interfaces, this
enables transportation by the Java RMI and allows it to perform a threaded
execution in its destination. The following is an excerpt of the Pov Ray’s gridlet
class.

class PovRayGridlet extends Gridlet implements Serializable, Runnable {

void run() { ... }
}

The Result class is just a container of the result data of a gridlet, it must be
defined for each application and implement the Serializable interface, for the
Java RMI mechanisms being able to transmit it.

5 Evaluation

At this stage of our work, we only have few performance measures of the tech-
niques we have described. We present what we have been able to measure so far
in this section.

5.1 Checkpoint/Restart Mechanisms

The major issue of the generic checkpoint/restart technique is transmitting the
state of a virtual machine. We are mitigating this by transmitting only the
differences between the current image and the base-image. The table in Figure
5 depicts the size of the checkpoint data to be transmitted.

Fig. 5. Checkpoint data size using VirtualBox and Ubuntu Desktop 9.10

Exploring Fault-tolerance ... INForum 2010 – 251

5.2 Result Verification Mechanisms

Replication can be fooled if a group of colluders determines they are executing
redundant work and agree to return the same bad result, forcing the system to
accept it. The graphic in Figure 6 depicts that when the percentage of colluders
is under 50%, the greater the replication factor the lower the percentage of bad
results accepted; when the percentage of colluders is above 50%, albeit a less
probable scenario, replication actually works against us. Groups of colluders are
usually expected to be minorities. However we must take into account that if
they are able to influence the scheduler by announcing themselves as attractive
executers the percentage of bad results could even be above what this graphic
shows, for the scheduler it uses is random. Overlapped partitioning influences the

Fig. 6. Correlation between the percentage of bad results accepted and the percentage
of colluders in the system for various replication factors.

way that the colluders introduce their bad results: it produces more points where
collusion may happen and also may be detected; the size of each bad result is
smaller, though. This happens because one task is replicated into more tasks than
using standard partitioning; therefore there is a higher probability of redundant
work being assigned to colluders; however they can only collude part of the task
instead of the whole task as using standard partitioning. The graphic in Figure
7 depicts that overlapped partitioning is as good as standard partitioning, in
a scenario where the colluders are fully able to identify the common part (in
theory possible, but in practice harder to achieve as this may require global
knowledge and impose heavier coordination and matching of information among
the colluders) and collude it, while executing the non common part. This is the
worst case scenario, therefore overlapped partitionings can improve the reliability
of the results depending on how smart the colluders are.

252 INForum 2010 João Paulino, Paulo Ferreira,Lúıs Veiga

Fig. 7. Replication w/ Standard Partitioning Vs. Replication w/ Overlapped Parti-
tioning, using replication factor 3.

6 Conclusions

In this paper, we proposed and analysed a number of checkpoint/restart mecha-
nisms and replication schemes to improve fault-tolerance and reliability in cycle-
sharing infrastructures such as those in Peer-to-peer networks.

Our generic checkpoint/restart mechanism based in virtual machine images
that is able to checkpoint any application. It is yet at an early stage of devel-
opment, we see no obstacles to it other than the checkpoint data size, therefore
we are focused in reducing it. Our result oriented approach is only fit for some
applications. We have successfully enabled POV-Ray to checkpoint and resume
execution from its results automatically.

Our result verification schemes are very promising, we are trying to figure
out how can we adapt them to the variable conditions of the system in order to
produce a good compromise between performance and reliability.

References

1. D. P. Anderson. Boinc: A system for public-resource computing and storage. In
GRID ’04: Proceedings of the 5th IEEE/ACM International Workshop on Grid
Computing, pages 4–10, Washington, DC, USA, 2004. IEEE Computer Society.

2. D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. Seti@home:
an experiment in public-resource computing. Commun. ACM, 45(11):56–61, 2002.

3. T. E. Anderson, D. E. Culler, D. A. Patterson, , and the NOW team. A case for
now (networks of workstations). IEEE Micro, 15:54–64, 1995.

Exploring Fault-tolerance ... INForum 2010 – 253

4. L. B. Costa, L. Feitosa, E. Araujo, G. Mendes, R. Coelho, W. Cirne, and D. Fire-
man. Mygrid: A complete solution for running bag-of-tasks applications. In In
Proc. of the SBRC 2004, Salao de Ferramentas, 22nd Brazilian Symposium on
Computer Networks, III Special Tools Session, 2004.

5. distributed.net. Distributed.net: Node zero. In http: // distributed. net/ , 2010.
6. J. R. Douceur. The sybil attack. In IPTPS ’01: Revised Papers from the First

International Workshop on Peer-to-Peer Systems, pages 251–260, London, UK,
2002. Springer-Verlag.

7. W. Du, J. Jia, M. Mangal, and M. Murugesan. Uncheatable grid computing.
In ICDCS ’04: Proceedings of the 24th International Conference on Distributed
Computing Systems (ICDCS’04), pages 4–11, 2004.

8. J. C. e Alexandre Sztajnberg. Introdução de um mecanismo de checkpointing e
migração em uma infra-estrutura para aplicações distribúıdas. In V Workshop de
Sistemas Operacionais (WSO’2008), July 2008.

9. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.
International Journal of Supercomputer Applications, 11:115–128, 1996.

10. GIMPS. Great internet mersenne prime search. In http: // mersenne. org , 2010.
11. S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algorithm

for reputation management in p2p networks. In WWW ’03: Proceedings of the
12th international conference on World Wide Web, pages 640–651, New York, NY,
USA, 2003. ACM.

12. S. M. Larson, C. D. Snow, M. Shirts, and V. S. Pande. Folding@home and
genome@home: Using distributed computing to tackle previously intractable prob-
lems in computational biology. Technical Report arXiv:0901.0866, Jan 2009.

13. M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle workstations. In
Proceedings of the 8th International Conference of Distributed Computing Systems,
June 1988.

14. M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny. Checkpoint and migra-
tion of UNIX processes in the Condor distributed processing system. Technical
Report UW-CS-TR-1346, University of Wisconsin - Madison Computer Sciences
Department, April 1997.

15. V. Lo, D. Zappala, D. Zhou, Y. Liu, and S. Zhao. Cluster computing on the fly:
P2p scheduling of idle cycles in the internet. In In Proceedings of the IEEE Fourth
International Conference on Peer-to-Peer Systems, pages 227–236, 2004.

16. A. Maloney and A. Goscinski. A survey and review of the current state of rollback-
recovery for cluster systems. Concurr. Comput. : Pract. Exper., 21(12):1632–1666,
2009.

17. D. Molnar. The seti@home problem. In ACM Crossroads: The ACM Student
Magazine, 2000.

18. J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent checkpointing
under Unix. In Usenix Winter Technical Conference, pages 213–223, January 1995.

19. T. Sterling, D. J. Becker, D. Savarese, J. E. Dorband, U. A. Ranawake, and C. V.
Packer. Beowulf: A parallel workstation for scientific computation. In In Pro-
ceedings of the 24th International Conference on Parallel Processing, pages 11–14.
CRC Press, 1995.

20. L. Veiga, R. Rodrigues, and P. Ferreira. Gigi: An ocean of gridlets on a ‘grid-
for-the-masses´. In IEEE International Symposium on Cluster Computing and the
Grid - CCGrid 2007 (PMGC-Workshop on Programming Models for the Grid).
IEEE Press, May 2007.

21. H. Zhong and J. Nieh. Crak: Linux checkpoint / restart as a kernel module. Techni-
cal Report CUCS-014-01, Department of Computer Science. Columbia University.,
November 2002.

254 INForum 2010 João Paulino, Paulo Ferreira,Lúıs Veiga

Impacto da Organização dos Dados em Operações com

Matrizes Esparsas na GPU

Paula Prata1,2, Gilberto Melfe2, Ricardo Pesqueira2, João Muranho1,3

1 Instituto de Telecomunicações,
2 Departamento de Informática,

Universidade da Beira Interior, 6201-001 Covilhã, Portugal
3 IMAR – Instituto do Mar, Departamento de Zoologia, FCTUC,

Universidade de Coimbra, 3004-517 Coimbra

e-mail: pprata@di.ubi.pt, a23049@ubi.pt, ricardopesqueira705@hotmail.com,

muranho@mail.telepac.pt,

Resumo. A utilização de placas gráficas (GPU) para operações sobre matrizes,

nomeadamente sobre matrizes esparsas, tem sido alvo de intensa investigação.

Pretende-se obter o máximo desempenho de uma arquitectura com centenas de

cores e um modelo de paralelismo de dados com execução simultânea de

milhares de threads. Numerosas aplicações científicas e de engenharia

manipulam matrizes esparsas, sendo o produto matriz-vector a operação base

para vários algoritmos iterativos de resolução de sistemas de equações esparsas.

Neste trabalho avaliamos o desempenho da operação matriz-vector para dois

dos formatos mais importantes de armazenamento de matrizes esparsas: CSR e

ELL. Mostramos como a ordenação das linhas pode aumentar

significativamente o desempenho da operação estudada, no caso do formato

ELL, e estudamos o comportamento da solução proposta na resolução de

sistemas de equações esparsas correspondente a um problema real.

Palavras-Chave: placa gráfica (GPU), CUDA, paralelismo de dados, matrizes

esparsas, sistemas de equações lineares, formatos de armazenamento para

matrizes esparsas.

1 Introdução

As actuais placas gráficas (Graphics Processing Units – GPU’s) permitem obter um

desempenho no processamento massivo de dados em vírgula flutuante comparável ao

desempenho obtido, até agora, apenas com supercomputadores. O recente

aparecimento de interfaces de programação para a GPU como o “Compute Unified

Device Architecture” (CUDA) da NVIDIA [1], o Brook+ da AMD/ATI [2] ou ainda o

OpenCL [3], inicialmente desenvolvido pela Apple e posteriormente generalizado

para outras arquitecturas, tornou possível programar a placa gráfica usando

linguagens de alto nível como o C/C++, ou mesmo o Java. A maior facilidade de

programação fez com que a GPU começasse a ser usada para sistemas de computação

em larga escala. Surgiu assim um aumento significativo da investigação sobre como

paralelizar algoritmos já existentes de forma a optimizar a utilização da GPU.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 255–266

As GPU’s são dispositivos com grande capacidade de cálculo mas que não

possuem caches que permitam optimizar os acessos à memória. Possuindo uma

elevada latência no acesso à memória global, torna-se necessária a execução de

milhares de threads de muito baixa granularidade para conseguir tirar partido da GPU.

É também necessário distribuir de forma adequada a carga de trabalho pelos

conjuntos de threads que constituem as unidades de escalonamento (warps em

linguagem CUDA). Cada warp só é dado por concluído quando todas as suas threads

(actualmente 32) tiverem terminado.

Nem todos os algoritmos são pois adequados para paralelizar em GPU. A GPU é

especialmente útil para aplicações com grande intensidade de cálculo numérico e com

paralelismo de dados, onde cálculos similares são executados em grandes quantidades

de dados organizados de forma regular (por exemplo, vectores e matrizes).

Vários estudos mostram que, em problemas que manipulam matrizes densas, a

GPU permite obter elevados desempenhos [4], [5]. No entanto, enquanto uma matriz

densa tem uma estrutura regular, as matrizes esparsas podem ser representadas em

formatos bastante irregulares que poderão condicionar o desempenho.

Neste trabalho analisamos a multiplicação matriz-vector em que a matriz é esparsa.

Esta operação, pelo número de vezes que é executada, é a operação dominante em

vários algoritmos iterativos para resolução de sistemas de equações lineares e em

problemas de cálculo de valores próprios. Um estudo recente sobre a implementação

do produto matiz esparsa / vector é apresentado em [6] e [7]. Nestes estudos, Bell e

Garland mostram que o melhor desempenho para a operação estudada é obtido com o

formato de armazenamento ELL (ELLPACK/ITPACK) em matrizes em que o

número de elementos não zero por linha varia pouco. Este formato permite que os

valores da matriz a processar por um warp estejam em posições contínuas de

memória, optimizando assim os tempos de acesso. Se as linhas manipuladas por cada

warp tiverem aproximadamente o mesmo tamanho (isto é, o mesmo número de

elementos não zero) então todas as threads estarão ocupadas em simultâneo sem

desperdício de capacidade de cálculo. Como, em problemas reais, o número de

elementos não zero por linha é variável, propomos a ordenação das linhas de forma a

uniformizar o trabalho a realizar por cada warp mesmo em matrizes onde os

comprimentos das linhas variam substancialmente. Analisamos o impacto da

ordenação das linhas para o formato ELL, concluindo que permite obter melhorias de

desempenho que podem atingir os 30%. Aplicámos o mesmo mecanismo a um dos

formatos de representação de matrizes esparsas mais comum, o CSR (Compressed

Sparse Row). Também aqui é obtido algum ganho mas menos significativo, no

melhor caso obteve-se um ganho de 13%.

 Finalmente seguimos a mesma abordagem para um problema que envolve a

resolução de sistemas de equações esparsas através do método do gradiente

conjugado. Trata-se de um método iterativo, que executa a operação matriz-vector em

cada uma suas iterações. Os sistemas de equações usados foram gerados por um

simulador de redes de distribuição de água, e correspondem a problemas que

representam situações reais ou casos de estudo. Concluímos que para estes sistemas

de equações, onde as matrizes de coeficientes apresentam um número muito reduzido

de valores não zero (abaixo dos 0.5%) e uma certa uniformidade no número de

elementos não nulos por linha, o impacto da ordenação das linhas não é substantivo.

256 INForum 2010Paula Prata, Gilberto Melfe, Ricardo Pesqueira, João Muranho

Neste artigo apresentamos, na secção 2, o modelo de programação CUDA da

NVIDIA e o seu mapeamento na arquitectura da GPU. Na secção 3, descrevemos os

formatos de armazenamento de matrizes esparsas usados e as operações

implementados. Na secção 4 são apresentados os resultados obtidos e finalmente na

secção 5 apresentam-se as conclusões e algumas propostas de trabalho futuro.

2 O Modelo de Programação CUDA e a Arquitectura da GPU

O CUDA veio proporcionar aos utilizadores de linguagens de alto nível, como o

C/C++, a possibilidade de tirarem partido do poder de processamento paralelo da

GPU [1]. Nesta secção vamos descrever brevemente o modelo de programação

CUDA e a arquitectura da GPU usada para este trabalho, a GeForce GTX 295.

2.1 O Modelo de Programação CUDA

No modelo de programação paralela CUDA, uma aplicação consiste na execução de

um programa sequencial que corre no CPU (host) capaz de lançar na GPU (device)

funções que serão executadas em paralelo. Cada função que vai ser executada na

GPU, designada por kernel é executado sequencialmente, mas em simultâneo, por um

elevado número de threads. Cada thread tem um ID único podendo ser-lhe atribuída

uma tarefa em particular. Há que ter em conta que, em operações que necessitem de

pontos de sincronização entre threads, por exemplo quando várias threads manipulam

dados em comum, irá haver uma degradação do desempenho. As threads são

organizadas em blocos e o conjunto dos blocos de threads irá constituir a grelha de

execução (Grid). Cada bloco da grelha de execução irá ser mapeado num

multiprocessador da GPU, cuja estrutura descreveremos adiante. Ao ser invocado um

Kernel, são passados dois parâmetros especiais que definem o número de threads por

bloco e o número de blocos por grelha. Assim sendo, o número de threads que vão

executar um kernel é o resultado da multiplicação do número de threads de um bloco

pelo número de blocos que constitui a grelha de execução.

2.2 A Arquitectura da GPU da NVIDIA

A GPU da NVIDIA é construída como um array de multi-processadores em que cada

multi-processador possui 8 núcleos/processadores, um conjunto de registos e uma

área de memória partilhada [1]. As operações com valores inteiros e valores em

vírgula flutuante de precisão simples são executadas pelos núcleos, enquanto as

operações em vírgula flutuante de precisão dupla são executadas por uma unidade

partilhada pelos 8 núcleos de um mesmo multiprocessador (apenas para placas com

capacidade de computação de 1.3 ou superior).

Quando um kernel é lançado, os blocos contidos na grelha de execução são

distribuídos e numerados de forma automática para os multiprocessadores com

capacidade de os executar. Uma vez associado um bloco de threads a um

multiprocessador, o mesmo fica responsável por distribuir as diferentes threads do

Impacto da Organização dos Dados ... INForum 2010 – 257

bloco pelos diferentes processadores que possui. As threads de um mesmo bloco

podem comunicar entre si através da memória partilhada do multi-processador. Uma

vez terminado um bloco, e se ainda se encontrarem blocos por executar, os mesmos

são automaticamente lançados para um dos multiprocessadores que se encontre livre.

Desta forma, pode dizer-se que uma thread está associada a um processador, um bloco

a um multi-processador e para cada kernel é definida uma grelha (ver figura 1).

 Devido ao facto de a GPU apenas tratar dados armazenados na sua memória, os

mesmos têm de ser copiados para a memória global da GPU antes da execução do

kernel.

A GPU usada neste trabalho, a GeForce GTX 295, possui 30 multiprocessadores,

cada um com 8 cores, isto é um total de 240 cores (a 1.24GHz), suporta até

512x512x24 blocos com um máximo de 512 threads por bloco. Esta GPU tem 2GB de

memória global e capacidade de computação 1.3. Foi programada usando a versão 2.3

do CUDA. A máquina hospedeira é um Intel Core 2 Quad Q9550 a 2.83 GHz com 4

GB de RAM, com sistema operativo Microsoft Windows XP Professional 64-bit.

Fig. 1. Associação entre a estrutura do software e a arquitectura do hardware

3 Matrizes Esparsas

Uma matriz esparsa é por definição uma matriz em que a maioria dos seus elementos

é igual a zero. Estas matrizes são geralmente armazenadas de forma compacta de

modo a guardar apenas os valores diferentes de zero e sua localização. Obtém-se

assim um ganho significativo em termos da memória necessária para o seu

armazenamento. Vamos descrever os formatos COO, CSR e ELL e as operações

estudadas. Uma representação visual destes formatos pode ser analisada em [6].

3.1 Formatos de Representação

O formato base de representação de matrizes esparsas, muitas vezes usado para

posterior conversão para outros formatos, é o formato de coordenadas (COOrdinate

258 INForum 2010Paula Prata, Gilberto Melfe, Ricardo Pesqueira, João Muranho

Format) designado por COO. O formato COO consiste em armazenar a matriz em três

vectores todos de tamanho igual ao número de elementos não zero da matriz: o vector

das linhas onde ficam armazenados os índices das linhas em que cada elemento se

encontra, o vector das colunas onde ficam armazenados os índices das colunas em que

cada elemento se encontra e o vector de dados onde são armazenados os valores dos

elementos não zero. Neste trabalho, este formato foi usado para armazenar as matrizes

geradas, sendo também o formato usado no repositório de matrizes Matrix Market [8]

utilizado como fonte de matrizes de teste.

Formato de Compressão Segundo Linhas. O Formato de compressão segundo

linhas ou CSR pode ser considerado como uma extensão do formato de coordenados.

A diferença do formato de compressão CSR para o formato COO consiste na

substituição do vector que contém os índices das linhas por um outro, geralmente

mais curto, de apontadores para a posição no vector das colunas do índice do primeiro

elemento não zero da linha correspondente à posição do primeiro vector (isto é, do

vector de apontadores). O tamanho do novo vector é o número de linhas mais um,

sendo o último elemento do vector o número de não zeros existentes na matriz.

Através da subtracção do elemento da posição i+1 pelo elemento da posição i, obtém-

se o número de elementos que contém a linha i. O vector de dados vai conter apenas

os elementos não zero, ordenados por linhas.

Formato ELLPACK/ITPACK. O formato ELLPACK/ITPACK ou ELL utiliza dois

vectores, um para os valores não zero e um outro para os índices das colunas.

Supondo uma matriz com M linhas e em que K é o número máximo de elementos não

zero por linha, os valores não zero são armazenados por colunas considerando que

cada linha tem comprimento K. Para linhas com o número de não zeros menor que K,

as posições finais serão preenchidas com um valor pré-definido, por exemplo com o

valor zero. Assim, os primeiros M elementos do vector de dados serão o primeiro

elemento não zero da primeira linha, o primeiro elemento não zero da segunda linha e

assim sucessivamente até ao primeiro elemento não zero da linha M. O segundo

vector, o vector dos índices das colunas, corresponde a uma matriz de dimensão M

por K, armazenada por colunas, em que cada posição representa a coluna do valor na

posição correspondente no vector de dados. Os algoritmos de manipulação deste

formato, utilizados neste trabalho, foram optimizados através da utilização de um

terceiro vector, consistindo do número de não zeros da linha correspondente.

3.2 Operações estudadas

A operação matriz-vector, como operação base do produto de matrizes, surge nos

algoritmos de factorização de matrizes (factorização LU, Cholesky, QR, etc) e

portanto, nos algoritmos de resolução de sistemas, algoritmos de cálculo de valores e

vectores próprios, algoritmos de decomposição em valores singulares, entre outros. É

pois uma operação que apesar de muito simples, sendo executada milhões de vezes,

pode ser crítica no desempenho de numerosas aplicações.

Impacto da Organização dos Dados ... INForum 2010 – 259

Produto Matriz Esparsa/Vector em GPU. No trabalho apresentado em [6] são

estudadas três implementações desta operação em GPU: atribuir uma thread a cada

elemento não zero da matriz, atribuir uma thread a cada linha da matriz e finalmente

atribuir um warp a cada linha da matriz. Os resultados mostram que os melhores

desempenhos são obtidos para o formato ELL quando cada linha da matriz é

processada por uma thread e para o formato CSR quando cada linha é processada por

um warp. Neste trabalho usámos os formatos ELL e CSR como formatos base para o

estudo do efeito da ordenação das linhas da matriz no desempenho da operação.

No formato ELL, como a matriz está armazenada por colunas, a atribuição de uma

thread por linha, com a thread i a processar a linha i, acedendo na iteração j ao j-ésimo

elemento da linha i, permite que as threads de um mesmo warp acedam em cada

iteração a posições de memória contíguas, na iteração j, cada thread i acede ao j-

ésimo elemento da sua linha. Na iteração 1, a thread 1 vai processar o primeiro

elemento da linha 1, a thread 2 o primeiro elemento da linha 2, e assim por diante.

Sendo a matriz armazenada por colunas, todos estes elementos estão em posições

consecutivas de memória, e uma vez que as threads do mesmo warp executam em

cada instante a mesma instrução, temos as threads a aceder a posições consecutivas da

memória. Este padrão de acesso à memória global, conhecido em linguagem CUDA

por “coalesced memory access", é o que permite o melhor desempenho [9].

Se as matrizes tiverem linhas com um número muito variável de elementos não

zero, irá acontecer que num mesmo warp haverá threads com muito trabalho, isto é

com linhas com muitos elementos e threads com pouco trabalho, isto é, com linhas

com poucos elementos. Como em cada processador o modelo de execução é SIMD

(Simple Instruction Multiple Data) o warp só terminará quando todas as suas threads

terminarem. É assim de esperar que a ordenação das linhas pelo seu comprimento

consiga uniformizar o trabalho de cada warp e melhorar o desempenho. Note-se que a

utilização de um vector com os tamanhos de cada linha permite parar o

processamento no momento adequado (quando a thread já não tem mais elementos

para processar) sem alterar o padrão de acesso à memória (mesmo que uma thread ou

mais threads não acedam à memória não é violado o esquema dos acessos ordenados).

No caso do formato CSR, o melhor desempenho é obtido colocando as 32 threads

de um warp a processar a mesma linha. Para os multiprocessadores o modelo de

execução é SPMD (Simple Program Multiple Data) e portanto quando um warp

termina é lançado novo warp. Assim, se as threads do mesmo warp estão a processar

elementos da mesma linha da matriz, a troca de linhas não poderá trazer qualquer

ganho, donde neste formato optámos por estudar o impacto da ordenação das linhas

só para a variante de uma thread por linha.

Resolução de Sistemas de Equações em GPU. Um problema em que a operação

matriz-vector é utilizada frequentemente é a resolução de sistemas de equações,

nomeadamente em algoritmos iterativos para sistemas de equações esparsas [10].

Neste trabalho usamos os kernels anteriores para matrizes esparsas, em formato

CSR e ELL, para paralelizar o produto matriz-vector em cada iteração do método do

gradiente conjugado na resolução do sistema de equações esparsas associadas a um

programa de simulação de sistemas de abastecimento de água sob pressão, o

EPANET [11]. Para cada um dos formatos, estudámos o impacto da ordenação das

linhas no desempenho do algoritmo.

260 INForum 2010Paula Prata, Gilberto Melfe, Ricardo Pesqueira, João Muranho

4 Resultados

Para avaliarmos o desempenho da operação matriz-vector, gerámos matrizes

esparsas quadradas de ordem 4096, 8192 e 16384 contendo valores aleatórios. Para

cada linha foi gerado um valor aleatório entre 1 e 20% do número de colunas da

matriz. Este será o número de valores não zero da linha, a gerar. A posição de cada

valor não zero foi também gerada aleatoriamente. Foram geradas matrizes com

valores em precisão simples (float) e precisão dupla (double). No final, as matrizes

geradas tinham 10,01% de valores não zero.

 Na figura 2 mostra-se o gráfico do número de valores não zero por linha para a

matriz de ordem 4096. Como se pode observar existe variabilidade no comprimento

das linhas. Entenda-se por comprimento da linha o número de elementos não zero.

Pela forma como foram geradas, as outras matrizes têm gráficos de distribuição

semelhantes.

A execução da operação matriz-vector em CPU para os formatos CSR e ELL

mostrou que o formato ELL é bastante mais lento que o formato CSR, o que se deve

ao armazenamento da matriz por colunas, para um algoritmo que em CPU percorre a

matriz por linhas. Os tempos médios, obtidos com 4 execuções, em milissegundos são

mostrados nas tabelas 1 e 2 respectivamente para formato CSR e formato ELL, na

linha correspondente à ordem da matriz e à frente do tipo de valores. Por razões de

falta de espaço não pôde ser incluída uma tabela independente. Estes valores servirão

para comparação com os valores obtidos em GPU. Em todos os resultados os tempos

de GPU representam o tempo de execução do kernel não incluindo a cópia dos dados

para a memória da GPU nem a cópia dos resultados para o host. Na obtenção dos

resultados com ordenação das linhas o tempo gasto na ordenação (feita em CPU) não

é considerado. Repare-se que geralmente os problemas reais envolvem um grande

número de iterações, sendo a ordenação das linhas realizada uma única vez.

Fig. 2. Gráfico com número de não zeros (non zeros) por linha (line number).

4.1 Produto Matrix-Vector em GPU sem Ordenação de Linhas

Executámos para as mesmas matrizes o produto matriz-vector em GPU formatos CSR

e ELL fazendo variar o tamanho do bloco de threads. Considerámos blocos com 32,

64 e 128 threads. O tamanho da grelha, isto é, o número de blocos é obtido dividindo

a ordem da matriz pelo tamanho do bloco.

A tabela 1 mostra, além dos tempos em CPU que já referimos, os tempos de execução

obtidos com o formato CSR em GPU por matriz e tamanho do bloco. Mostra ainda a

Impacto da Organização dos Dados ... INForum 2010 – 261

percentagem do tempo de execução em relação ao tempo de CPU, isto é, se houve ou

não ganho com a execução em GPU. A tabela 2 mostra os resultados correspondentes

para ELL.

Analisando os resultados, podemos ver que o formato CSR em GPU, com uma

thread por linha não tem qualquer ganho em relação ao CPU. Para as matrizes mais

pequenas parece haver algum ganho mas temos de ter em conta que não

contabilizamos o tempo de cópia dos dados. Em precisão dupla, nunca há qualquer

ganho o que se explica pelo facto de a unidade de dupla precisão ser partilhada pelos

8 cores de um mesmo multiprocessador. Para o formato ELL em GPU os resultados

são completamente diferentes. O tempo gasto em GPU é sempre menos de 5% do

tempo gasto em CPU. Observamos que quanto maior a matriz, maior o ganho em

relação ao CPU e que quanto maior o tamanho do bloco, isto é quanto mais threads

por bloco, melhor desempenho. Concluímos que o formato ELL permite uma

utilização efectiva da capacidade de cálculo da GPU.

Tabela 1. Produto matriz-vector em GPU, formato CSR, sem ordenação de linhas

Bloco Grelha Tempo (ms) GPU/CPU*100 Tempo (ms) GPU/CPU*100

Ordem: 4096 Float (CPU: 5.613) Double (CPU: 3.688)

32x1 128x1 4.237 75.49 4.734 128.48

64x1 64x1 4.270 76.07 4.794 129.98

128x1 32x1 4.288 76.39 4,855 131.62

Ordem: 8192 Float (CPU: 22.489) Double (CPU: 15.849)

32x1 256x1 20.692 92.01 22.780 143.73

64x1 128x1 20.286 90.20 22.324 140.85

128x1 64x1 20.221 89.91 22.452 142.66

Ordem: 16384 Float (CPU: 90.212) Double (CPU: 63.105)

32x1 512x1 94.238 104.46 101.237 160.42

64x1 256x1 94.019 104.22 101.228 160.41

128x1 128x1 93.371 103.50 100.663 159.52

Tabela 2. Produto matriz-vector em GPU, formato ELL, sem ordenação de linhas

Bloco Grelha Tempo (ms) GPU/CPU*100 Tempo (ms) GPU/CPU*100

Ordem: 4096 Float (CPU: 29.985) Double (CPU: 30.347)

32x1 128x1 1.404 4.68 1.440 4.74

64x1 64x1 1.408 4.69 1.463 4.82

128x1 32x1 1.402 4.67 1.486 4.89

Ordem: 8192 Float (CPU: 197.542) Double (CPU: 147.589)

32x1 256x1 5.874 2.97 6.342 4.29

64x1 128x1 4.643 2.35 5.033 3.41

128x1 64x1 4.715 2.38 5.155 3.49
Ordem: 16384 Float (CPU: 958.678) Double (CPU: 929.724)

32x1 512x1 19.656 2.05 21.375 2.31

64x1 256x1 19.635 2.05 21.277 2.29

128x1 128x1 17.555 1.83 19.381 2.09

262 INForum 2010Paula Prata, Gilberto Melfe, Ricardo Pesqueira, João Muranho

4.2 Produto Matrix-Vector em GPU com Ordenação de Linhas

Para avaliar o impacto da ordenação das linhas fez-se um pré-processamento dos

dados de modo a que as linhas ficassem organizadas em memória por ordem crescente

do seu tamanho. Para garantir a consistência dos resultados criou-se um vector

adicional contendo a posição inicial das linhas.

A tabela 3 mostra os tempos de execução em GPU obtidos para o formato CSR por

matriz e tamanho do bloco de threads, com ordenação por tamanho das linhas. Mostra

tal como nas tabelas anteriores o ganho em relação à execução em CPU (GPUor/CPU

*100) e apresenta também a percentagem de tempo de execução em relação ao tempo

de GPU sem ordenação, (GPUor/GPU*100). GPUor representa o tempo em GPU da

versão com ordenação. A tabela 4 mostra os resultados correspondentes para ELL.

Tabela 3. Produto matriz-vector em GPU, formato CSR, com ordenação de linhas

Bloco Grelha
Tempo

(ms)

GPUor/CPU

*100

GPUor/GPU

*100

Tempo

(ms)

GPUor/CPU

*100

GPUor/GPU

*100

Ordem: 4096 Float Double

32x1 128x1 3.728 66.41 87.97 4.429 120.08 93.47

64x1 64x1 3.731 66.47 87.38 4.440 120.38 92.61

128x1 32x1 3.723 66.32 86.82 4.433 120.20 91.32

Ordem: 8192 Float Double

32x1 128x1 18.810 83.64 90.90 21.023 132.65 92.29

64x1 64x1 18.799 83.59 92.67 21.001 132.51 94.07

128x1 32x1 18.852 83.83 93.23 21.028 132.68 93.66

Ordem: 16384 Float Double

32x1 128x1 88.587 98.20 94.00 95.437 151.24 94.27

64x1 64x1 88.151 97.72 93.76 94.704 150.07 93.55

128x1 32x1 88.149 97.71 94.41 94.489 149.75 93.88

Tabela 4. Produto matriz-vector em GPU, formato ELL, com ordenação de linhas

Bloco Grelha
Tempo

(ms)

GPU/CPU

*100

GPUor/GPU

*100

Tempo

(ms)

GPU/CPU

*100

GPUor/GPU

*100

Ordem: 4096 Float Double

32x1 128x1 1.231 4.11 87.68 1.315 4.33 91.32

64x1 64x1 1.227 4.09 87.16 1.335 4.39 91.23

128x1 32x1 1.228 4.09 87.57 1.363 4.49 91.74

Ordem: 8192 Float Double

32x1 128x1 3.948 2.00 67.21 4.365 2.95 68.84

64x1 64x1 3.890 1.97 83.79 4.332 2.94 86.07

128x1 32x1 3.944 2.00 83.65 4.440 3.01 86.13

Ordem: 16384 Float Double

32x1 128x1 14.110 1.47 71.78 15.556 1.68 72.78

64x1 64x1 14.931 1.56 76.04 15.837 1.71 74.43

128x1 32x1 14.975 1.56 85.30 16.08 1.74 83.01

Analisando os resultados podemos ver que para o formato CSR há um pequeno

ganho quer em relação à execução em CPU quer em relação à execução em GPU sem

ordenação. Esse ganho é na generalidade inferior a 10%. Apenas para a matriz de

menor ordem existe um ganho de 13% em relação à execução em GPU sem

ordenação com um bloco de 128 threads.

Impacto da Organização dos Dados ... INForum 2010 – 263

Para o formato ELL os resultados são bem melhores. Em precisão simples o ganho

em GPU com a ordenação varia entre os 12.32% (para a matriz de ordem 4092, com

32 threads por bloco) e os 33.8% (para a matriz de ordem 8192 com 32 threads por

bloco) Em precisão dupla atingem-se também ganhos com a ordenação, à volta dos

30% para as matrizes de maior ordem. Na generalidade dos casos quanto maior a

dimensão maior o ganho em GPU com a ordenação por tamanhos das linhas.

4.3 Resolução de Sistemas de Equações

Finalmente estudamos o impacto da ordenação das linhas quando a operação matriz-

vector é utilizada na resolução de sistemas de equações no âmbito de uma ferramenta

de modelação de sistemas de abastecimento de água sob pressão. As matrizes

produzidas apresentam uma percentagem de elementos não zero muito baixa. Para

cada problema simulado, produziram-se 3 matrizes correspondendo a diferentes

passos da simulação. Os resultados apresentados nas tabelas que se seguem

correspondem, para cada tipo de matriz, à média obtida com a execução desse

conjunto de matrizes. A tabela 5 mostra, para as matrizes estudadas, o tempo médio

de execução do produto matriz-vector em CPU para os formatos CSR e ELL. Apenas

é estudado o caso da precisão dupla (double) porque o algoritmo não converge em

precisão simples. Como se pode observar, o tempo de execução em ELL é superior ao

do formato CSR, tal como anteriormente.

Tabela 5. Produto matriz-vector em CPU para as matrizes dos sistemas de equações.

Matriz Ordem
Nº de não

zeros
% de não

zeros

Tempo médio de execução (ms)

CSR - double ELL - double

Richmond 865 3589 0.48 0.018 0.028

Wolf 1782 8244 0.26 0.038 0.054

Exnet 1891 10025 0.28 0.043 0.070

BWSN 12523 62463 0.04 0.360 0.670

FinMar 14991 71001 0.03 0.343 0,680

Na figura 3 podemos observar o gráfico do número de valores não zero por linha

para a matriz de maior ordem (FinMar). Como se pode observar a estrutura desta

matriz é completamente diferente das estudadas anteriormente. Existem algumas

linhas com muitos não zeros e depois muitas linhas com 3, 4 ou menos elementos. As

outras matrizes da tabela 5 têm estruturas semelhantes.

A tabela 7 apresenta os resultados da resolução do sistema Ax=b em CPU para os

formatos CSR e ELL. Para cada tipo de matriz mostra-se o número médio de iterações

realizado, o tempo médio de execução e o tempo médio por iteração.

A tabela 8 apresenta os resultados para a resolução em GPU, formato CSR com e

sem ordenação. Em GPU foi usado um bloco de 32 threads para ambos os formatos.

Observando os resultados podemos concluir que o formato CSR em GPU tem

algum ganho em relação à execução em CPU para as matrizes maiores (BWSN e

FinMar) mas que para estas matrizes o impacto da ordenação é praticamente nulo. A

ordenação apenas tem um pequeno impacto para as matrizes de menor dimensão mas

para estas matrizes a resolução em CPU é mais rápida.

264 INForum 2010Paula Prata, Gilberto Melfe, Ricardo Pesqueira, João Muranho

Fig. 3. Gráfico com número de não zeros (non zeros) por linha (line number) da matriz FinMar

Tabela 7. Resolução em CPU do sistema Ax=b, formatos CSR e ELL.

Matriz A
Nº médio de

iterações

Tempo médio (ms) CSR Tempo médio (ms) ELL

Resolução Por iteração Resolução Por iteração

Richmond 901316 16227.926 0.019 20217.685 0.023

Wolf 50311 1953.901 0.059 2357.974 0.071

Exnet 108958 5290.277 0.049 6608.656 0.062

BWSN 844635 290462.537 0.437 357666.410 0.538

FinMar 2362729 903249.271 0.378 1092347.806 0.457

Tabela 8. Resolução em GPU do sistema Ax=b, formato CSR, com e sem ordenação.

Matriz A
Nº médio de

iterações

Tempo médio de execução no formato CSR (ms)

Sem ordenação Com ordenação

Resolução Por iteração Resolução Por iteração

Richmond 895098 138485.976 0.155 136084.721 0.152

Wolf 50004 8197.074 0.164 8011.004 0.160

Exnet 109346 17922.707 0.164 17134.051 0.157

BWSN 839809 212168.191 0.253 212145.219 0.253

FinMar 2359948 598281.605 0.254 607690.063 0.258

Tabela 9. Resolução em GPU do sistema Ax=b, formato ELL, com e sem ordenação.

Matriz A
Nº médio de

iterações

Tempo médio de execução no formato ELL (ms)

Sem ordenação Com ordenação

Resolução Por iteração Resolução Por iteração

Richmond 895098 139566.167 0.156 138967.563 0.155

Wolf 50004 7958.645 0.159 7972.861 0.159

Exnet 109346 17401.206 0.159 17217.717 0.157

BWSN 839809 187300.657 0.223 190242.438 0.227

FinMar 2359948 533866.135 0.226 536296.084 0.227

Finalmente a tabela 9 mostra os resultados para a execução do sistema em GPU

com as matrizes em formato ELL com e sem ordenação. Podemos concluir que para

as matrizes de maior dimensão o formato ELL tem melhor desempenho que o formato

CSR mas o impacto da ordenação é nulo. O facto de a ordenação não ter impacto

resulta da estrutura da matriz. Como vimos pelo gráfico da figura 3 a variabilidade do

comprimento das linhas da matriz (dentro de cada warp) é muito pequena e portanto a

ordenação das linhas implica alterações sem significado na estrutura das matrizes.

Impacto da Organização dos Dados ... INForum 2010 – 265

5 Conclusões e Trabalho Futuro

Neste trabalho estudamos o desempenho da operação matriz-vector em GPU para dois

formatos de representação de matrizes CSR e ELL. Considerando a resolução em

GPU em que uma thread é atribuída a cada linha da matriz, estudámos o impacto da

ordenação das linhas pelo seu comprimento, isto é, pelo número de valores não zero.

Concluímos que com o algoritmo estudado para GPU o formato CSR tem pouca ou

nenhuma vantagem em relação ao CPU, enquanto o formato ELL apresenta ganhos

entre os 95 a 98%. O impacto da ordenação para matrizes com cerca de 10% de não

zeros e variabilidade no tamanho das linhas é menos de 10% para o formato CSR mas

para o formato ELL pode significar ganhos na ordem dos 30%. Estudámos ainda a

mesma operação, para os mesmos formatos com e sem ordenação, quando utilizada

num algoritmo iterativo de resolução de um sistema de equações. Concluímos que

para matrizes com um número de não zeros muito reduzido e pouca variabilidade no

comprimento das linhas o impacto da ordenação é nulo.

Como trabalho futuro pretendemos explorar formas de distribuição dos dados com

utilização da memória partilhada, mais pequena que a memória global mas de acesso

muito mais rápido e estudar o produto matriz-vector para problemas reais que

envolvam matrizes com diferentes estruturas.

References

1. NVIDIA Corporation, "NVIDIA CUDA Programming guide”, version 2.3.2 (2009).

2. ATI, “Stream Computing – Technical Overview”,

http://developer.amd.com/gpu/atistreamsdk/pages/default.aspx, acedido em Junho de (2010)

3. Khronos group, OpenCl “Parallel Computing for Heterogeneous Devices”, 54 páginas,

http://www.khronos.org/opencl/, acedido em Junho de (2010).

4. Volkov, V. and Demmel, J. W., “Benchmarking, GPUs to tune dense linear algebra” in

Proceedings of the 2008 ACM/IEEE Conference on Supercomputing (Austin, Texas,

November 15 - 21, 2008). Conference on High Performance Networking and Computing.

IEEE Press, Piscataway, NJ, 1-11.

5. Barrachina, S., Castillo, M. Igual, F.D., Mayo, R. and Qintana-Ortí, “Solving dense linear

systems on graphics processors” in Proc. 14th Int’l Euro-Par Conference, volume 5168 of

Lecture Notes in Computer Science, pages 739-748, Springer, Aug.2008.

6. Bell, Nathan and Garland, Michael. “Implementing Sparse Matrix-Vector Multiplication on

Throughput-Oriented Processors” in Proc. Supercomputing '09, November 2009.

7. Bell, Nathan and Garland, Michael, “Efficient Sparse Matrix-Vector Multiplication on

CUDA”. Technical Report NVR-2008-004, Dec. 2008 NVIDIA Corporation.

8. The Matrix Market, http://math.nist.gov/MatrixMarket/, acedido em Maio de 2010.

9. Kirk, David B. and Hwu, Wen-mei W., “Programming Massively Parallel Processors”, 258

páginas. Morgan Kaufmann, Elsevier, 2010.

10. Saad, Y. Iterative Methods for Sparse Linear Systems. 2nd Edition. Society for Industrial

and Applied Mathematics. 2003.

11. Rossman, L.A., “EPANET Users Manual” Risk Management Research Lab., U.S.

Environmental Protection Agency, Cincinnati, Ohio, 2000.

266 INForum 2010Paula Prata, Gilberto Melfe, Ricardo Pesqueira, João Muranho

Scalable and Efficient Discovery of Resources,
Applications, and Services in P2P Grids?

Raoul Felix, Paulo Ferreira, and Lúıs Veiga

INESC ID /IST
Rua Alves Redol 9

Portugal

Abstract. Distributed computing enables us to harness all the resources
and computing power of the millions of computers connected to the Inter-
net. Therefore, this work describes the ongoing effort to create an efficient
and scalable resource discovery mechanism, capable of searching not only
for physical resources (e.g. CPU, Memory, etc.), but also services (e.g.
facial recognition, high-resolution rendering, etc.) and applications (e.g.
ffmpeg video encoder, programming language compilers, etc.) from com-
puters connected to the same Peer-to-Peer Grid network. This is done in
a novel way by combining all resource information into Attenuated Bloom
Filters, which also allows us to efficiently route messages in a completely
decentralized unstructured P2P network (no super-peers). The research
shows that previous P2P, Grid, and Cycle Sharing systems tackled this
problem by focusing on each resource type in isolation, such as (physi-
cal) resource discovery and service discovery. Methods to minimize stor-
age and transmission costs were also researched. The current discovery
mechanism’s implementation only functions for static resources and was
evaluated along side the Random Walk discovery method for comparison.
The results were favorable over Random Walk, having higher query suc-
cess rates with less hops while requiring a moderate increase in message
size and storage space at each node (for routing information).

1 Introduction

There are millions of computers connected to the Internet1 with more and
more going online each day due to laptops, netbooks, PDAs, and smartphones.
With so many devices connected to the same network, distributed computing
on such a large scale cannot be ignored. As such, resource sharing has become
immensely popular and has led to the development of Grid and Peer-to-Peer
(P2P) infrastructures dedicated to that purpose. These infrastructures ease the
sharing of various types of resources, that range from simple files, to software
offering different services, and even hardware like CPUs and Printers.

The most popular form of resource sharing across the Internet is File Sharing
via Peer-to-Peer applications, occupying roughly 50%-90% of all Internet traffic.2
A lot of work has been done in this area to create robust and scalable systems,
capable of efficiently supporting a large number of users in a decentralized man-
ner. P2P Infrastructures can be divided between those that do not perform any
node organization (Unstructured systems), such as Gnutella [1] and Freenet [2];
and those that structure their nodes to improve message routing (Structured
systems), such as Chord [3], CAN [4], and Pastry [5].

? This work was supported by FCT (INESC-ID multiannual funding) through the
PIDDAC Program funds. Raoul Felix and this work were supported by FCT research
project GINGER - PTDC/EIA/73240/2006

1 http://www.internetworldstats.com
2 http://torrentfreak.com/bittorrent-dominates-internet-traffic-070901

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 267–278

Grid and Cycle Sharing systems are similar in nature, as their objective is to
perform large-scale parallel computations in scientific and commercial commu-
nities. While Grid systems harness the power of many interconnected networks
of computers, which are usually centrally or hierarchically managed by the insti-
tutions that run them; Cycle Sharing systems take advantage of the many idle
computers and game consoles already connected to the Internet, volunteered by
home users.

Even though Peer-to-Peer and Grid systems are different, the literature [6–
9] says that they will eventually converge. In this fashion, GINGER3 [10], or
simply GiGi, is a P2P Grid infrastructure that fuses three approaches (grid
infrastructures, distributed cycle sharing, and decentralized P2P architectures)
into one. GiGi’s objective is to bring a Grid processing infrastructure to home
users, i.e. a “grid-for-the-masses” (e.g. achieve faster video compression, face
recognition in pictures/movies, high-res rendering, molecular modeling, chemical
reaction simulation, etc.).

The common theme between these different systems is that users have a task
that they want to accomplish: share files in P2P file sharing systems; perform
scientific calculations in Grids; or perform CPU intensive tasks over a massive
amount of idle home user computers in Cycle Sharing systems. Tasks require
discoverable resources that satisfy certain requirements that can range from
almost no requirements (file sharing), to simple requirements (idle CPU), to
complex requirements (free CPU with X much RAM, with at least Y much
storage space, and with application Z installed). This is where the work described
in this paper comes in, where the objective is to create an effective, efficient, and
scalable discovery protocol of resources, applications, and services for inclusion
in the GINGER project.

The rest of this work is structured as follows. In Section 2 we discuss similar
systems that also provide service or resource discovery. Section 3 describes the
architecture of SERD4, while in Section 5 we show some relevant performance
results. Section 6 concludes this paper offering final remarks.

2 Related Work
This section can be divided into three main areas: i) efficient data representa-

tion where reducing the size of data storage and transmission is the objective,
ii) resource discovery which only deals with the discovery of physical (e.g. CPU,
RAM, etc.) or virtual (e.g. files) resources, and iii) service discovery where the
main concern is discovering the services (e.g. facial recognition, high-resolution
rendering, applications, etc.) provided by computers in a network.

2.1 Efficient Data Representation
Efficient Data Representation is important in this work because nodes have to

store and transmit resource information about themselves and neighbors. Com-
pression reduces the size of highly redundant information via a dictionary based
(LZW [11]) or statistic based (Huffman coding [12]) encoding process. RSync [13]
and the Low-Bandwidth File System [14] use Chunks and Hashing to divide
data into chunks, calculating the hash of each chunk, and only transmitting those
that have changed between versions of the same file. Erasure codes take an-
other approach, and encode a message into a few symbols which can then be used
to reconstruct a partially received message. Reperasure [15] uses this technique
3 Grid Infrastructure for Non-Grid EnviRonments
4 Scalable and Efficient Resource Discovery

268 INForum 2010 Raoul Felix, Paulo Ferreira, Lúıs Veiga

to provide data replication without storing full-replicas. The three techniques,
although important, are not directly applicable in this work. The reduced mes-
sage size cancels the need to compress messages or divide them into chunks. We
also do not need to perform any forward error correction nor replicate data.

The final and most useful technique is a space-efficient probabilistic data struc-
ture called Bloom Filters, which efficiently test whether an element is a member
in a set with the possibility of a false-positive occurring. A set S = {x1, x2, ..., xn}
of n elements is stored in an array of m bits all initially set to 0. It must also use
k different hash functions, each of which maps some element to one position in
the m bit array. Because Bloom filters are implemented as bit arrays, the union
of two sets can be computed by performing the OR operation between the two,
while their approximate intersections can be computed using the AND operation.
Insertion is performed by passing the element through each of the k different
hash functions and setting the resulting position in the m bit array to one. To
test whether an element is in the set or not, it has to be passed through all hash
functions and if all the resulting positions in the array are set to one, then the
element has a high probability of being in the set. If any position has the value
zero, then we know for definite that it is not in the set (no false negatives). The
small false positive rate arises from the fact that when querying for an element
that is not in the set, some hash functions may result in positions that were
already used (have the value one) for a previously inserted item. Therefore, the
more elements are inserted into the Bloom filter, the higher the chance of a query
resulting in a false positive. Another shortcoming is the inability to remove an
element from the Bloom filter, as simply setting the positions given by the k
hash functions to zero have the side effect of removing other elements as well.

Bloom Filter variations exist to either extend their functionality or address
some limitation. Counting Bloom Filters [16] allow both insertion and re-
moval of elements by using an array of counters, instead of bits. In [17], Mitzen-
macher shows that Compressed Bloom Filters can either occupy the same
space but have a lower false-positive rate, or reduce their size and maintain their
false-positive rate. Almeida et al. [18] created a Scalable Bloom Filter that
dynamically grows in order to support the desired false-positive rate.

Finally, Attenuated Bloom filters were proposed in [19] to optimize search
performance w.r.t. locality of objects. It uses an array of Bloom filters with
depth d, where each row i, for 1 ≤ i ≤ d, corresponds to the information stored
at nodes i hops away. As the depth increases, more information will be stored in
that Bloom filter row, making the respective filter more attenuated and resulting
in a higher probability of false positives. Therefore, information closest to the
node is more accurate, and less so the further away. The major advantage of this
technique is that it permits us to efficiently locate objects up to d hops away,
using as little storage space as possible (due to the Bloom filters) at the cost
of a certain false positive rate. The disadvantage is that it only lets us search
information about nodes up to d hops away.

2.2 Resource Discovery
Resource Discovery systems do a subset of what we want to accomplish

with this work: locating physical or virtual resources to perform jobs. They can
be split into three categories: Peer-to-Peer, Grid, and Cycle Sharing.

Peer-to-Peer systems do not distinguish between clients and servers; all
nodes are equal and have no central coordination, making them decentralized.
This leads to the various types of node topology organization: unstructured,
structured, and hybrid. Unstructured system nodes are randomly connected
to a fixed number of neighbors; there is no information about where resources

Scalable and Efficient Discovery ... INForum 2010 – 269

are located so message routing has to be performed by flooding. Searching can
be uninformed or informed. Uninformed searches use no addition information to
route queries, they are either flooded to all neighbors (Gnutella [1]), or are for-
warded to a randomly selected neighbor (Iamnitchi et al. [20]). Informed searches
are more intelligent and route messages based on collected information, but re-
quire more memory. Lie et al. [21] and the learning-based technique in Iamnitchi
et al. forward queries to nodes that have replied to similar requests. Another
strategy called best-neighbor in Iamnitchi et al. [20] just forwards queries to
nodes with the highest success rate. Structured systems, such as Chord [3] and
CAN [4] organize nodes into a rigid structure, called a Distributed Hash Table
(DHT), which enables efficient exact-match query routing. Each node is assigned
an identifier (key) which makes him responsible for all content (values) whose
hash resolves to that key. Finally, Hybrid systems try to combine the best of
both worlds without their disadvantages. Some systems in this category, like
Pastry [5] and Kademlia [22], tend more towards structured systems, albeit with
a less “rigid” structure, where any node belonging to a defined key subspace can
act as a contact for those values. Others follow a more unstructured approach
and use super-peers [23] that communicate between themselves on the behalf of
less capable nodes (in terms of bandwidth or CPU performance), thus increasing
routing performance.

Grid and Cycle Sharing systems share the same objective: to combine many
geographically dispersed computer resources in order to perform tasks that re-
quire lots of CPU processing power, or that need to process huge amounts of
data. Tasks like these are common when dealing with scientific, technical, or
business problems. Grid systems can run in LAN environments such as that of a
university, or in a much larger network compromised of interconnected networks
that belong to different institutions, corporations, or universities. Condor [24]
and Legion [25] are typical examples of such systems, where information about all
resources are stored in a central component, known as the Matchmaker in Con-
dor, and in Legion is divided into 3 subcomponents: the Collection, Scheduler,
and Enactor. This central component receives job requests, tries to match their
requirements to available resources, and reserve those resources while notifying
the requester. Cycle Sharing systems rather operate over the Internet, which can
be highly unreliable with variable connection quality. Another important differ-
ence is that anyone with a computer can join a cycle sharing project of interest
(e.g. SETI@Home [26] or Folding@Home) and volunteer their resources during
idle times. This brings the additional problem of unreliable peer connections and
possibly forged results from untrusted peers.

2.3 Service Discovery
Service Discovery systems, like Resource Discovery, do the missing subset

of this work: enabling the automatic detection of services provided by computers
in small LAN environments, like home networks, or in large-scale enterprise net-
works, like a corporation or university. SLP [27] and Jini [28] use a client/server
architecture, where servers collect service information and perform lookups for
clients. SLP can function without directory servers using multicast to find ser-
vices, but only in small LAN environments.

The systems presented by Goering et al. [29] and Lv and Cao [30] use a Peer-to-
Peer architecture instead, with the objective of being able to function in ad-hoc
networks. Goering et al. propose a service discovery protocol based on the use
of Attenuated Bloom Filters, which provide a method to locate objects, giving
preference to objects located nearby. It is simply an array of Bloom Filters of
depth d, where each row represents objects at different distances which, in this

270 INForum 2010 Raoul Felix, Paulo Ferreira, Lúıs Veiga

case, is in term of hops. Each node has an Attenuated Bloom Filter for each of
its neighbors, which is consulted when a query is received in order to send it in a
direction it will have a higher chance of success. The first level of the Attenuated
Bloom Filter corresponds to the services that are one hop away, the second to
services two hops away, and so forth. Therefore, the larger the distance from
the node, the more services will be contained in the corresponding Attenuated
Bloom Filter which will increase the chance of false positives. Relying solely on
Attenuated Bloom Filters gives this system a big limitation: only the services
located up to d-hops away can be easily found. Lv and Cao resolve this drawback
by having nodes more than d + 1 hops away cooperate among themselves. Thus,
when a query is received, it follows the same process of checking the Attenuated
Bloom Filters of its neighbors like Goering et al, but if no services are found,
then the query is forwarded to a node d + 1 hops away where the search begins
again.

3 Architecture

The objective of this work is to enhance the resource discovery mechanism
in GINGER [10], also known as GiGi, by making it completely decentralized
and more complete. This completeness regards the system’s ability to discover,
not only basic resources (e.g. CPU, Bandwidth, Memory, etc.), but also specific
installed applications (e.g. video encoders, simulators, etc.) and services (e.g. face
recognition, high-res rendering, etc.). Because GiGi can be used in many different
ways (“grid-for-the-masses”), it has to be flexible enough to run different types
of jobs normally performed by home-users.

In order to cope with a dynamic peer population and high churn rate, this
system uses an unstructured peer-to-peer approach to resource discovery, even
though message routing may not have optimum efficiency. If a structured system
were to be used, the messages needed to keep the structure intact with an un-
stable population, such as home-users, could possibly result in a high overhead.
Attenuated Bloom Filters are used to enhance message routing and speed up
resource location. Note that this solution is different to the systems mentioned
in the Related Work because it combines all types of different resources into
one discovery mechanism. It is especially different to the works [29,30] that also
make use of Attenuated Bloom Filters due to usage of one aggregated Attenu-
ated Bloom Filter (explained next), and the fact that all the different types of
basic resources, services, and applications are encoded in the Bloom Filter.

Each node in the network stores a cached version of the Attenuated Bloom
Filters of their neighbors. This information is then merged into one single Atten-
uated Bloom Filter by inserting the union (OR operation) of all neighbor Bloom
Filters at a certain depth k into depth k + 1 (Figure 1). The consequence of
using an Attenuated Bloom Filter of, for example, depth d = 2 is that a node
will only know about the resources of nodes up to 2 hops away. A solution for
this problem is discussed further in Section 3.

Discovery Mechanism: The discovery of resources, applications, and services
(illustrated as a flowchart in Figure 2) will be performed in the following way.
When a node receives a query, it will check its own information to see if it can
satisfy the requirements. If it does, a reply is sent directly to the node that
originated the query. If not, it goes through its aggregated Attenuated Bloom
Filter, which contains the combined information from its neighbors Attenuated
Bloom Filters. This way, we can quickly determine if the query cannot be satisfied
with nodes up to d hops away, in which case it will be sent directly to a node d+1

Scalable and Efficient Discovery ... INForum 2010 – 271

Level 2
Level 1
Level 0

Level 2
Level 1
Level 0

Level 2

Level 1

Level 0
Neighbor 1 Neighbor 2

Node A

Fig. 1. Example of a node A creating a single Attenuated Bloom Filter by merging
each Level i of its neighbors’ Attenuated Bloom Filters into Level i+ 1.

hops away to restart the search. If the query can be satisfied with nodes at most
d hops away, the node then needs to determine the direction to send the query
for it to be resolved. This is done by checking all the cached Attenuated Bloom
Filters of its neighbors to determine which one has the requested resources. If
found, it then forwards the query to that neighbor. If not, then it is because the
aggregated Attenuated Bloom Filter returned a false positive, which is mitigated
by simply sending the query to a node more than d + 1 hops away so it can be
resolved. As each message is forwarded to a node, the sender adds his own ID to
the resource query’s Bloom Filter which keeps track of where the message has
been sent. This Bloom Filter is cleared when a query jumps to a node d+1 hops
away. If any node received a query message and its ID is in the Bloom Filter,
then there must have been a false positive and therefore the query should fail.

End

Start
Compare query

requirements against
myself

Query
Satisfied

?

Reply to query originator

Compare query requirements
against aggregated

attenuated Bloom filter

Query
Satisfied

?

Resend and restart query
to a node d + 1 hops away

Compare query requirements
against each neighboring

node's attenuated Bloom filter

Query
Satisfied

?

Forward query to that
neighbor

Yes

No

No

Yes

No

Yes

Fig. 2. Flowchart of resource, service, and application discovery from Section 3

Dynamic Resources: Some resources are mostly static and do not change, like the
Operating System, CPU and Disk speed, certain application versions, etc. But
there are other resources whose values can change quite often, such as amount
of RAM occupied, amount of CPU in use, etc. For those cases, if we used a
classic Bloom Filter then it would need to be rebuilt periodically since it does
not support the removal of elements. More, this rebuilding procedure would
require sending information about resources that are not expected to change,
thus wasting bandwidth.

Therefore, instead of using a classic Bloom Filter to store the information
about the dynamic resources, a Counting Bloom Filter is used. To compensate
the fact that a Counting Bloom Filter occupies more bits than a classic one, we
use a smaller size, as the number of static resources is greater than dynamic ones.
The usage of this new Bloom Filter mirrors that described in the previous sec-
tions: queries for dynamic resources use the Aggregated Counting Bloom Filters

272 INForum 2010 Raoul Felix, Paulo Ferreira, Lúıs Veiga

12

5

3

6

7

4

Fig. 3. Example showing how resource queries are forwarded with an Attenuated
Bloom Filter of d = 1. When a neighbor has information about the desired resource,
such as Node 3, then query is forwarded to that peer, who in turn forwards the query
to Node 6 which contains the resource. In another case, when there is no information
about the desired resource in Node 1’s area (consisting of Nodes 1, 2 and 3), then the
query is forwarded to an Outer Limit Node 4, where the search is then restarted.

instead. The difference now is when a dynamic resource changes its value and
passes a certain threshold, the direct neighbors of that node are notified. Thus,
the information closest to the node with the resource is kept up to date. The
updating of nodes further away occurs at a later stage, when there are enough
resource value alterations that can be sent in a batch, in order to save messages.

Outer Limit Peer Discovery: Using an Attenuated Bloom Filter of a certain
depth d limits the amount of information a node has about its surrounding
neighbors. If a query is received and cannot be satisfied using the information
the node knows about its peers in the same area, then it forwards the query to
another node that is d + 1 hops away (which, conceptually, is part of another
area).

To find those Outer Limit Peers, the system uses a simple Random Walk
strategy to forward a discovery message until it reaches a node d + 1 hops away.
Once that node is found, it replies to the message originator. The Peer Discovery
protocol has two parameters which can be fine tuned, such as: width (w) and
length (l). Width represents the number of nodes the discovery query should be
sent to in parallel, and the length is the number of hops that the outer limit
node should have. On the off chance that a node does not know about any outer
limit peers, either due to particular topology configurations or node failures, the
system just forwards the query to a random neighbor.

3.1 Resource Representation

Information about resources, applications, and services that each node offers
are represented inside a Bloom Filter. But, because a Bloom Filter is only capable
of performing membership tests given a key (in this case a string), we need to
add information about the actual resource (like type, value, etc.) to that key
on insertion for it to be useful in discovering resources. Therefore, keys use
namespaces to differentiate between resources and their values, which also helps
with performing membership tests for resources. The naming convention uses
a 3-level namespace, each separated using the colon (“:”) as a delimiter, and
follows the following rules:

– Level 1 : Name of the Resource, Service, or Application (e.g. CPU or ffmpeg)
– Level 2 : Type of the Resource, Service, or Application (e.g. MHz or version)
– Level 3 : Actual value of the Resource, Service, or Application

Scalable and Efficient Discovery ... INForum 2010 – 273

For instance, if we wanted to store the fact that a node has a CPU of 3 GHz,
the key we would insert into the Bloom Filter would be: “CPU:GHz:3”. Or, if
a node has the application ffmpeg version 2.3 installed, the key would look like:
“ffmpeg:version:2.3”. But, for different nodes to be able to communicate with
each other and search for the same resources, the naming of resources, services,
and applications need to be the same between all of them. An ontology could be
used, but that is out of the scope of this work. For the time being, the system
reads a configuration file that specifies the name of the resource among other
things. This configuration file needs to be the same for all nodes in the network.
Insertion: However, just following a naming convention will not suffice for the
discovery of resources. We also need to take into account the values used for
each resource. If we do not restrict the possible values, we would need to employ
a brute force strategy when querying for resources, trying each value combina-
tion and testing the Bloom Filter. For example, to find a node that at least
contains a CPU of 2.6 GHz, we would need to test for values such as 2.6, 2.7,
2.8, 2.9, 3.0, etc., which is highly inefficient. To speed this up, we define a min-
imum, maximum, and a quantum for each resource value type (which are also
specified in a configuration file). The minimum (resp. maximum) is the smallest
(resp. largest) value that the resource will have encoded in the Bloom Filter.
The quantum defines how the value space, from minimum to maximum, will be
divided. When a resource is inserted into the Bloom Filter, it is first inserted
with the key that corresponds to its range, and then with all the other keys that
correspond to ranges smaller than the resource’s value. For example, if we define
minimum = 0, maximum = 4000, and quantum = 1000 for CPU values in
MHz, then the range of values is divided into the following segments:]0, 1000];
]1000, 2000];]2000, 3000]; and]3000, 4000]. Or, if a CPU of 999MHz were to be
inserted into the Bloom Filter, it would need to be inserted under the value 1000:
“CPU:MHz:1000”; and so on.
Querying: Now, when querying a Bloom Filter for a value, the range the value
falls under needs to be determined for the specified resource and checked. For
instance, if a query requires a CPU of at least 2600 MHz, we would only need
to perform one exact match query using the range the value in the requirements
belongs to, which in this case is 3000 (2600 ⊂]2000, 3000]). Therefore, we only
need to test the key “CPU:MHz:3000” against a Bloom Filter because processors
with a faster CPU will also be registered under this key. This strategy avoids the
brute-force approach and efficiently speeds up the querying process. However,
one needs to take care when specifying the quantum value due to precision prob-
lems. In this example, a CPU of at least 2600 MHz is required, but testing the
Bloom Filter with key “CPU:MHz:3000” can result in CPUs that belong to the
interval]2000, 2599], thus not satisfying the requirements. In a real-world sys-
tem, using a quantum = 200 would probably be more suitable, giving enough
precision without requiring too much overhead. This, and searching for a re-
source with a key one quantum value higher than required will ensure query
satisfaction.

4 Implementation Details
This work is implemented using the PeerSim [31] simulator with its Event

Driven capabilities, approximating the simulation more to real-life as opposed
to a Cycle Driven simulation. Because PeerSim is implemented in Java, the
SERD discovery mechanism is also implemented in Java, which also allowed us
to use an open source Bloom Filter implementation from the well known Hadoop
project, providing us a certain amount of confidence w.r.t. its quality.

274 INForum 2010 Raoul Felix, Paulo Ferreira, Lúıs Veiga

In order to be able to evaluate this work, we had to build an infra-structure
around PeerSim to allow things such as topology creation, resource distribu-
tion, and node activity specification. The topology of a network can either be
loaded using a file that describes the connections between nodes, or can be gen-
erated randomly using parameters that ensure minimum and maximum number
of neighbors. Resource distribution among nodes can be performed in a static
way using a simple file that specifies which node should have what resource; or,
it can be specified in a more random fashion by specifying criteria to select a
certain number of nodes. Distribution criteria can be the number of hops be-
tween nodes, the density/frequency of nodes that have the resource, or even the
homogeneity of resource distribution. Node activity specification also uses a
text file where nodes can be selected using various types of specifiers (e.g. ran-
domly, exact match, nodes with a certain resource, etc.) along with the actions
that they should perform (e.g. search for some resource) and when that action
should be executed (in terms of simulation cycles or periodicity).

Another implementation issue we had was the initial construction of the At-
tenutated Bloom Filters. PeerSim starts with an already defined topology, so
we simulated a joining phase on top of PeerSim for nodes to exchange resource
information when a new peer enters the network.

5 Evaluation
PeerSim was used to evaluate SERD in a virtual network environment with

six different test scenarios. These include varying the number of nodes that have
the desired resource, which ranges from very abundant (50% of the nodes have
the resource), abundant (25% have the resource), and scarce (only 5% have
the resource). For each of those cases, we also vary the values of the resources,
separating them into two groups: uniform, which is common with an application
like GCC, either a computer has it or it does not; and non-uniform where values
vary quite a bit, similar to a Hard Drive where the range we used was 0GB to
1000GB.

99.97%	

96.38%	

47.84%	

99.93%	

97.38%	

51.47%	

99.99%	

99.99%	

99.86%	

99.99%	

99.96%	

99.84%	

0.00%	 25.00%	 50.00%	 75.00%	 100.00%	

50%	

25%	

5%	

50%	

25%	

5%	

20
81
	

99
53
	

Query	 Sa5sfac5on	 (%)	 SERD	

Query	 Sa5sfac5on	 (%)	 RW	

Fig. 4. Query Satisfaction for GCC (uni-
form)

1.60%	

0.90%	

0.61%	

0.89%	

0.54%	

0.25%	

94.10%	

91.15%	

62.15%	

95.50%	

91.61%	

62.87%	

0.00%	 25.00%	 50.00%	 75.00%	 100.00%	

50%	

25%	

5%	

50%	

25%	

5%	

20
81
	

99
53
	

Query	 Sa5sfac5on	 (%)	 SERD	

Query	 Sa5sfac5on	 (%)	 RW	

Fig. 5. Query Satisfaction for Hard Drive
(non-uniform)

The SERD protocol was compared against the Random Walk protocol, which
is used as a touchstone as it is easy to implement and functions as a baseline for
performance (no protocol should perform worse). The RW implementation uses
exact-match searches and just forwards queries to random neighbors.

Each scenario was tested with both RW and SERD protocols using two dif-
ferent network sizes: one with 2081 nodes and another with 9953 nodes, repre-

Scalable and Efficient Discovery ... INForum 2010 – 275

senting small and large networks respectively. Neighbors in this topology were
randomly assigned, with the maximum number of neighbors being three. 10%
of the nodes were randomly chosen to periodically send a query, in parallel,
for a certain resource based on the scenario. Query messages were sent with a
TTL = 2 ∗ log2(NETWORK SIZE) to make sure resource queries eventually
fail. As SERD uses an Attenuated Bloom Filter, the chosen depth for the test
was d = 3.

2	

5	

16	

2	

5	

18	

1	

2	

4	

1	

2	

4	

-‐4	 1	 6	 11	 16	 21	 26	

50%	

25%	

5%	

50%	

25%	

5%	

20
81
	

99
53
	

Average	 Number	 of	 Hops	 SERD	

Average	 Number	 of	 Hops	 RW	

Fig. 6. Average Number of Hops for GCC
(uniform)

22	

22	

22	

26	

26	

26	

4	

6	

14	

4	

7	

16	

-‐4	 1	 6	 11	 16	 21	 26	

50%	

25%	

5%	

50%	

25%	

5%	

20
81
	

99
53
	

Average	 Number	 of	 Hops	 SERD	

Average	 Number	 of	 Hops	 RW	

Fig. 7. Average Number of Hops for Hard
Drive (non-uniform)

Figures 4 and 5 show the percentage of resource queries that were satisfied (out
of 7072 and 33830 sent queries for network sizes of 2081 and 9953, respectively).
SERD proved to be able to find the requested resources with a percentage of
satisfaction consistently superior than 90%, with the exception of the scarce
scenarios with non-uniform values. Still, more than half of the resource queries
were satisfied even though the resources were distributed to only 5% of the
nodes, further complicating the search. RW did well in the uniform scenario,
but struggled in the scarce one. RW performed terribly with non-uniform values,
barely being able to satisfy any queries. This happened because the protocol used
exact-match and just randomly picked a neighbor to forward a message to, which
led to dead ends.

23403	

45740	

123473	

115009	

232247	

667504	

61631	

61934	

73074	

293330	

295393	

356226	

0	 200000	 400000	 600000	 800000	

50%	

25%	

5%	

50%	

25%	

5%	

20
81
	

99
53
	

Total	 Messages	 Sent	 SERD	

Total	 Messages	 Sent	 RW	

Fig. 8. Total Messages Sent for GCC (uni-
form)

168198	

168895	

169188	

942977	

944631	

946075	

83687	

94377	

140322	

403357	

472876	

737689	

0	 200000	 400000	 600000	 800000	 1000000	

50%	

25%	

5%	

50%	

25%	

5%	

20
81
	

99
53
	

Total	 Messages	 Sent	 SERD	

Total	 Messages	 Sent	 RW	

Fig. 9. Total Messages Sent for Hard Drive
(non-uniform)

With regards to the average number of hops the resource queries traveled,
seen in Figures 6 and 7, the scenarios that proved tougher had messages travel

276 INForum 2010 Raoul Felix, Paulo Ferreira, Lúıs Veiga

a lot more. When searching for GCC, both RW and SERD protocols had a low
number of hops, except for the scarce scenario were RW increased quite a bit.
While looking for a Hard Drive, the average number of hops for RW were close
or equal to the TTL (22 and 26 for network sizes of 2081 and 9953, resp.), which
is obvious seeing as almost all queries failed.

In Figures 8 and 9 we can see the total number of sent message. With the
exception of the RW protocol’s search for Hard Drives, the SERD protocol uses
more messages than the RW protocol. This is to be expected because SERD
needs to exchange neighbor resource information (the Attenuated Bloom Filters)
and look for Outer Limit Peers, unlike RW. As this is a work in progress, this is
one area that we will try to optimize in order to reduce the number of messages.

Finally, the average message size and average routing information storage size
occupied by each node can be seen in Figure 10. SERD messages are almost dou-
ble the size of RW messages, which is expected because SERD messages include
a Bloom Filter to keep track of nodes the message has passed through. With
regards to the information stored at each node, SERD uses much more space
than RW because RW nodes only keep information about their own resources,
whereas SERD nodes store the Attenuated Bloom Filters of its neighbors and
needs space for its own Aggregated Attenuated Bloom Filter.

88.44	

2522.89	

394.33	

771.72	

0.00	 500.00	 1000.00	 1500.00	 2000.00	 2500.00	 3000.00	

RW	

SERD	

Average	 Message	 Size	 (B)	 Average	 Storage	 Size	 (B)	

Fig. 10. Average Message Size and Average Storage Size at each Node

6 Conclusion

GiGi [10] allows home users to take advantage of Grid computing which was
previously only available to scientific and corporate communities. Tasks that
would usually take a lot of time, such as audio and video compression, signal
processing related to multimedia content (e.g. photo, video, and audio enhance-
ment), intensive calculus for content generation (e.g. ray-tracing, fractal genera-
tion), among others, can now be sped up by parallelizing and distributing them
over many computers.

However, to distribute the tasks GiGi needs to locate the resources that satisfy
task prerequisites. This is precisely what the architecture described in this paper
does: discovering physical resources, services, and applications of computers con-
nected to the same P2P Grid. The main objectives are to create a decentralized
discovery mechanism that is efficient and scalable for the GiGi project. Even
though this work is for the GiGi project, it is completely independent and can
be used in other types of networks, such as cycle-sharing networks.

The current implementation focuses mainly on static resources (work in progress)
and was evaluated alongside another, albeit simpler, discovery mechanism called
Random Walk (RW). Results show that SERD proved to be better than RW,

Scalable and Efficient Discovery ... INForum 2010 – 277

with higher query success rates using less hops at the expense of increased mes-
sage size and storage space. There is still work to be done to increase the effi-
ciency and scalability of the system.

References

1. Gnutella Protocol Specification. Last checked: 2009-12-18.
http://wiki.limewire.org/index.php?title=GDF.

2. I. Clarke, S.G. Miller, T.W. Hong, O. Sandberg, and B. Wiley. Protecting free expression online
with Freenet. IEEE Internet Computing, 6(1):40–49, 2002.

3. I Stoica, R Morris, D Karger, and M Kaashoek. Chord: A scalable peer-to-peer lookup service
for internet applications. Proceedings of the 2001 conference on Applications, Jan 2001.

4. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable content-addressable
network. In Proceedings of the 2001 conference on Applications, technologies, architectures,
and protocols for computer communications, page 172. ACM, 2001.

5. A Rowstron and P Druschel. Pastry: Scalable, decentralized object location and routing for
large-scale peer-to-peer systems. Lecture notes in computer science, pages 329–350, Jan 2001.

6. S Androutsellis-Theotokis and D Spinellis. A survey of peer-to-peer content distribution tech-
nologies. ACM Computing Surveys, Jan 2004.

7. I. Foster and A. Iamnitchi. On death, taxes, and the convergence of peer-to-peer and grid
computing. Lecture Notes in Computer Science, pages 118–128, 2003.

8. D. Talia and P. Trunfio. Toward a synergy between p2p and grids. IEEE Internet Computing,
7:96–96, 2003.

9. A. Iamnitchi and D. Talia. P2p computing and interaction with grids. Future Generation
Computer Systems, 21(3):331–332, 2005.

10. L Veiga, R Rodrigues, and P Ferreira. Gigi: An ocean of gridlets on a” grid-for-the-masses.
Seventh IEEE International Symposium on Cluster Computing and the Grid, 2007. CCGRID
2007, pages 783–788, 2007.

11. M Nelson. Lzw data compression. Dr. Dobb’s Journal, Jan 1989.
12. D Huffman. A method for the construction of minimum-redundancy codes. Resonance, Jan

2006.
13. A. Tridgell. Efficient algorithms for sorting and synchronization. Doktorarbeit, Australian

National University, 1999.
14. A Muthitacharoen, B Chen, and D Mazieres. A low-bandwidth network file system. Proceedings

of the eighteenth ACM symposium on Operating systems principles, pages 174–187, Jan 2001.
15. Z Zhang and Q Lian. Reperasure: Replication protocol using erasure-code in peer-to-peer

storage network. 21st IEEE Symposium on Reliable Distributed Systems (SRDS’02), pages
330–339, Jan 2002.

16. Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder. Summary cache: a scalable wide-area
web cache sharing protocol. IEEE/ACM Trans. Netw., 8(3):281–293, 2000.

17. Michael Mitzenmacher. Compressed bloom filters. IEEE/ACM Trans. Netw., 10(5):604–612,
2002.

18. PS Almeida, C Baquero, N Preguiça, and D Hutchison. Scalable bloom filters. Information
Processing Letters, 101(6):255–261, 2007.

19. Sean C Rhea and John Kubiatowicz. Probabilistic location and routing. 2002.
20. A Iamnitchi, I Foster, and D Nurmi. A peer-to-peer approach to resource location in grid

environments. INTERNATIONAL SERIES IN OPERATIONS RESEARCH AND MAN-
AGEMENT SCIENCE, pages 413–430, Jan 2003.

21. L Liu, N Antonopoulos, and S Mackin. Social peer-to-peer for resource discovery. Proceedings
of the 15th Euromicro International Conference on Parallel, Distributed and Network-Based
Processing, pages 459–466, Jan 2007.

22. P Maymounkov and D Mazieres. Kademlia: A peer-to-peer information system based on the
xor metric. Proceedings of IPTPS02, Jan 2002.

23. C Mastroianni, D Talia, and O Verta. A super-peer model for building resource discovery
services in grids: Design and simulation analysis. Lecture notes in computer science, 3470:132,
Jan 2005.

24. D Thain, T Tannenbaum, and M Livny. Condor and the grid. Grid Computing: Making the
Global Infrastructure a Reality, pages 299–335, Jan 2003.

25. S Chapin, D Katramatos, and J Karpovich. Resource management in legion. Future Generation
Computer Systems, Jan 1999.

26. D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. SETI@ home: an exper-
iment in public-resource computing. Communications of the ACM, 45(11):61, 2002.

27. E Guttman. Service location protocol: Automatic discovery of ip network services. IEEE
Internet Computing, Jan 1999.

28. J Waldo. The jini architecture for network-centric computing. Communications of the ACM,
Jan 1999.

29. P Goering and G Heijenk. Service discovery using bloom filters. Proc. Twelfth Annual Con-
ference of the Advanced School for Computing and Imaging, Belgium, Jan 2006.

30. Qingcong Lv and Qiying Cao. Service discovery using hybrid bloom filters in ad-hoc networks.
Wireless Communications, Networking and Mobile Computing, 2007. WiCom 2007. Inter-
national Conference on, pages 1542–1545, 2007.

31. PeerSim. Last checked: 2009-12-27. http://peersim.sourceforge.net/.

278 INForum 2010 Raoul Felix, Paulo Ferreira, Lúıs Veiga

Thicket: Construção e Manutenção de Múltiplas
Árvores numa Rede entre Pares?

Mário Ferreira, João Leitão, and Lúıs Rodrigues

INESC-ID / IST
{mvvf, jleitao}@gsd.inesc-id.pt, ler@ist.utl.pt

Resumo As árvores de disseminação permitem a distribuição eficiente
de conteúdos em redes sobrepostas mas impõem uma carga aos nós in-
teriores muito superior à dos nós folha. Uma forma de contornar este
problema passa pela utilização de múltiplas árvores em que cada nó é
apenas interior num pequeno subconjunto de todas as árvores, e folha
nas restantes. As múltiplas árvores permitem a distribuição da carga e
o envio de informação redundante para a recuperação de falhas. Neste
trabalho propomos o Thicket, um algoritmo para a construção e ma-
nutenção de múltiplas árvores, de forma totalmente descentralizada, so-
bre uma rede não estruturada. O algoritmo foi implementado e avaliado
através de simulações, utilizando uma rede composta por 10.000 nós.
Abstract Spanning tree structures allow efficient resource usage when
broadcasting data on overlays networks but they impose a much higher
load to the interior nodes than the leafs. One way of overcoming this issue
is to employ multiple spanning trees where a node is interior in just a few
of them and a leaf in the remaining. This configuration enhances load dis-
tribution and provides a mechanism for introducing redundancy required
for fault-tolerance. This work presents Thicket, a protocol for building
and maintaining multiple spanning trees, with fully decentralized algo-
rithms, in an unstructured overlay. The protocol was implemented and
evaluated, using simulations, in a network composed of 10.000 nodes.

1 Introdução

Os mecanismos que permitem a distribuição de informação de forma fiável e efi-
ciente, para um conjunto considerável de participantes, são extremamente úteis
para um grande número de aplicações, desde sistemas de controlo e monito-
rização[1], até transmissão de v́ıdeo ao vivo e serviços de Televisão sobre IP
(IPTV)[2]. Neste trabalho abordamos mecanismos de disseminação entre-pares
baseado na cooperação dos seus participantes.

O principal problema que afecta este tipo de sistemas é o desbalanceamento
na contribuição de cada nó na distribuição de conteúdos. Utilizando uma árvore
de disseminação é posśıvel distribuir a carga de reencaminhamento pelos nós
interiores, porém, os nós folha apenas recebem dados não contribuindo para a
disseminação. Note que, existe uma fracção substancial de nós folha numa rede
deste tipo.

O nossa solução utiliza a abordagem baseada na construção de múltiplas
árvores de disseminação sobre uma rede não estruturada, promovendo a uti-
lização eficiente dos recursos dispońıveis e evitando redundância desnecessária
? Este trabalho foi parcialmente suportado pelo financiamento pluri-anual

do INESC-ID através do programa PIDDAC e pelos projectos “Redico”
(PTDC/EIA/71752/2006).

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 279–290

que advém da utilização de inundação ou de difusão epidémica. Porém, a uti-
lização de uma árvore impõe uma carga muito superior aos nós interiores do que
aos nós folha. Para além disso, a falha de um nó interior provoca quebras na
árvore afectando a fiabilidade da disseminação. Uma forma de contornar estes
problemas consiste em utilizar múltiplas árvores nas quais cada nó é interior
em apenas uma ou num número reduzido de árvores, e folha nas restantes. As
múltiplas árvores permitem a distribuição da carga do sistema por todos os nós e,
também, o envio de dados redundantes por diferentes árvores de forma a tolerar
falhas de nós ou ligações.

Neste trabalho apresentamos o Thicket, um algoritmo para construir e man-
ter múltiplas árvores de forma descentralizada numa rede sobreposta. Este al-
goritmo aborda uma região pouco explorada do espaço de soluções. As redes
não estruturadas são mais flex́ıveis e acomodam mudanças na configuração do
sistema mais facilmente que as redes estruturadas, como é o caso das Tabelas de
Dispersão Distribúıdas (Distributed Hash Tables, DHTs), pois não impõe uma
topologia espećıfica na rede.

Este artigo encontra-se organizado da seguinte forma. A Secção 2 motiva
este trabalho analisando as soluções existentes e discutindo as suas vantagens
e limitações. De forma a evidenciar os desafios da nossa abordagem, na Secção
3, demonstramos as limitações de algumas soluções simplistas para o problema.
A apresentação e descrição do protocolo é feita em detalhe na secção 4, sendo
os resultados experimentais apresentados na Secção 5. Finalmente, a Secção 6
conclui o artigo.

2 Trabalho Relacionado

Existem essencialmente, três abordagens para a distribuição de informação em
grande escala em sistemas entre-pares: a difusão epidémica, a abordagem em
árvore, e a abordagem em árvore embebida. Na difusão epidémica[3,4] a fonte
envia a mensagem para f1 nós escolhidos de forma aleatória. Quando um nó re-
cebe uma mensagem pela primeira vez, o processo é repetido. Esta abordagem é
simples, escalável e robusta. Infelizmente, não utiliza os recursos eficientemente,
pois a sua robustez é obtida à custa de aumento significativo da redundância
dos dados. A abordagem em árvore consiste em organizar os intervenientes de
forma a obter uma rede sobreposta em que a topologia corresponde a uma árvore
tolerante a falhas [5]. A principal vantagem de utilizar uma árvore é o aprovei-
tamento eficiente dos recursos. Por outro lado, uma árvore é dif́ıcil de manter
em ambientes instáveis. Desta forma, esta solução não é adequada para sistemas
de grande escala sujeitos a alterações constantes da sua filiação. Finalmente,
a abordagem em árvore embebida consiste em usar mecanismos eficientes para
construir uma árvore sobre uma rede sobreposta já existente[6,7].

As abordagens em árvore embebida podem ser aplicadas em redes estrutu-
radas[7] ou não estruturadas [6,8]. Soluções baseadas em redes não estruturadas
são potencialmente mais resistentes à variação da filiação do sistema, dado que
impõem menos restrições à topologia da rede e podem ser rapidamente reparadas.

Por outro lado, as soluções baseadas em árvore podem ser também divididas
em soluções de árvore única ou com árvores múltiplas. As soluções com uma
única árvore são mais simples mas possuem dois problemas: utilizam os recursos

1 f é um parâmetro t́ıpico destes sistemas designado por fanout.

280 INForum 2010 Mário Ferreira, João Leitão, Luis Rodrigues

do sistema de forma desbalanceada (nós interiores gastam mais recursos para
enviar dados aos seus filhos enquanto que nós folha apenas recebem dados)
e são mais suscept́ıveis a quebras devido à falha de nós interiores da árvore.
As soluções de árvores múltiplas constroem várias árvores ligando os mesmos
participantes. As árvores são constrúıdas de forma que cada nó seja interior
numa ou num número reduzido das árvores existentes e folha nas restantes. Esta
abordagem promove o balanceamento da carga do sistema, pois todos os nós
reenviam dados. Para além disso, enviando informação redundante em algumas
árvores (por exemplo utilizando técnicas de network coding [9]), é posśıvel tolerar
faltas visto que a falha de um nó apenas quebra a árvore onde este é interior, os
receptores continuam a conseguir obter os dados a partir das restantes árvores.

Estas últimas abordagens podem ainda ser classificadas segundo o tipo de
algoritmo utilizado na construção das árvores. Algoritmos centralizados depen-
dem de nós espećıficos, que contêm informação global acerca da topologia do
sistema. É de notar que, mesmo um algoritmo centralizado não é trivial, dado
que o problema da construção óptima das múltiplas árvores é NP-completo[10].
Estas soluções são, contudo, pouco interessantes para sistemas de grande di-
mensão, pois não possuem capacidade de escala nem tolerância a faltas. Alter-
nativamente a comunidade tem proposto soluções descentralizadas. Exemplos de
algoritmos descentralizados são o SplitStream[11] e o Chunkyspread[12].

O SplitStream baseia-se numa variante do Scribe para construir várias árvores
de disseminação disjuntas sobre a DHT do Pastry[13]. Tal como na nossa abor-
dagem, os autores tentam construir árvores em que um nó é interior em apenas
uma árvore e controlam o número de filhos de um nó na árvore em que este é
interior (i.e., limitando a carga de cada nó) de acordo com a sua capacidade.
Porém, os autores utilizam uma DHT; os nós são interiores numa única árvore
por desenho, dado que cada árvore possui uma fonte cujo identificador tem um
prefixo distinto. Note-se que manter uma DHT tem um custo muito superior
comparado com uma rede não estruturada. Para além disso, a rede não estrutu-
rada pode recuperar mais rapidamente que o Pastry: no Pastry um nó que falha
apenas pode ser substitúıdo por nós cujo identificador é adequado para a posição
em causa (de acordo com a lógica da rede estruturada). Adicionalmente, o es-
quema utilizado para assegurar o grau máximo dos nós interiores pode resultar
na desconexão de vários nós da árvore prejudicando a fiabilidade do protocolo.
O SplitStream também utiliza ligações adicionais para além das oferecidas pelo
Pastry, que acarretam custos de manutenção mais elevados.

O Chunkyspread[12] é um protocolo que constrói e mantém várias árvores
de disseminação sobre uma rede sobreposta não estruturada. Este protocolo
limita ainda a carga e grau dos nós de acordo com a sua capacidade. Contudo, o
mecanismo utilizado não controla o número de árvores em que um nó é interior.
Esta lacuna permite a criação de árvores dependentes entre si, i.e., onde um nó
é interior em várias árvores. Esta propriedade é indesejável do ponto de vista da
fiabilidade. Na Secção 5, demonstramos que, em cenários onde ocorrem falhas de
nós, é de extrema importância que as árvores constrúıdas sejam independentes.

Em resumo, o nosso objectivo passa por desenhar uma solução que combine
as seguintes funcionalidades: i) cria um árvore embebida numa rede sobreposta,
oferecendo eficiência e robustez; ii) opera de forma completamente descentrali-
zada; iii) constrói múltiplas árvores com poucos nós interiores em comum; e iv)
operam sobre redes não estruturadas. A Tabela 1 ilustra as várias combinações

Thicket INForum 2010 – 281

Parcialmente Descentralizado
Centralizado Rede Estruturada Rede Não Estruturada

Single tree Bayeux[14] Scribe[7] MON[1], Plumtree[6]
Multiple tree CoopNet[15] Splitstream[11] Chunkyspread[12], Thicket

Tabela 1. O Thicket no espaço de soluções

no espaço de desenho para o problema, identificando as soluções existentes em
cada região e localizando a nossa solução nesse espaço.

3 Algumas Abordagens Simplistas

Como referido anteriormente, o nosso objectivo é desenhar um algoritmo descen-
tralizado para construir t árvores sobre uma rede não estruturada. À primeira
vista este objectivo pode parecer simples. Em particular, podeŕıamos conside-
rar um algoritmo que estenda de forma trivial o trabalho já existente. Duas
alternativas surgem como candidatas:

O SplitStream[11] constrói múltiplas árvores sobre uma rede estruturada.
Pode-se tentar usar uma abordagem semelhante sobre uma rede não estruturada.
Em particular, podemos escolher t nós aleatoriamente, e construir uma árvore
distinta com raiz em cada um desses nós. Esta abordagem é uma versão sim-
plificada do protocolo Chunkyspread. Denominámos esta abordagem de Naive
Unstructured spliTStream, ou simplesmente, NUTS.

O Plumtree[6] constrói uma única árvore, de forma descentralizada, sobre
uma rede não estruturada. Desta forma, é posśıvel considerar a solução simples
que consiste em executar este algoritmo t vezes, embebendo t redes sobrepostas
distintas e criando uma árvore em cada uma delas. A intuição desta abordagem
é que a aleatoriedade do processo de construção das redes sobrepostas (e das
respectivas árvores) é suficiente para criar árvores diversificadas. Denominámos
esta abordagem de Basic multiple OverLay-TreeS, ou simplesmente, BOLTS.

Implementámos estas duas estratégias simplistas para verificar o seu desem-
penho. Analisamos os resultados de forma a tirar conclusões para o desenho
da nossa solução. Na realização destas experiências utilizámos o HyParView[16]
para construir a rede sobreposta. A topologia criada pelo HyParView é seme-
lhante a um grafo regular aleatório o que facilita o balanceamento da carga. Para
construir as árvores utilizámos o protocolo Plumtree[6]. De forma a experimentar
a abordagem NUTS, constrúımos uma rede HyParView e utilizámos o protocolo
Plumtree para criar t árvores com raiz em nós escolhidos aleatoriamente. Para
experimentar a estratégia BOLTS, criamos t instâncias independentes de redes
HyParView e, de seguida, criarmos uma árvore em cada uma destas instâncias.

Avaliámos ambas as estratégias simulando um sistema composto por 10.000
nós e construindo 5 árvores de disseminação. Para a abordagem NUTS utilizámos
uma única rede sobreposta com grau de 25. No caso do BOLTS configurámos
cada instância HyParView para ter grau 5. Estas configurações asseguram que
ambas as abordagens contêm o mesmo número de ligações, aproximadamente.

A Figura 1 mostra a percentagem de nós interiores em 0, 1, 2, 3, 4 e 5 árvores.
Em ambas as estratégias apenas uma pequena fracção dos nós (entre 7% e 17%)
são interiores numa única árvore. A maioria dos nós do sistema são interiores em

282 INForum 2010 Mário Ferreira, João Leitão, Luis Rodrigues

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

nú
m

er
o

de
 n

ós
 in

te
rio

re
s

(%
)

número de árvores

NUTS
BOLTS

Figura 1. Distribuição de nós k-interiores.
2, 3 ou 4 árvores (com uma pequena percentagem de nós em todas as árvores).
Estas estratégias criam configurações sub-óptimas, onde muitos nós reenviam
mensagens em mais do que uma árvore. Adicionalmente, a falha de um único nó
pode quebrar várias, ou mesmo todas as árvores, o que compromete claramente
a fiabilidade do sistema.

4 Thicket

O Thicket foi concebido para operar sobre uma rede não estruturada, que imple-
menta um protocolo de vizinhança reactivo e exporta uma vista parcial simétrica
do sistema2. Este protocolo é responsável por notificar a camada do Thicket
quando ocorrem alterações na vista parcial de um nó utilizando as funções Neigh-
borUp(p) e NeighborDown(p). O Thicket utiliza uma técnica baseada em difusão
epidémica para construir T árvores divergentes, de forma a que a maioria dos nós
seja interior em apenas uma árvore e folha nas restantes. As restantes ligações
da rede sobreposta são usadas para: i) assegurar a cobertura das árvores sobre
todos os nós; ii) detectar e recuperar de situações de falha de nós onde ocorrem
partições de uma ou mais árvores; iii) assegurar que a altura das árvores se
mantém num valor baixo, mesmo na presença de falhas; e, finalmente, iv) asse-
gurar que a carga imposta pelo reenvio de dados a cada participante é limitada
por um parâmetro maxLoad.

Restrições de espaço obrigam-nos a descrever o funcionamento do algoritmo
de forma sumária, referindo apenas os principais mecanismos subjacentes à sua
operação. Uma descrição pormenorizada, incluindo pseudo-código que captura
a operação de cada mecanismo pode ser encontrado em [17].

Cada nó n mantém um conjunto backupPeersn, que contém os identificadores
dos vizinhos que não são utilizados para receber (ou reencaminhar) mensagens
em nenhuma das T árvores. Inicialmente, todos os vizinhos de n estão neste con-
junto. Para cada árvore t mantida pelo Thicket, cada nó armazena um conjunto
t.activePeersn com os identificadores dos vizinhos utilizados para receber (ou re-
encaminhar) mensagens de dados em t. Cada nó n também mantém um conjunto
announcementsn, no qual são guardadas mensagens de controlo recebidas pelos
vizinhos que pertencem ao conjunto backupPeersn. Esta informação é usada para
detectar e recuperar de partições nas árvores causadas por falhas ou sáıdas de
nós. De forma a evitar ciclos no envio das mensagens, cada nó mantém ainda

2 Reactivo significa que o conteúdo da vista parcial mantida pelos nós apenas é actu-
alizada após alterações na filiação do sistema.

Thicket INForum 2010 – 283

um conjunto receivedMsgsn, com os identificadores das mensagens anteriormente
recebidas.

Finalmente, de forma a balancear a carga dos nós, i.e., assegurar que a mai-
oria dos nós são apenas interiores numa das árvores e para limitar a carga de
reenvio imposta a cada participante, cada nó n mantém uma estimativa da carga
de reenvio dos seu vizinhos. Sempre que um nó s envia uma mensagem para ou-
tro nó, o primeiro inclui uma lista de valores representando o número de nós
para os quais s tem que reenviar mensagens em cada uma das árvores. Dado
que esta informação pode ser codificada eficientemente, é inclúıda em todas as
mensagens trocadas entre os nós. Cada nó n mantém a informação mais recente
recebida pelo seu vizinho p para cada árvore t numa variável loadEstimate(p, t)n.

Construção das Árvores A criação de cada árvore t é iniciada pelo nó fonte.
Para isso, e para cada árvore t, o nó fonte n escolhe aleatoriamente f nós do seu
conjunto backupPeersn e move-os para o conjunto t.activePeersn; estes serão os
nós usados pela fonte para encaminhar as mensagens pela árvore t.

Todas as mensagens são marcadas com um identificador único, muid, com-
posto pelo par (sqnb, t), em que sqnb é um número de sequência e t o identificador
da árvore. Os muids de mensagens recebidas anteriormente são guardados em
receivedMsgsn

3. Periodicamente, cada nó n envia uma mensagem Summary com
este conjunto para todos os nós em backupPeersn.

Quando um nó n recebe uma mensagem de dados de s por t, primeiro ve-
rifica se a árvore já foi criada localmente. A primeira mensagem recebida por
uma árvore t inicia o processo de construção de t. O passo de construção para
um nó interior é diferente do executado pela fonte. Primeiro, n transfere s de
backupPeersn para t.activePeersn. De seguida, se @t′ : |t′.activePeersn| > 1 (i.e.,
o nó não é interior em nenhuma árvore), então n transfere até f − 1 nós de bac-
kupPeersn para t.activePeersn. Por outro lado, se n já é um nó interior noutra
árvore, o processo pára e n permanece uma folha em t.

De seguida a mensagem é processada. Se a mensagem não é um duplicado, é
reencaminhada para os nós em t.activePeersn\{s}; caso contrário, o nó transfere
s de t.activePeersn para backupPeersn e envia uma mensagem Prune para s.
Após a recepção de uma mensagem de Prune, s move n de t.activePeerss para
backupPeerss. Este processo provoca a eliminação do ramo redundante de t.

Executando este algoritmo, os nós tornam-se interiores no máximo numa
das árvores. O algoritmo também promove a distribuição da carga (desde que
o número de mensagens enviadas através de cada árvore seja semelhante). Por
outro lado, dado que os nós escolhidos no processo de construção das árvores são
seleccionados de forma aleatória, existe uma probabilidade não desprezável de
alguns dos nós não ficarem ligados a todas as árvores. Esta situação é resolvida
pelo processo de reparação descrito de seguida.

Reparação das Árvores Os objectivos do mecanismo de reparação são: i) asse-
gurar que todos os nós se ligam eventualmente a todas as árvores de disseminação
e ii) detectar e recuperar de partições na árvore resultantes da ocorrência de fa-
lhas. Este componente depende da troca das mensagens Summary entre os nós,
tal como descrito anteriormente.

3 Técnicas para eliminação de informação obsoleta neste conjunto são descritas em[18].

284 INForum 2010 Mário Ferreira, João Leitão, Luis Rodrigues

Quando um nó n recebe uma mensagem Summary de outro nó s, este ve-
rifica se todos os identificadores recebidos estão presentes em receivedMsgsn. Se
nenhuma das mensagens se encontra em falta, a mensagem é descartada. Caso
contrário, um par (muid, p) é guardado em announcementsn. De seguida, para
cada árvore t onde uma mensagem se encontra em falta, é activado um tempo-
rizador: se as mensagens não forem recebidas quando o temporizador expirar, o
nó assume que t ficou quebrada e repara a árvore. O nó n escolhe um vizinho
r referente a um par (muid, p) ∈ announcementsn para reparar a árvore t com
base na estimativa loadEstimate(p, t)n da carga de cada um dos vizinhos. No-
meadamente, r é seleccionado aleatoriamente entre os nós de announcementsn

cuja carga esta abaixo de um limite (maxLoad) e que são interiores em menos
árvores, ou já são interiores na árvore t.

O tempo de espera do temporizador utilizado não deve ser demasiado pe-
queno de forma a não accionar a recuperação de mensagens devido a pequenos
aumentos da latência da rede. No entanto, este valor também não deve ser de-
masiado grande de forma a garantir que as mensagens são entregues em tempo
útil. Tipicamente, este tempo deve ser um factor do RTT da rede.

Depois de seleccionar r, o nó n: move r de backupPeersn para t.activePeersn

e envia uma mensagem Graft para r. Esta mensagem inclui a vista que n tem
da carga de r (esta informação pode estar desactualizada). Quando r recebe
uma mensagem Graft de n por uma árvore t, verifica primeiro se n fez a sua
decisão baseado em estimativas de carga actualizadas ou se, independentemente
da precisão da estimativa, r pode satisfazer o pedido de n sem aumentar o
número de árvores onde é interior nem exceder o limite de carga maxLoad. Neste
caso, r adiciona n a t.activePeersr. Caso contrário, r rejeita o pedido e envia
uma mensagem Prune a n. Finalmente, se n receber uma mensagem de Prune
de r, n volta a transferir r de t.activePeersn para backupPeersn e tentará reparar
t usando um vizinho diferente presente em announcementsn.

Reconfiguração das Árvores Os processos descritos anteriormente visam a
criação de árvores com cobertura total sobre todos os participantes, onde grande
parte dos nós são interiores apenas numa das árvores. Apesar de esta confi-
guração se manter num ambiente estável (sem alterações na filiação do sistema),
múltiplas execuções do mecanismo de reparação podem originar situações onde
vários nós são interiores em mais que uma árvore.

Para resolver este problema, desenvolvemos um processo de reconfiguração
que opera da seguinte forma: quando um nó n recebe uma mensagem de dados
não redundante m de um nó s por uma árvore t para a qual n havia já recebido
um anúncio por parte de outro vizinho a, n compara a carga estimada de s e a.

Se
∑

tloadEstimate(s, t)n >
∑

tloadEstimate(a, t)n e n pode substituir a
posição de s na árvore t sem se tornar interior em mais árvores, n tenta substi-
tuir a ligação entre s e n por uma ligação entre a e n. Para isso, n envia uma
mensagem de Prune para s e uma mensagem de Graft para a.

Esta alteração apenas acontece se a recepção do anúncio de a ocorrer antes
da recepção da mensagem de dados de s. Este facto, garante que este processo
contribui para a redução da latência na árvore e evita ciclos. Note que, no caso
de um nó atingir o limite de carga maxLoad, este será incapaz de ajudar os
seus vizinhos no processo de reparação. Por esse motivo, nesse caso o envio de
mensagens Summary é cancelado.

Thicket INForum 2010 – 285

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

nú
m

er
o

de
 n

ós
 in

te
rio

re
s

(%
)

número de árvores

NUTS
BOLTS
Thicket

PlumTree

(a) Distribuição de nós K-interiores.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25

nú
m

er
o

de
 n

ós
 (%

)

carga de reencaminhamento

NUTS
BOLTS
Thicket

Plumtree

(b) Distribuição da carga de reenvio

Figura 2. Resultados experimentais para um cenário estável
Alterações na Rede Como referido anteriormente, o protocolo de filiação é
responsável por detectar alterações na vista parcial dos nós e notificar o Thicket
dessas ocorrências, utilizando as chamadas NeighborDown(p) e NeighborUp(p).
Quando um nó n recebe uma notificação NeighborDown(p), este remove p de
todas os conjuntos t.activePeersn e também de backupPeersn. Adicionalmente,
todos os anúncios enviados por p são removidos de announcementsn. Este pro-
cesso pode resultar na quebra de algumas árvores. Contudo, o mecanismo de
recuperação é capaz de detectar e recuperar dessa situação.

Por outro lado, quando um nó n recebe uma notificação NeighborUp(p),
p é adicionado ao conjunto backupPeersn. Desta forma, p começará a trocar
mensagens Summary com n. Como referido anteriormente, estas mensagens
irão permitir que os nós se liguem a todas as árvores e, ainda, balancear a carga
dos nós existentes pelos novos nós (utilizando o mecanismo de reconfiguração).
5 Avaliação
Nesta secção são apresentados os resultados experimentais obtidos através de
simulações efectuadas no simulador PeerSim[19]. Para isto, desenvolvemos uma
implementação do Thicket para este simulador. De forma a obter resultados
comparativos, testámos também o desempenho do protocolo Plumtree[6] (que
consiste no ponto de partida da nossa solução), assim como as alternativas sim-
plistas discutidas na Secção 3. Todas as abordagens foram executadas sobre a
mesma rede sobreposta, mantida pelo protocolo HyParView[16]. Este protocolo
é capaz de recuperar de cenários em que 80% dos nós falham simultaneamente.
Como o HyParView utiliza o protocolo TCP para manter os vizinhos da rede
(nomeadamente para detectar falhas), o nosso sistema não contempla perdas de
mensagens.

Testámos todos os protocolos primeiramente num ambiente estável, onde não
foram induzidas falhas, e, posteriormente, em cenários com falhas. No segundo
caso, avaliámos a fiabilidade do processo de difusão na presença de falhas se-
quenciais de nós. O leitor poderá também encontrar resultados que avaliam a
capacidade de reconfiguração do Thicket em cenários catastróficos, em que 40%
dos nós falham simultaneamente[17]. De seguida, descrevemos a configuração
experimental utilizada durante as experiências.

5.1 Configuração Experimental

O progresso das simulações é expresso em ciclos (utilizando o motor baseado em
ciclos do simulador). Cada ciclo corresponde a 20s. Em cada ciclo, a fonte difunde

286 INForum 2010 Mário Ferreira, João Leitão, Luis Rodrigues

T mensagens simultaneamente, uma por cada árvore existente (no caso do Plum-
tree, que constrói apenas uma árvore, todas as T mensagens são enviadas através
dessa mesma árvore). Como referido anteriormente, assumidos que as ligações
são perfeitas, contudo as mensagens não são entregues instantaneamente, em vez
disso consideramos os seguintes atrasos no envio das mensagens (estes atrasos
foram implementados utilizando o motor de eventos do simulador4):

Atraso no Emissor Assumimos que cada nó possui um limite de largura de
banda de sáıda. Isto permite simular congestão no envio de dados quando
um nó necessita de enviar várias mensagens consecutivamente. Em particular
assumimos que cada nó pode transmitir 200K bytes/s. Assumimos também
que o conteúdo das mensagens de dados ocupa 1250 bytes, enquanto que as
mensagens Summary, ocupam 100 bytes.

Atraso na Rede Assumimos que são introduzidos atrasos adicionais na rede.
Mais concretamente, durante as simulações uma mensagem transmitida sofre
um atraso de valor aleatório entre 100 e 300 ms. Estes valores foram selec-
cionados tendo em conta medições de latência realizadas na infra-estrutura
PlanetLab5.

As experiências foram realizadas utilizando uma rede de 10.000 nós e todos os
resultados correspondem à agregação de 10 execuções independentes de cada
experiência. Todos os protocolos testados, com a excepção do Plumtree, foram
configurados para gerar T = 5 árvores. Adicionalmente, o Thicket estabelece
árvores usando um fanout f = 5 e a abordagem NUTS inicia o conjunto de
nós eager com 5 vizinhos escolhidos aleatoriamente. O Thicket, o Plumtree, e
o NUTS operam sobre uma rede não estruturada com grau 25, enquanto que
cada uma das 5 redes sobrepostas utilizadas pelo BOLTS possui um grau de
5. Além disso, configurámos o limite de carga de reencaminhamento máxima
por nó (parâmetro maxLoad) com o valor 7. Este valor deve ser suficientemente
grande para garantir que cada nó possui o número suficiente de filhos necessários
para a construção das múltiplas árvores. Por outro lado, não deve ser demasiado
grande de forma a limitar a carga de reencaminhamento dos nós. Admitindo a
construção óptima das árvores, o valor ideal para este parâmetro seria 5, dado
pelo quociente entre o tamanho da vista parcial de cada nó (25) e o número
de árvores a construir (T = 5). Porém, como o nosso protocolo é uma apro-
ximação, determinámos experimentalmente que o valor 7 é o menor que permite
a construção das várias árvores. O temporizador iniciado após a recepção de um
anúncio foi configurado para um valor de 2s que, pretendendo ser um valor redu-
zido, não desencadeia recuperações desnecessárias de mensagens. No protótipo
desenvolvido, é enviada uma mensagem SUMMARY assim que a respectiva
mensagem de dados é entregue, contendo apenas o identificador dessa mensa-
gem.

Todas as experiências começam com um peŕıodo de estabilização de 10 ciclos,
que não são considerados nos resultados apresentados. Durante estes ciclos, todos
os nós se juntam à rede sobreposta e a topologia da rede estabiliza. Após este
peŕıodo, inicia-se o processo de difusão; este desencadeia o processo de construção
das árvores.
4 A unidade de tempo mı́nima do sistema é 1ms.
5 As medições podem ser encontradas em http://pdos.csail.mit.edu/~strib/pl_

app/

Thicket INForum 2010 – 287

5.2 Ambiente Estável

Primeiro, analisámos as medidas de desempenho relevantes para o Thicket num
ambiente estável onde não ocorrem falhas de nós. Começamos por avaliar a dis-
tribuição de nós de acordo com o número de árvores em que estes são interiores.
Os resultados são exibidos na Figura 2(a). O Plumtree mostra o ponto de partida
num cenário onde existe apenas uma única árvore. Note-se que, com uma única
árvore, apenas 21% dos nós são interiores, e 79% são folhas.

Usando ambas as estratégias NUTS e BOLTS, apenas uma pequena fracção
(abaixo dos 20%) dos nós são interiores numa única árvore (repetimos aqui a
imagem da Secção 3 para conveniência do leitor). Para ambas as abordagens,
existe ainda uma pequena percentagem de nós que são interiores em todas as 5
árvores. Como referido anteriormente, este facto motiva a necessidade de algum
tipo de coordenação durante o processo de construção das árvores.

Porém, no Thicket praticamente todos os nós são interiores em apenas uma
das árvores. Uma fracção mı́nima (cerca de 1%) permanece interior em 2 árvores.
Este é um efeito secundário do mecanismo de recuperação, que garante a co-
bertura de todas as árvores de disseminação. Ainda assim, nenhum nó (com a
excepção da fonte) é interior em mais que 2 árvores. Este facto valida o dese-
nho do Thicket. Adicionalmente, quase nenhum nó é folha em todas as árvores;
contribuindo para a fiabilidade do processo de difusão (ver resultados abaixo),
assegurando uma distribuição de carga uniforme entre os participantes, permi-
tindo também uma utilização mais eficiente de todos os recursos presentes no
sistema.

A Figura 2(b) mostra a distribuição da carga de reencaminhamento do sis-
tema i.e., a distribuição dos nós de acordo com o número de mensagens que estes
devem reenviar através de todas as árvores. Devido ao facto do Thicket limitar a
carga de cada nó durante os processos de construção e manutenção das árvores,
nenhum participante excede o limite de 7 envios no total de todas as árvores em
que este é interior (normalmente 1 como explicado anteriormente). Adicional-
mente, mais de 40% dos nós reencaminham a quantidade máxima de mensagens,
com mais de 55% dos nós a reencaminhar um reduzido número de mensagens.
As restantes soluções, possuem valores de carga muito variáveis, com vários nós
responsáveis pela transmissão de mais de 10 mensagens e alguns com cargas
superiores a 15 mensagens. Note que o Thicket é o único protocolo onde quase
nenhum participante tem uma carga de reenvio de 0. Este facto demonstra os
benef́ıcios associados à utilização de recursos e distribuição de carga conseguidos
pelo Thicket.

5.3 Tolerância a Faltas

Nesta secção estudámos o impacto de falhas sequenciais na fiabilidade do pro-
cesso de difusão usando o Thicket, o NUTS, e o BOLTS. Nas nossas experiências
o nó fonte e os nós ráızes das árvores do NUTS nunca falham.

Considerámos a fiabilidade, assumindo que o processo de difusão utiliza as
várias árvores para introduzir redundância nos dados disseminados (utilizando,
por exemplo, técnicas de network coding). Desta forma, assumimos que para cada
segmento de 5 mensagens enviadas (uma por cada árvore), se um nó receber pelo
menos 4 das mensagens, é capaz de reconstruir totalmente o segmento de dados,
caso contrário consideramos que o nó falha a recepção do segmento. Definimos

288 INForum 2010 Mário Ferreira, João Leitão, Luis Rodrigues

 85

 90

 95

 100

 105

 0 50 100 150 200

fia
bi

lid
ad

e
(%

)

ciclo de simulação

NUTS
BOLTS
Thicket

(a) Falha de Nós Aleatória.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 0 50 100 150 200

fia
bi

lid
ad

e
(%

)

ciclo de simulação

NUTS
BOLTS
Thicket

(b) Falha de Nós Dirigida.

Figura 3. Resultados experimentais para um cenário catastrófico.
fiabilidade como sendo a percentagem de nós capazes de reconstruir os segmentos
de dados enviados.

Depois de um peŕıodo de estabilização (5 ciclos) configurámos o nó fonte para
enviar um segmento de dados por ciclo. Em cada ciclo, induzimos também uma
falha num dos nós. Medimos a fiabilidade do processo de difusão no final de cada
ciclo da simulação. A selecção do nó que falha em cada ciclo foi efectuada usando
duas poĺıticas distintas: i) seleccionado o nó aleatoriamente; ii) seleccionado
o nó aleatoriamente de entre os nós que são interiores em mais árvores. Não
permitimos que os nós tomassem medidas de recuperação durante as simulações.

A Figura 3 exibe os resultados para ambos os cenários. Quando selecciona-
mos os nós a falhar aleatoriamente (Figura 3(a)) a fiabilidade do Thicket decai
lentamente. Isto acontece porque a maioria dos nós é apenas interior numa das
árvores. Por isso, cada falha afecta apenas nós abaixo da falha numa única árvore.
Devido ao facto dos nós serem capazes de reconstruir o segmento de dados mesmo
sem receberem uma das mensagens enviada por uma das árvores, a maioria con-
segue ainda assim reconstruir os segmentos de dados desde que se mantenham
ligados a (pelo menos) 4 árvores. A fiabilidade decresce mais acentuadamente
nas abordagens NUTS e BOLTS. Isto acontece devido à grande quantidade de
nós que são interiores em mais do que uma árvore, o que contribui para que a
falha de um único nó afecte o fluxo de dados de várias árvores.

O Thicket é também extremamente robusto face a falhas direccionadas aos
nós interiores num maior número de árvores (Figura 3(b)), e a sua fiabilidade
permanece constante em 100%. Isto acontece devido ao seguinte fenómeno: ao
ser imposto um limite de carga a cada nó do Thicket, os nós que são interiores
em mais que uma árvore são responsáveis por enviar um pequeno número de
mensagens por cada árvore. Desta forma, o número efectivo de nós afectados na
árvore onde o nó que falha é interior é menor. Além disso, porque as ligações
nunca são usadas em mais de uma árvore, este grupo de nós é disjunto, e conse-
quentemente podem ainda receber mensagens das restantes 4 árvores. Por outro
lado, o NUTS e o BOLTS são severamente afectados por este cenário devido ao
facto que alguns nós serem interiores em todas as árvores.

6 Conclusões
Neste artigo apresentámos o Thicket, um algoritmo totalmente descentralizado
para a construção e manutenção de múltiplas árvores, nas quais cada nó é interior
em apenas uma ou num número reduzido de árvores, numa rede não estruturada.

Thicket INForum 2010 – 289

O Thicket permite a distribuição da carga do sistema por todos os nós e, ainda,
o envio de dados redundantes por diferentes árvores de forma a tolerar falhas de
nós ou ligações.

Referências

1. Liang, J., Ko, S.Y., Gupta, I., Nahrstedt, K.: MON: on-demand overlays for dis-
tributed system management. In: Proceedings of WORLDS’05. (2005)

2. Huang, Y., Fu, T.Z., Chiu, D.M., Lui, J.C., Huang, C.: Challenges, design and
analysis of a large-scale p2p-vod system. ACM SIGCOMM Comp. Comm. Review
38(4) (2008) 375–388

3. Eugster, P.T., Guerraoui, R., Handurukande, S.B., Kouznetsov, P., Kermarrec,
A.M.: Lightweight probabilistic broadcast. ACM TOCS 21(4) (2003) 341–374

4. Birman, K.P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., Minsky, Y.: Bimodal
multicast. ACM Transactions on Computer Systems (TOCS) 17(2) (1999)

5. Frey, D., Murphy, A.L.: Failure-Tolerant Overlay Trees for Large-Scale Dynamic
Networks. In: Proceedings of P2P’08, Washington, DC, USA, IEEE Computer
Society (2008) 351–361

6. Leitão, J., Pereira, J., Rodrigues, L.: Epidemic Broadcast Trees. In: Proceedings
of SRDS’07, Beijing, China (2007) 301–310

7. Rowstron, A.I.T., Kermarrec, A.M., Castro, M., Druschel, P.: SCRIBE: The Design
of a Large-Scale Event Notification Infrastructure. In: Net. Group Communication.
(2001) 30–43

8. Allani, M., Leitão, J., Garbinato, B., Rodrigues, L.: RASM: A Reliable Algorithm
for Scalable Multicast. In: Proc. of Euromicro PDP’2010, Italy, INESC-ID (2010)

9. Chou, P.A., Wu, Y.: Network Coding for the Internet and Wireless Networks.
IEEE Signal Processing Magazine 24(5) (Setembro 2007) 77–85

10. Johnson, D.S., Lenstra, J.K., Rinnooy, H.G.: The complexity of the network design
problem. Networks 8(4) (1978) 279–285

11. Castro, M., Druschel, P., Kermarrec, A.M., Nandi, A., Rowstron, A.I.T., Singh,
A.: SplitStream: high-bandwidth multicast in cooperative environments. In: Pro-
ceedings of SOSP’03, New York, NY, USA, ACM (2003) 298–313

12. Venkataraman, V., Yoshida, K., Francis, P.: Chunkyspread: Heterogeneous Uns-
tructured Tree-Based Peer-to-Peer Multicast. In: Proceedings of ICNP ’06,
Washington, DC, USA, IEEE Computer Society (2006) 2–11

13. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, Decentralized Object Location,
and Routing for Large-Scale Peer-to-Peer Systems. In: Proceedings of Middleware
’01, London, UK, Springer-Verlag (2001) 329–350

14. Zhuang, S.Q., Zhao, B.Y., Joseph, A.D., Katz, R.H., Kubiatowicz, J.D.: Bayeux:
an architecture for scalable and fault-tolerant wide-area data dissemination. In:
Proc. of NOSSDAV’01. (2001)

15. Padmanabhan, V.N., Wang, H.J., Chou, P.A., Sripanidkulchai, K.: Distributing
streaming media content using cooperative networking. In: Proceedings of NOSS-
DAV ’02, Miami, Florida, USA, ACM (2002) 177–186

16. Leitão, J., Pereira, J., Rodrigues, L.: HyParView: A Membership Protocol for
Reliable Gossip-Based Broadcast. In: Proc. of DSN’07, UK (2007) 419–429

17. Ferreira, M., Leitão, J., Rodrigues, L.: Thicket: A protocol for building and main-
taining multiple trees in a p2p overlay. Technical Report 28, INESC-ID (May
2010)

18. Kaldehofe, B.: Buffer management in probabilistic peer-to-peer communication
protocols. In: Proc. of SRDS’03, Florence,Italy, SRDS (2003) 76–85

19. Jelasity, M., Montresor, A., Jesi, G.P., Voulgaris, S.: The Peersim Simulator

290 INForum 2010 Mário Ferreira, João Leitão, Luis Rodrigues

Towards full on-line deduplication of the Web

Ricardo Filipe and João Barreto

Inesc-ID/Technical University Lisbon
[ricardo.filipe,joao.barreto]@ist.utl.pt

Abstract. The Internet is widely used nowadays but still has important
limitations. While average Web page size keeps increasing, the bandwidth
available to each user is not growing at the same rate. Users want to do
several things at the same time on the Web and they don’t want to wait
much time to do it.
We notice that most Web pages have substantial redundancy with pre-
vious versions of themselves and other pages. With this in mind, we
developed a novel deduplication system for HTTP traffic.
Our proposed system works from end client to server and only for text
resources transmitted through the HTTP protocol. Our system trans-
fers less bytes than a plain HTTP transfer, achieving gains of 82% when
downloading pages from popular sites such as cnn.com. It completes a
transfer request 4% faster than plain HTTP. It is also not as time con-
suming as delta-encoding between the requested resource and an older
version of it. Our approach is the first to be implemented and analysed
on a real Internet environment.

1 Introduction

The Web has had a major growth in recent years. The number of users keeps
growing, the average Web page size and number of objects per page have steadily
increased [1], the data available through the Internet is doubling every year [2].

This enormous growth entails many challenges. While available bandwidth
has steadily grown in some network environments, it remains a scarce resource
in others, such as Bluetooth networks. Even in high bandwidth scenarios, each
transferred byte frequently has a cost, for instance in terms of battery consump-
tion or fees paid to the client’s ISP, which clients naturally wish to minimize.

Fortunately, the substantial redundancy that exists across the contents down-
loaded from the Web tells us that most of the transmitted payload could be, in
fact, avoided. Most individual files exhibit intra-file redundancy, which one can
eliminate with compression schemes like Gzip. Furthermore, Web browsers fre-
quently request resources (e.g. previously downloaded HTML pages or images)
that were already downloaded by the same client (or nearby clients) and have not
changed meanwhile, a well studied problem that Web caches effectively tackle.

However, there is evidence that much redundancy in the Web originates from
situations that neither per-file data compression nor Web caching can exploit.
Such redundancy is caused by two phenomenons. A first one occurs when the

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 291–302

same resource is referenced by different URLs, which occurs mostly in image re-
sources and is commonly called aliasing [4]. Most importantly, the most common
phenomenon is resource modification [3], when a resource changes by little pieces
over time. We see this everyday in our social Web. News sites are updated sev-
eral times per day, they let you comment on those news and see other people’s
comments. Social networks let you comment on other people’s profiles. Blogs
make it possible to post new content and have it commented too. Forums and
discussion sites have threads of responses from their users. Hence, pages loaded
at different times will often be very similar in content, with marginal changes
introduced by the new pieces of information.

In order to exploit the above phenomena, we need techniques for full dedu-
plication [5] of the Web. In other words, techniques that are free from the lim-
itations of data compression and classical Web caching, thus able to eliminate
any form of redundancy: be it within the individual resource, or across different
resources (or across distinct versions of the same resource); going from the granu-
larity of the individual resource down to much finer-grained chunks of redundant
information.

Perhaps that older deduplication technique that breaks the above mentioned
limitations is delta encoding [3]. In delta encoding, a client that already holds
some version of a given resource and requests a newer version will only receive a
compact set of differences from the latter to the former, which the client should
then apply upon its local (older) version. Delta-encoding is still very much in
use, mostly when the deltas can be precomputed, which is often the case when
distributing software patches and service packs. However, since the algorithms
used for computing deltas are typically very time-expensive [3], delta encoding
is not suitable for distributing dynamic content like most Web pages that are
created on-the-fly.

More recently, much research has proposed techniques for on-line dedupli-
cation of dynamic Web content. However, the proposed techniques exhibit im-
portant drawbacks that severely limit their usefulness in the large-scale Web.
Some assume strong synchronization between client and server state [6], while
the memory requirements of others do not scale well to large-scale Web servers
(e.g. [9], [8]). Some are only able to detect redundancy across the contents trans-
mitted from the ISP proxy to its clients, neglecting the proxy-server path [11].
More importantly, most solutions have never been implemented nor evaluated
experimentally (e.g. [6], [8]).

In this paper we present a novel deduplication system we called dedupHTTP.
The proposed system works from the end client to the origin server. It detects
redundancy in text resources transferred through the HTTP protocol. It uses the
client’s cached files from the requested resource’s domain as reference resources.
It eliminates redundant transfers originating from resource modification and
aliasing of resources inside each domain. The current implementation is browser
and server transparent and has a very lightweight communication protocol. Our
results show that dedupHTTP:

292 INForum 2010 Ricardo Filipe, João Barreto

Fig. 1. Architecture Overview

– Outperforms plain HTTP transfer in the number of bytes transferred by 82%
and time consumed by 4%, at large bandwidth;

– Has 10% better time performance than delta-encoding with a previous ver-
sion of the requested resource;

The rest of the paper is structured as follows. First we will explain the resource
division algorithm into chunks. Then we will overview the architechture of the
system and the communication protocol. We then show the results of our tests,
comparing our system with regular transfers, gzip compression and a simple
delta-encoding system for Web transfer. Finally we go through some of the re-
lated work and draw our conclusions to this work.

2 Architecture overview

The dedupHTTP system has two implementation points, we’ll call them client
and server for simplicity. The client stores the resources and maps them by host
domain. When it makes a request for a resource the client fetches all the iden-
tifiers from stored resources of the same host domain as the requested resource.
These identifiers represent the reference resources for the request.

When the server responds to a request it divides the response into chunks
using the algorithm from Section 4. Those chunks’ hashes are stored on the server
along with their offset within the resource and their length (16 bytes metadata
per chunk on the current implementation). The server then retrieves the client
resource identifiers from the HTTP header. The server searches for the response
resource’s chunks in the identified client resources, and the metadata required
for resource reconstruction is sent to the client.

When the client receives the response it starts reconstructing the requested
resource by fetching the referenced chunks from local cache. Then it combines
them with the non-redundant content on the response in the correct order. The
resource is saved on the client and mapped to its host domain.

Towards full on-line deduplication of the Web INForum 2010 – 293

3 Protocol

When a new request is done by the client, the reference resources identifiers
are serialized into a byte array and placed inside a new HTTP header called
”Versions”, which goes on the request header. This accomplishes two important
goals. First there is no need for the server to keep client based state, as it is each
client’s responsibility to provide the right list of reference resources. Secondly, it
allows the client cache to have the regular resource cache eviction policies, the
resources the client tells the server are in its cache are the ones the server will
use as reference resources. 1

After dividing the resource, the corresponding chunk meta information is
stored on the server, mapping the resource. The server goes through all chunks’
hashes of the requested resource. For each such chunk the server queries each
of the client’s reference resources for the chunk’s existence. If the chunk is not
found the server also queries the current response’s respective resource. This way
we not only detect redundant chunks between different resources but also inside
the resource being served. Whenever a chunk is found on a queried resource we
only need to tell the client where to find it. If the chunk is not found in any of
the queried resources, we copy the chunk data to the final response.

The final response begins with a metadata section. The size of this section is
stored on a new HTTP header we called ”Metadata”. In this section goes all the
information needed for the client to find the redundant chunks in its cache. Each
redundant chunk is here identified by a four-part tuple: the offset in the current
response where the chunk is to be appended, the resource identifier where the
client can find the chunk content, the offset of the resource where the chunk
content can be found and the length of the chunk. At the end of the metadata
block we append the non-redundant response content.

When the client receives the response it only has to go through the meta-
data, copy to the final response the chunks referenced in the metadata, from the
locally cached resources, and copy the non-redundant content from the received
response to the final response, in the respective order. Thus, the new resource
is reconstructed on the client and the client does not even have to store meta
information about the chunks, only the resource identifier and the resource itself.

Each response has an identifier created on the server, which is sent in the
metadata block. We have opted to store this value in 2 bytes only, which helps
shorten the metadata block. This means there can only be 65536 different re-
sources referenced in the server. We believe this is more than enough for a regular
server, even with dynamic resources generated on-the-fly, since after some days
or weeks the older resources metadata can be evicted. Even if the client’s cache
could accommodate for resources that were older than that, the usefulness of
such resources is expectably low. Redundancy with fresh downloaded contents

1 As we show next, each client will be handling look-ups to its list of reference re-
sources. At the same time, it can try to evict some of such entries. We can easily
ensure safe synchronization of such accesses by using regular read-write locks.

294 INForum 2010 Ricardo Filipe, João Barreto

should mostly come from recent versions, rather than older ones, which we intend
to explore in future work.

For this we use an age value on each resource. When the age value for the
resource has been reached, if the client still has the resource cached it is evicted
from the client’s cache. At the same time the server will evict the chunk metadata
it possesses for that resource. This way the client and server caches are kept
synchronized without additional network messages.

The other pieces of the metadata are all stored in 4 byte integers which makes
for a 14 bytes total of metadata to reference a chunk. This number should be
taken into account when choosing the chunk size, since there will be no gain if
there can be chunks smaller than this.

3.1 Optimizations

We have seen there are consecutive chunks detected in the same resource many
times. Since we check the client’s resources in the same order for every chunk,
we can save on metadata by regarding the sequence of consecutive chunks as
a single chunk. Hence, we only send a meta-data block for the large coalesced
chunk (instead of one block per consecutive redundant chunk). A particular case
where such optimization is very effective is when a requested resource is aliased
on the domain; the only thing that will be sent to the client is a chunk’s worth
of metadata with the whole resource length.

The same resource can be requested by different clients. On the first request
the algorithm will be the one explained in this section. For the second and sub-
sequent client requests we can save an important step of processing, the chunk
division algorithm.

The server stores all served request’s ETags. These are unique resource iden-
tifiers present in the HTTP specification. When a new request is to be served
we check if the ETag has already passed before. If it has, we retrieve the cor-
responding resource chunk metadata and continue to the next phase. Only the
first request to each resource has to go through the chunk division phase.

4 Chunk division algorithm

The first step to take on the server when a resource is requested from a client
is to divide that resource into indexed chunks. This way we can easily identify
which parts of the resource the client already has and which are new and have
to be sent.

We start by creating per-byte hashes of the resource content. These hashes
represent smaller chunks of the resource. This is done by using the rolling hash
function of Karp-Rabin fingerprinting [13]. Let ci be the byte at index i of the
resource stream and k be the length of the Karp-Rabin chunk. Let b be a prime
number as base. The hash of the Karp-Rabin chunk is given by:

H(ci...ci+k) = ci ∗ bk−1 + ci+1 ∗ bk−2 + ... + ck−1 ∗ b + ck

Towards full on-line deduplication of the Web INForum 2010 – 295

Since b is a constant, the iteratibility of this function allows us to calculate
the next byte’s hash with some simple operations on the previous byte’s hash
with the new byte:

H(ci+1...ci+1+k) = ((H(ci...ci+k)− ci ∗ bk) + ck+1) ∗ b

Now we have to select the hashes that represent the resource. We could select
all hashes, but that is unfeasible memory-wise since we have an hash per byte
of content. So, we select certain hashes to be the boundaries of larger chunks of
data.

For this step we chose the Winnowing technique since it has been experimen-
tally proven to give the better redundancy detection [7]. We enforce a minimum
and maximum chunk size because these content based methods can create too
big or too small chunks compared to the desired size.

After selecting the chunk boundaries we hash each larger chunk using a 64
bit MurmurHash [15]. This choice was driven by the fact that MurmurHash
outperforms cryptographic hash functions such as MD5 or SHA1, while retaining
a very low collision rate. We do not need cryptographic security in our hashes,
so using MD5 or SHA1 would be overkill. They are much slower and offer similar
collision rates (in fact MurmurHash offers better hash distribution than MD5
and very similar to SHA1 [15]).

5 Implementation

Our system was implemented with a proxy for the client machine and a reverse
proxy for the server machine. Both proxies were implemented using the OWASP
Proxy [16] library, which takes care of every aspect in HTTP communication.
Each proxy was extended with the proper functionalities described in the al-
gorithms and architecture to deal with the resource content. This was done in
about five hundred lines of Java code, since that was the language of OWASP
Proxy. The MurmurHash code was used from a public library [17] that ported
the hash code to Java.

Using proxies for the implementation allows us to be browser and server
independent, not having to familiarize with a unique browser and server im-
plementation, nor favor one over another. It has the inconvenients of adding
proxy latency to the connection and having it’s own cache on the client side.
The proxy cache and browser cache will certainly overlap in most of their data.
On the server side this is not an issue since we only store resource metadata.

The resource metadata is stored per chunk on the server. It is composed of
two 32 bit integers, offset in the resource content and chunk length, and a 64 bit
long for the chunk hash.

6 Evaluation

The test server machine is an Intel Pentium 4 @ 3.20 GHz with 2 GB of RAM,
while the client machine is an Intel Core 2 Duo @ 2.16 GHz with 4 GB of RAM.

296 INForum 2010 Ricardo Filipe, João Barreto

Number of files Total Size Server memory overhead

337 41,5 MB 16 bytes * Number of Chunks
Table 1. Workload specification

Fig. 2. Experiment average redundancy for several chunk sizes

The workload for our experiments was created by downloading every news
and comments page from www.cnn.com (Table 1). These pages change very
frequently which makes them a perfect fit for a system like this. We did this in
two consecutive days so that we could compare the redundancy that remains
from one day to the other, mimicing a regular user that likes to read the news
every day. We removed unchanged pages from the second day, since they would
be treated by a regular browser cache.

Our chunk division algorithm has two parameters that should be experi-
mented for the best redundancy detection: the smaller Karp-Rabin fingerprint
length (Table 2) and the larger chunk length (Figure 2).

The large chunks were experimented with sizes ranging from 128 bytes up to
8192 bytes (8 KB). The smaller the chunk size the more metadata the server has
to store, since we have more chunks per file. Since our metadata is not too heavy
we decided the 128 bytes chunks should be used for the rest of the experiments.
The increase in number of chunks to search for could factor in the choice of
chunk size. Although, this has not been noticeable in our experiments, so we
disregard it.

We have experimented the Karp-Rabin fingerprint sizes of 16, 32 and 48
bytes. The 16 bytes fingerprints give a better redundancy detection, although
by a small margin, so we decide to use it for the remainder of the experiments.
This parameter has no influence in the number of chunks nor in the complexity
of the division algorithm, so the value with better results should be chosen.

Towards full on-line deduplication of the Web INForum 2010 – 297

Size of Karp-Rabin fingerprint Redundancy detected

16 81,75%

32 80,64%

48 80,74%
Table 2. Redundancy detected with varying Karp-Rabin fingerprint size

Fig. 3. Experiment average redundancy for several solutions

We compared our solution with three others. The first one is plain HTTP
transfer, then compressing the resources with Gzip and finally we tested against
a delta encoding solution we created.

This delta encoding system stores the resources on the server and client. If the
client is downloading a resource that already exists in its cache, but is outdated,
the server creates a delta between both versions of the resource on-the-fly. Then
it sends the delta to the client and it reconstructs the requested resource. This
solution does not work for the first request of a resource, so we have not included
those results in our measures.

We want to see how does dedupHTTP compare to the other solutions in
redundancy detected and Time to Display (Figures 3 and 4). Time to Display is
the time it takes since the resource is requested in the client until it is displayed
on the client’s machine. If the deduplication algorithm takes more processing
time than that which is spared by less transfer traffic, the Time to Display will
worsen which is undesirable. Our Time To Display results are the mean average
time of downloading all of the workload’s files one by one.

Delta encoding detects most existing redundancy that we could hope to de-
tect, since it is a lossless algorithm that works with only previous versions of
the same resource. This should be the comparison point of our solution as far
as redundancy detection goes. On the other hand it is a very costly algorithm,
which brings very high Time to Display. Plain HTTP transfer should be the ref-

298 INForum 2010 Ricardo Filipe, João Barreto

Fig. 4. Experiment average Time to Display for several solutions

erence point here, since we want to improve on the every day solution’s Time to
Display. We have also compared to plain HTTP transfer on limited bandwidth
(1 Mb/s) to assert that where fewer bandwidth is available our system would be
most benefitial.

As far as redundancy detection is concerned, we outperform Gzip by a mean-
ingful margin. Comparing to delta encoding we are a bit far from detecting as
much redundancy, although we didn’t isolate only the responses that could be
delta-encoded to get dedupHTTP results. If we did that our redundancy de-
tection is much closer to delta encoding (95%) and plus we still detect much
redundancy on the first time resource requests, where delta-encoding cannot be
used.

Regarding Time to Display we outperform every single solution we have
tested against, achieving comparable results to Gzip encoding. This is very sig-
nificant as we prove our system’s feasibility to complement regular Web caching.
We can also confirm that using delta encoding on-the-fly is much more compu-
tationaly heavy than our system.

7 Related work

Chunk fingerprinting has been widely used in distributed file systems [10] and
other deduplication systems for the Web (e.g., [11]). For chunk boundary selec-
tion these systems used the scheme proposed by Manber [12], but as Anand et
al. [7] have shown the Winnowing [14] technique is more profitable in this regard.

Manber’s fingerprint selection scheme selects each hash that complies with
H mod P = 0 where P is the desired larger chunk size. On average they expect
to have an hash selected in P bytes as a chunk boundary. Winnowing differs by
selecting the smaller hash in each consecutive window of P bytes.

Towards full on-line deduplication of the Web INForum 2010 – 299

Fig. 5. Manber vs. Winnowing: chunk boundary selection

There have been many systems proposed for Web deduplication, each with its
own limitations. Spring and Wetherall [6] proposed a shared cache architecture
where two caches store chunks of data in the same way. When redundant content
is identified by the transmitting cache only the corresponding chunks fingerprints
are sent. They didn’t implement this architecture, it was used as an example of
where to use their redundancy detection algorithm. They also do not address
how to keep both caches synchronized. They suggest this approach for a protocol
independent system, but in their results we can see that only HTTP is useful to
analyse since it is the most used protocol and with most redundant data too.

Anand et al. [7] have recently confirmed these results for an enterprise setting
(on a university setting P2P traffic is a bit more relevant). They also suggest
that an end-to-end approach is preferable to a middlebox one since most users
do not share the same surfing habbits, therefore the gain of detecting cross-user
redundancy would be little when compared to the cost of detecting redundancy
across more data. We applied these studies results to devise dedupHTTP.

Chan and Woo [8] presented a general approach to cache based compaction.
It includes two main ideas: a selection algorithm to choose reference objects,
and an encoding/decoding algorithm that acts upon a new object using the
selected reference objects. They proposed a dictionary based solution for encod-
ing/decoding. When there are no reference resources it would act as gzip and
when there are some it would get redundant strings from them. Their approach
is not scalable, if the number of reference objects increases the complexity of
the algorithm increases at the same time. While our approach also increases in
complexity with the increase of reference objects, it is much less noticeable. They
have also not implemented and tested their proposal. Their selection algorithm
though gave interesting results. They tell us that resource redundancy is not
limited to previous versions of that resource. Most resources in the same folder
and even in the same domain still have much redundancy to be taken advantage
of as reference resources for deduplication.

Banga et al. [9] developed an optimistic deltas system. The server stores the
resources it sends to the clients. When a new version of a resource is requested it
creates a delta between the new version and the version the client has and sends
it. When a resource is to be sent for the first time to a client, an older version

300 INForum 2010 Ricardo Filipe, João Barreto

is immediately sent when the request is received on the server. Then if the new
resource is the same as the sent one the only thing necessary is to respond to the
client saying that. If it is different a delta is created between the two versions
and sent. The system is optimistic since it expects to have enough idle time to
send the old version of the resource while the new version is being created. It
also assumes the changes between the two versions are small relatively to the
whole document. With the bandwidths of today this kind of latency reduction
would be inefficient, more often than not overlapping the transport of the older
resource with the response with the new one.

Rhea et al. developed a Value Based Web Cache (VBWC) [11]. It is a system
similar to Spring and Wetherall’s but they implemented and tested it. They
aimed to use it at the ISP proxy, where it would store the chunk’s hashes that
went to the clients. The proxy did not store the actual data. When a chunk goes
to a client, the proxy cache checks if that client already has that chunk. If it does
it only transfers its fingerprint. The bandwidth savings of VBWC are only on the
ISP proxy-client connection. There is no cross-client redundancy detection since
their hash cache is mapped by client. Since each client also stores the chunk’s
hashes they are redundant in the ISP proxy for all clients that requested the same
chunks. All of these problems could be solved if the hash cache was implemented
at the origin server. Our approach is an example of how this can be implemented.

8 Future work and Conclusions

This work presents evidence that suggests that current HTTP transfer systems
can be much improved with simple changes on both client and server side and
fosters further research on this topic, which has been stagnant for quite some
time. Even if bandwidth is ever less a concern for desktop users, we must remind
ourselves we live in a wireless world where bandwidth is still a scarce resource.

We have devised a new on-line deduplication system for the Web. We have
shown that it outperforms the solutions available to current Web servers, includ-
ing plain HTTP transfer and Gzip compression. We are the first to implement
and test such a system in real internet conditions.

There are several items we can work further in our system. We plan to test
how does redundancy between two versions vary over time, instead of just two
days test up to thirty days difference. This will help us determine at what point
in time we should evict resource metadata on the server and client.

We want to test an hybrid algorithm that uses our system and then com-
presses the responses with Gzip. It should yeld even better redundancy detection,
although it may cost more Time to Display than affordable.

We plan to test the system in a controlled network environment, with the
client and server nodes interconnected by a network link with tunable band-
width and latency, in order to avoid external arbitrary interferences on those
parameters.

We also plan to run more detailed benchmark tests, which will allow us to
understand the factors contributing to the latency of our solution; namely, time

Towards full on-line deduplication of the Web INForum 2010 – 301

spent on Web server CPU processing, message handling, message transmission,
among others. From these results, we should be able to further optimize our
solution and evaluate its true scalability.

References

1. http://www.websiteoptimization.com/speed/tweak/average-web-page/
2. http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white paper c11-

520862.html
3. Jeffrey C. Mogul, Fred Douglis, Anja Feldmann, and Balachander Krishnamurthy.

Potential benefits of delta encoding and data compression for HTTP. In Proc. of
ACM SIGCOMM, 1997

4. Terence Kelly , Jeffrey Mogul, Aliasing on the world wide web: prevalence and
performance implications, Proceedings of the 11th international conference on World
Wide Web, May 07-11, 2002, Honolulu, Hawaii, USA

5. Nagapramod Mandagere , Pin Zhou , Mark A Smith , Sandeep Uttamchandani, De-
mystifying data deduplication, Proceedings of the ACM/IFIP/USENIX Middleware
’08 Conference Companion, December 01-05, 2008, Leuven, Belgium

6. Neil T. Spring , David Wetherall, A protocol-independent technique for eliminating
redundant network traffic, Proceedings of the conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication, p.87-95, August
28-September 01, 2000, Stockholm, Sweden

7. Ashok Anand , Chitra Muthukrishnan , Aditya Akella , Ramachandran Ramjee,
Redundancy in network traffic: findings and implications, Proceedings of the eleventh
international joint conference on Measurement and modeling of computer systems,
June 15-19, 2009, Seattle, WA, USA

8. Mun Choon Chan and Thomas Y. C. Woo, Cache-based compaction: A new tech-
nique for optimizing web transfer, Proceedings of IEEE INFOCOM, March 1999

9. Gaurav Banga , Fred Douglis , Michael Rabinovich, Optimistic deltas for WWW
latency reduction, Proceedings of the USENIX Annual Technical Conference, p.22-22,
January 06-10, 1997, Anaheim, California

10. Athicha Muthitacharoen , Benjie Chen , David Mazires, A low-bandwidth network
file system, Proceedings of the eighteenth ACM symposium on Operating systems
principles, October 21-24, 2001, Banff, Alberta, Canada

11. Sean C. Rhea , Kevin Liang , Eric Brewer, Value-based web caching, Proceedings
of the 12th international conference on World Wide Web, May 20-24, 2003, Budapest,
Hungary

12. Udi Manber. Finding similar files in a large file system. In Proceedings of the
USENIX Winter 1994 Technical Conference, pages 110, San Fransisco, CA, USA,
1721 1994

13. Karp, R. M. and Rabin, M. O. 1987. Efficient randomized pattern-matching algo-
rithms. IBM J. Res. Dev. 31, 2 (Mar. 1987), 249-260

14. Saul Schleimer , Daniel S. Wilkerson , Alex Aiken, Winnowing: local algorithms
for document fingerprinting, Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, June 09-12, 2003, San Diego, California

15. A. Appleby, MurmurHash 2.0, http://sites.google.com/site/murmurhash/, 2009
16. R. Dawes, OWASP Proxy, http://www.owasp.org/index.php/Category:OWASP Proxy,

2010
17. V. Holub, Java implementation of MurmurHash,

http://d3s.mff.cuni.cz/ holub/sw/javamurmurhash

302 INForum 2010 Ricardo Filipe, João Barreto

Computação Gráfica

303

Construção Interactiva de Exposições Virtuais

Jorge Carvalho Gomes, Maria Beatriz Carmo, Ana Paula Cláudio

Faculdade de Ciências da Universidade de Lisboa
jorgemcgomes@gmail.com, {bc, apc}@di.fc.ul.pt

Resumo. Para os museus e galerias de arte a divulgação das suas exposições
através da Web é importante, quer para atrair visitantes, quer para a difusão de
património artístico e cultural. O desenvolvimento de ferramentas para a criação
de exposições virtuais, além de possibilitar a divulgação das exposições,
permite ainda auxiliar a concepção e montagem da própria exposição. Neste
artigo apresenta-se uma aplicação que, a partir da modelação tridimensional, em
formato X3D, do espaço físico do museu e da informação sobre as obras de arte
a expor, permite a construção interactiva de uma exposição.

Abstract. Sharing virtual exhibitions through the Web is an important issue to
museums and art galleries to spread their collection and to attract visitors.
Software applications for building virtual exhibitions, besides providing a mean
to spread exhibitions, may also be auxiliary tools to help a museum curator and
his staff to conceive and mount an exhibition. This paper presents a software
tool that allows users to interactively create a virtual exhibition, given an X3D
file, with the 3D model of the physical environment of the museum, and
information about the artworks.

Palavras-chave: Museus Virtuais, Aplicações Interactivas, X3D, Xj3D.

1 Introdução

A divulgação do acervo de museus e de galerias de arte através da Web é de grande
relevância para as instituições. Além do contributo cultural em termos da divulgação
de obras de arte, atingindo um público mais alargado do que aquele que
habitualmente frequenta as suas instalações, a disseminação do acervo de um museu é
também um meio para captar potenciais visitantes e um auxiliar para que estes
possam tirar maior partido da sua visita. Por outro lado, é uma forma de dar
visibilidade a obras que temporariamente não estão expostas, seja devido a restrições
de espaço, seja pela sua fragilidade, seja por motivo de acções de restauro em curso.
Para lá da colecção do próprio museu, através da Web podem ainda ser divulgadas
exposições temporárias, que mostram a dinâmica cultural do museu.

A abordagem mais comum para a apresentação da colecção de um museu é através
de páginas HTML com fotografias, texto e ligações para outras páginas. Outra

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 305–316

alternativa é a utilização de fotografias panorâmicas, como as que podem ser
construídas em QuickTimeVR [1]. Estas fotografias panorâmicas permitem ao
utilizador inspeccionar o espaço à sua volta com uma amplitude de 360º. Contudo,
apesar de contribuírem para uma maior imersão no espaço expositivo, não permitem
uma navegação livre nesse espaço. A passagem para outros locais do museu pode ser
feita por selecção interactiva através de um mapa 2D com a marcação dos possíveis
pontos de observação [2, 3]. Para atingir um maior grau de imersividade, com
navegação livre no espaço tridimensional, a solução passa pela criação de modelos
tridimensionais [4, 5]. Partindo de um modelo virtual do edifício, a criação da
exposição deverá ser feita pela equipa do museu que, na maior parte dos casos, não
inclui especialistas em informática. Por este motivo, uma ferramenta interactiva para
criação de exposições, que permita a colocação de objectos de arte em locais
seleccionados, auxiliará a equipa de um museu na fase de concepção e na fase inicial
da montagem de uma nova exposição, bem como, a gerar uma exposição virtual a
disponibilizar na Web.

Em [6,7] apresentou-se uma ferramenta concebida para a criação interactiva de
exposições virtuais baseada em tecnologia Web3D [8], gerando ambientes
tridimensionais em X3D. Entre as limitações detectadas nesta ferramenta
destacam-se: o tratamento de apenas algumas das representações possíveis no formato
X3D, a impossibilidade de alterar uma exposição criada numa edição anterior e a
colocação apenas de obras de arte bidimensionais, como quadros e tapeçarias. Para
colmatar estas limitações foi desenvolvida uma nova aplicação, mais genérica e com
mais funcionalidades que se apresenta neste artigo. De entre estas novas capacidades
destacam-se: o processamento do modelo tridimensional do cenário de modo a
converter a sua descrição numa geometria que permita um tratamento uniforme de
qualquer cenário; a possibilidade de edição de exposições já construídas; a criação de
filtros auxiliares para identificação de superfícies elegíveis para colocação de obras de
arte; a extensão do tipo de obras de arte que podem ser colocadas no espaço
expositivo, nomeadamente, a possibilidade de inclusão de objectos 3D; a inserção de
objectos auxiliares para suporte à apresentação de obras de arte, por exemplo,
divisórias amovíveis e bases para colocação de esculturas.

Em seguida, na secção 2 referem-se trabalhos desenvolvidos no âmbito da
divulgação cultural com recurso a modelação tridimensional. Na secção 3,
descreve-se aplicação desenvolvida. Por último, na secção 4 apresentam-se as
conclusões e o trabalho futuro.

2 Modelos Virtuais

Em várias aplicações desenvolvidas no âmbito da divulgação cultural, quer relativas
ao acervo de museus e galerias de arte, quer de património histórico, têm sido
utilizados modelos tridimensionais gerados em computador. No caso de património
histórico desaparecido, a reconstrução virtual é por vezes a única forma de visualizar
as alterações arquitectónicas sofridas por um edifício ao longo do tempo [9], [10], ou
o seu aspecto antes da sua ruína causada pela acção do tempo, por catástrofes naturais
ou por guerras [11, 12]. Entre outras referências nesta área, as que são indicadas têm

306 INForum 2010 Jorge C. Gomes, Maria Beatriz Carmo, Ana P. Cláudio

em comum a utilização de modelos tridimensionais em VRML ou X3D. Esta
tecnologia serve também de base à criação de modelos virtuais de museus, uma vez
que neste contexto, os ambientes virtuais desenvolvidos se destinam, na maior parte
dos casos, a ser visualizados através da Web.

Tentando responder à necessidade de criar ferramentas acessíveis para utilizadores
sem formação específica em informática, como acontece normalmente com as equipas
de museus, têm sido propostas algumas ferramentas para auxílio à construção de
exposições virtuais. Em [13] descreve-se um editor gráfico 2D que permite, por um
lado, a edição da planta do espaço de exposição, alterando, por exemplo, a cor ou
textura associada a uma dada parede, e por outro lado, a colocação de quadros nas
paredes. Esta segunda tarefa é realizada usando duas janelas auxiliares: uma com a
visualização das áreas cobertas pelos quadros colocados, outra com a interface para
escolha da obra e indicação das coordenadas para colocação do quadro. Não é tratada
a inserção interactiva de objectos tridimensionais.

No âmbito do projecto ARCO (Augmented Representation of Cultural Objects)
desenvolveram-se um conjunto de ferramentas destinadas a construir e gerir
exposições virtuais de museus [14]. Neste conjunto incluem-se ferramentas para o
apoio: à produção de modelos digitais de obras de arte, à gestão de um repositório,
onde podem ser guardados vários tipos de representações para estas obras, e à sua
visualização num espaço tridimensional. A criação de exposições virtuais pode ser
feita através de um conjunto de “templates” seleccionando os parâmetros adequados e
os modelos VRML/X3D guardados no repositório. Estes “templates”, que definem
tanto o aspecto visual como o comportamento da apresentação [15], são construídos
em X-VRML, uma linguagem de alto nível baseada em XML. A criação de
“templates” permite maior versatilidade na apresentação da exposição, mas requer
alguns conhecimentos de informática.

Um exemplo mais recente de criação de um museu virtual é descrito em [16]. O
trabalho desenvolvido teve por objectivo a divulgação, através da Web, do Museu de
Arte Contemporânea da Macedónia, em Tessalónica, na Grécia. As obras de arte
digitalizadas e o modelo do espaço físico do museu são convertidos num formato
Web3D (VRML/X3D) para serem visualizados através da Web. Não é reportada a
construção de uma aplicação própria para ser utilizada pela equipa do museu, mas, em
contrapartida, uma das funcionalidades criada para os visitantes virtuais é a
construção interactiva de uma galeria de arte. Os objectos de arte a visualizar podem
ser seleccionados através de pesquisas à base de dados de obras de arte, baseadas em
palavras chave, como o nome do autor ou o nome da obra, entre outros, e são depois
colocados por “arrastamento” no espaço virtual. Não são indicados detalhes sobre esta
aplicação.

Como já foi mencionado, em trabalho anterior [6, 7], desenvolvido em colaboração
com o Instituto Açoriano de Cultura, foi criada uma aplicação para apoio à criação de
exposições virtuais pelo conservador de um museu e pela sua equipa.
Consideraram-se como requisitos para esta aplicação a sua utilização por pessoas sem
especialização em informática e a possibilidade de reutilização para vários espaços de
exposição. Optou-se por suportar modelos virtuais em X3D. A manipulação da cena é
feita com recurso ao Xj3D e a informação sobre os quadros está guardada numa base
de dados MySQL. Decompôs-se a construção da exposição virtual em duas fases: na
primeira fase identificam-se as superfícies onde podem ser colocados quadros,

Construção Interactiva de Exposições Virtuais INForum 2010 – 307

criando um novo ficheiro com sensores de toque associados a estas superfícies; na
segunda fase constrói-se a exposição virtual pesquisando quadros na base de dados e
seleccionando a superfície onde devem ser colocados. Para ultrapassar as limitações
identificadas na ferramenta desenvolvida, foi concebida uma nova aplicação com as
características já referidas na introdução e que são explicadas mais detalhadamente na
secção seguinte.

3 Ferramenta para Criação Interactiva de Exposições Virtuais

Como já foi referido, no desenvolvimento desta ferramenta foi dado ênfase à criação
de mecanismos para a concretização de uma exposição virtual de forma interactiva e
acessível a pessoas não especialistas em informática. Além disso, pretende-se que
possa ser usada para diferentes espaços físicos.

Uma vez que a montagem da exposição consiste na selecção de obras de arte e
associação de cada uma delas à superfície onde vai ser exposta, um dos problemas
que se colocam para o tratamento genérico de qualquer espaço expositivo, é a
necessidade de juntar à descrição deste espaço, de forma automática, a capacidade de
escolha e selecção destas superfícies. No caso do X3D este processo passa pela adição
de sensores de toque às superfícies elegíveis para colocação de objectos. Mais ainda,
para ser possível fazer ajustamentos a uma exposição já criada é necessário guardar
informação sobre a estrutura da cena e as alterações nela introduzidas. De modo a
tratar estas situações, foi necessário desenvolver um processo de conversão da cena
inicial numa estrutura que permita a sua manipulação e tratamento adequado.

Outro aspecto contemplado foi a criação de um mecanismo uniforme para a
colocação de objectos na cena independente do objecto concreto, de forma a estender
o tipo de objectos que podem ser colocados na cena.

Em seguida apresenta-se a arquitectura da aplicação, descrevem-se as adaptações e
funcionalidades introduzidas, bem como a interface com o utilizador.

3.1 Arquitectura da Aplicação

A arquitectura da aplicação baseia-se num desenho modular de forma a poder
facilmente estender as funcionalidades suportadas, ponto que é essencial neste
problema uma vez que para a construção de uma exposição virtual pode ser necessária
uma grande diversidade de funcionalidades e objectos. O funcionamento é repartido
por modos de edição, cada um deles implementado por um módulo independente.

Por modo de edição entenda-se um modo capaz de interagir com a cena para a
modificar de alguma forma específica e dotado das capacidades de ser activado,
desactivado, gravado o seu estado lógico e carregado posteriormente para reedição da
exposição. Além disso, tem a capacidade de adicionar as alterações, efectuadas à
descrição inicial da cena, no ficheiro X3D que guarda o resultado final da exposição
construída. Em cada momento, apenas um modo de edição pode estar activo, e a
qualquer momento pode mudar-se de um modo para qualquer outro.

No entanto, existem processos que são comuns a vários módulos, por exemplo, a
colocação de objectos na cena. Para suportar facilmente a criação de módulos que se

308 INForum 2010 Jorge C. Gomes, Maria Beatriz Carmo, Ana P. Cláudio

baseiem em colocação de objectos, é definido no núcleo central (Core) da aplicação
um módulo abstracto que define todas as funcionalidades comuns a estes módulos,
como a colocação e movimentação dos objectos e o funcionamento geral do modo de
edição. Cada módulo concreto estende este módulo abstracto, e fica encarregado de
definir as especificidades do mesmo, nomeadamente, as características do objecto
concreto que é colocado, funcionalidades que permitam a escolha do mesmo, e
eventualmente alterações ao funcionamento normal do modo de edição. Foram
concretizados três módulos para a colocação de: objectos de arte bidimensionais,
objectos de arte tridimensionais e estruturas de apoio à exposição, como divisórias
amovíveis e bases para colocação de esculturas.

No núcleo central (Core) são também definidas as funcionalidades relacionadas
com a gravação e carregamento do estado da aplicação e exportação da cena final
(Project Management), bem como o módulo de eleição e detecção de superfícies, ao
qual os restantes módulos têm acesso (Surface Module).

Na Fig. 1 apresentam-se os vários módulos que compõem a aplicação, bem como a
articulação entre eles.

Fig. 1. Módulos da aplicação

A informação relativa às obras de arte é guardada numa base de dados integrada na
aplicação através do SQLite. Optou-se por uma base de dados integrada pois dispensa
a instalação e configuração de servidores e bases de dados. Apesar de ser mais
interessante a ligação com bases de dados já existentes, esta solução levantaria
certamente problemas de compatibilidade. A informação sobre os objectos é colocada
na base de dados através de uma ferramenta oferecida com a aplicação
(SQLiteStudio). Em alternativa pode ser construída uma interface gráfica na aplicação
que permita, de forma user-friendly e orientada ao domínio, a inserção desta
informação.

A aplicação é construída sobre Java SE 1.6, e para trabalhar com o X3D utiliza
principalmente a API Xj3D, versão 2.0M1, que constrói e manipula o grafo lógico da
cena. Para acesso e modificação dos conteúdos deste grafo são utilizados os métodos
do SAI (Scene Access Interface), também parte integrante da especificação X3D. Por
conveniência recorreu-se à API Java3D 1.3 para algumas fases do processamento
geométrico. A interface gráfica (GUI) é construída sobre Java Swing.

Construção Interactiva de Exposições Virtuais INForum 2010 – 309

3.2 Uniformização da Geometria da Cena

Apesar de o X3D ser um formato bem definido, permite que haja múltiplas
representações internas para obter o mesmo resultado visível, devido à grande
variedade de nós que existem para descrever a geometria de um objecto. Tal
variedade permite, por exemplo, que os programas de modelação tridimensional que
exportam ficheiros para o formato X3D utilizem processos de conversão diferentes,
recorrendo a técnicas e a nós distintos. Assim, analisar uma cena X3D, da qual se
desconhece o processo de criação, levanta alguns problemas que devem ser resolvidos
de forma a poder interpretar de forma fácil, completa e correcta a sua geometria.

Uma vez que a aplicação precisa de interpretar a geometria da cena e de alterar
alguns dos seus aspectos, por exemplo adicionar sensores, tornou-se evidente que era
necessário criar uma camada que abstraísse a geometria original da cena. Para este
efeito concebeu-se um processo que não altera a descrição inicial da cena e junta uma
nova definição da sua geometria, que contém a informação necessária para adicionar
novos objectos à cena. Esta camada de abstracção da geometria inicial da cena é
composta por um conjunto de superfícies, sendo cada superfície uma área plana
caracterizada por uma só normal e constituída por um número arbitrário de triângulos
adjacentes que a definem. Por exemplo, no modelo de um edifício, uma destas
superfícies corresponderá a uma parede ou ao chão.

O processo de conversão da descrição inicial da cena num conjunto de superfícies
integra os seguintes passos: conversão de toda a geometria para triângulos; agregação
dos triângulos em superfícies; eliminação de elementos geométricos repetidos e
identificação de duas faces para cada superfície.

Para converter toda a geometria para triângulos, utilizam-se os filtros fornecidos
pela ferramenta de conversão distribuída juntamente com o Xj3D. Posteriormente, a
agregação de triângulos junta em superfícies os triângulos adjacentes com normais
paralelas. Uma vez que a geração do ficheiro inicial X3D, através da exportação de
modelos criados com ferramentas de modelação, pode incluir repetição de geometrias,
é necessário proceder nesta fase à eliminação das repetições. Finalmente, atendendo a
que cada superfície pode ser observada segundo as suas duas faces e que é necessário
considerar um sensor de toque para cada uma delas, é preciso proceder à identificação
das duas faces de cada superfície.

3.3 Selecção de Superfícies

Um aspecto importante na construção de uma exposição é a selecção das superfícies
elegíveis para colocação de obras de arte, uma vez que nem todas são adequadas para
este efeito.

Assim, antes de iniciar a colocação de objectos de arte, o utilizador deve escolher
quais as superfícies apropriadas para a sua exibição. Esta selecção pode ser
interactiva, escolhendo uma a uma todas as superfícies pretendidas, ou recorrendo a
filtros configuráveis. Estes filtros analisam cada superfície e decidem se esta deve ser
eleita ou não. Até agora foram definidos os seguintes filtros:

- Filtro de área: aceita as superfícies que tenham uma dada área mínima.

310 INForum 2010 Jorge C. Gomes, Maria Beatriz Carmo, Ana P. Cláudio

-Filtro de normal: aceita as superfícies cuja normal verifica as condições impostas
pelo utilizador.

Estes filtros podem ser combinados e é possível activá-los também na negativa, ou
seja, é possível rejeitar superfícies com base nos filtros.

3.4 Colocação de Objectos

De modo a permitir estender o tipo de objectos que se podem juntar à cena, definiu-se
um conjunto de parâmetros básicos que caracterizam um objecto: a sua caixa
envolvente, a base de contacto com a superfície onde é aplicado, a normal a esta
superfície, correspondente à face ou ao volume visível do objecto, e a orientação do
seu bordo superior. Para simplificar o processamento, assume-se que os objectos a
colocar na cena têm, eventualmente por aplicação de transformações prévias, os
seguintes valores para estes parâmetros: a superfície de apoio é paralela ao plano XZ,
a normal à superfície é um vector com a direcção e o sentido do semi-eixo positivo
dos YY e a orientação da linha de topo corresponde ao semi-eixo positivo dos XX.
Em função destes parâmetros, é possível, por aplicação de transformações
geométricas, colocar qualquer objecto sobre uma superfície.

Após seleccionar o objecto a colocar na cena, escolhe-se com o rato a superfície da
área de representação onde este vai ser aplicado. O centro da superfície de contacto do
objecto é colocado sobre o ponto da superfície seleccionado com o cursor.
Posteriormente, a posição do objecto pode ser ajustada através de translações ao longo
da superfície e de rotações. Estas transformações são controladas através de botões da
interface. O objecto pode, alternativamente, ser recolocado noutra superfície.

Como já foi referido, para cada tipo de objectos existe um módulo específico que
tem em atenção as suas especificidades. No caso de obras de arte bidimensionais,
estas são guardadas como imagens na base de dados, juntamente com outras
informações relativas à obra. Quando são colocadas na cena é criado um
paralelepípedo e a imagem é aplicada como textura numa das faces. A base de dados
também contém as dimensões físicas da obra, de modo a que possa ser colocada na
exposição com a dimensão correcta.

As obras de arte tridimensionais são guardadas como modelos X3D e a sua
orientação no espaço deve cumprir as regras acima descritas. A sua caixa envolvente
é calculada automaticamente por análise da sua geometria. Para este efeito, o modelo
inicial é transformado numa descrição que apenas contenha nós com as coordenadas
explícitas e em seguida é feita uma pesquisa nestas coordenadas para obter os
extremos da caixa envolvente. Quando o objecto tridimensional é inserido na cena, os
nós X3D que o descrevem são adicionados à cena já existente.

Com já foi referido, além de obras de arte, é possível juntar à cena objectos para
suporte à sua apresentação, como divisórias amovíveis ou bases para a colocação de
objectos (plintos). Para este efeito é possível colocar na cena objectos
paralelepipédicos com dimensão e cor escolhidas pelo utilizador. Uma vez colocados
na cena, as superfícies que os constituem são consideradas também superfícies
elegíveis para colocação de obras de arte e podem ser escolhidas no modo de selecção
de superfícies. Assim, é possível colocar outros objectos sobre estas divisórias.

Construção Interactiva de Exposições Virtuais INForum 2010 – 311

3.5 Geração do Ficheiro X3D com a Exposição

O ficheiro X3D com a descrição da exposição desenhada é construído recorrendo a
um processo de exportação, uma vez que não é possível através do Xj3D exportar o
grafo de uma cena para um ficheiro X3D. A exportação é feita modificando o ficheiro
da cena original, que é manipulado através da interface DOM (Document Object
Model) fornecida pela API do Java para processamento de XML.

De modo a manter também a modularidade neste processo, cada módulo é
responsável por alterar independentemente o documento XML de forma a reflectir as
mudanças realizadas no contexto do mesmo.

A Fig. 2 mostra a visualização, no browser do Xj3D, do ficheiro resultante da
criação de uma exposição.

Fig. 2. Visualização do resultado da construção de uma exposição

3.6 Mecanismo de Reedição de Exposições

A reedição de uma exposição não pode simplesmente ser feita a partir do ficheiro
X3D resultante da sua construção: é necessário conhecer as alterações introduzidas à
cena inicial.

Para permitir a reedição de exposições já construídas, concebeu-se um mecanismo
baseado num conjunto de estruturas de dados auxiliares que guardam informação
sobre todos os objectos que se juntam à cena. É possível guardar num ficheiro,
designado por ficheiro de estado, o conteúdo destas estruturas. Um ficheiro de estado
reflecte o estado corrente de edição de uma cena. Posteriormente, para voltar a editar
uma exposição, repõe-se o conteúdo das estruturas de dados auxiliares a partir do
ficheiro de estado relativo a essa exposição. A partir da cena inicial e do conteúdo
destas estruturas de dados reconstitui-se a cena correspondente ao estado de edição
gravado.

312 INForum 2010 Jorge C. Gomes, Maria Beatriz Carmo, Ana P. Cláudio

3.7 Interface

A interface com o utilizador está dividida em cinco zonas (Fig. 3): a barra de menus
com os comandos usuais, como a selecção e a gravação de ficheiros; a zona de
selecção do modo de edição, sob a barra de menus; a área de representação onde é
desenhada a cena tridimensional; a barra com botões de navegação, sobre a área de
representação; e a zona de opções específicas de cada modo de edição, à esquerda da
área de representação.

Fig. 3. Interface para colocação de objectos tridimensionais

Os modos de edição que contemplam a colocação de objectos têm em comum o
seguinte:

− Na sua zona de opções específicas existe um conjunto de botões para a
aplicação de translações e rotações a um objecto seleccionado.

− As superfícies eleitas para colocação de objectos ficam activas para selecção.
− Os objectos colocados na cena, do tipo correspondente ao modo de edição

activo, são susceptíveis de ser seleccionados.
Apresentam-se em seguida os aspectos particulares da interface de cada modo de

edição.
Selecção de Superfícies. Neste modo de edição é disponibilizada uma interface
simples para configurar os filtros de selecção anteriormente descritos (Fig. 4 (a)).
Quando uma superfície está seleccionada a sua cor toma tons mais avermelhados para
se destacar (Fig. 5).
Colocação de Objectos de Arte Bidimensionais. A activação deste modo suporta a
colocação de objectos de arte a duas dimensões nas superfícies. A zona de opções
deste modo de edição contém os objectos de interface para a pesquisa na base de
dados de obras de arte (Fig. 4 (b)). É mostrado um thumbnail da obra escolhida, quer
por pesquisa na base de dados, quer por selecção com o cursor de uma obra já
colocada na cena.

Barra de menus

Barra de
navegação

Zona de selecção
modo de edição

Área de
representação

Zona de opções do modo de edição

Construção Interactiva de Exposições Virtuais INForum 2010 – 313

Colocação de Objectos de Arte Tridimensionais. A interface deste modo (Fig.6
(a)) é semelhante à de colocação de objectos bidimensionais, contudo não é mostrada
uma visualização rápida do modelo da obra seleccionada na base de dados em
benefício do desempenho da aplicação.
Colocação de Novas Estruturas de Apoio. Neste modo de edição são fornecidas
opções básicas ao utilizador para escolher as dimensões do paralelepípedo e
seleccionar a sua cor. A interface para escolha de cor corresponde ao Color Chooser
disponibilizado pela API do Java (Fig.6 (b)).

(a) (b)

Fig. 4. Zona de opções para: (a) selecção de superfícies; (b) colocação de objectos 2D

Fig. 5. Modo de selecção de superfícies com as paredes seleccionadas a vermelho

314 INForum 2010 Jorge C. Gomes, Maria Beatriz Carmo, Ana P. Cláudio

(a) (b)

Fig. 6. Zona de opções para: (a) selecção de objectos 3D; (b) colocação de divisórias

4 Conclusões e Trabalho Futuro

Apresentou-se neste artigo uma ferramenta para construção interactiva de exposições
virtuais que se destina a preparar a montagem de exposições por equipas de museus e
cujo resultado final pode ser divulgado através da Web. Tendo por base a experiência
adquirida em trabalho anterior e a necessidade de ultrapassar as suas limitações,
foram criados mecanismos que permitem a leitura de qualquer cenário descrito em
X3D, a reedição de exposições já montadas, a extensão do tipo de obras de arte que
podem ser exibidas e a inclusão de estruturas de suporte à exibição de obras de arte.

A estrutura de desenvolvimento modular permite a adição de novas
funcionalidades. No seguimento do trabalho desenvolvido está planeada a
implementação de um módulo para a colocação de fontes de luz na exposição, através
de projectores colocados em superfícies ou em calhas próprias para eles. Além da
selecção da posição e orientação, deverá ser possível escolher a intensidade, cor e tipo
destas fontes de luz.

Outros módulos a desenvolver prendem-se com funcionalidades relativas: à
colocação de objectos suspensos num ponto de aplicação; à pintura de superfícies; à
colocação de molduras em quadros; à projecção de vídeos em superfícies; à
reprodução de música ambiente em função do local que está a ser visualizado no
momento; à definição de viewpoints para criação de percursos pré-definidos.

A evolução futura desta ferramenta depende também do resultado de testes de
avaliação a realizar por especialistas na área.

Construção Interactiva de Exposições Virtuais INForum 2010 – 315

Agradecimentos. Este trabalho foi financiado por uma bolsa da Universidade de
Lisboa/Fundação Amadeu Dias.

5 Referências

1. QuicktimeVR, http://www.apple.com/br/quicktime/technologies/qtvr/ (9-7-2010)
2. Museu do Louvre, Paris http://musee.louvre.fr/visite-louvre/index.html?
defaultView= entresol.s489.p01 &lang =ENG (9-7-2010)
3. National Gallery of Art, Washington,
http://www.nga.gov/exhibitions/calder/realsp/roomenter-foyer.htm (9-7-2010)
4. Baylyl Art Museum, University of Virgínia,
http://www2.lib.virginia.edu/artsandmedia/artmuseum/docs/virtual.html (9-7-2010)
5. Reprodução de uma galeria do Victoria and Albert Museum, Londres,
http://www.arco-web.org/Virtual/dresses.php (9-7-2010)
6. Semião , P. M., Carmo, M. B.: Galeria de Arte Virtual, Actas do 15º Encontro
Português de Computação Gráfica, poster. (2007)
7. Semião , P. M., Carmo, M. B.: Virtual Art Gallery Tool, Proceedings GRAPP
2008, pp 471-476, (2008)
8. Web 3D, http://www.web3d.org/ (9-7-2010)
9. El-Hakim, S., MacDonald, G., Lapointe, J.-F., Gonzo, L., Jemtrud, M.: "On the
Digital Reconstruction and Interactive Presentation of Heritage Sites through Time",
Proceedings VAST’06. (2006)
10. Hetherington, R., Farrimond, B., Presland, S.: Information rich temporal virtual
models using X3D. Computers & Graphics, Vol 30 (2), pp. 287-298. (2006)
11. Vlahakis, V., Ioannidis, N., Karigiannis, J., Tsotros, M., Gounaris, M.: Virtual
Reality and Information Technology for Archaeological Site Promotion, Proceedings
BIS’02. (2002)
12. Ramic-Brkic, B., Karkin, Z., Sadzak, A., Selimovic, D., Rizvic, S.: Augmented
Real-Time Virtual Environment of the Church of the Holy Trinity in Mostar,
VAST’09, pp141-148. (2009)
13. Hrk, S.: Virtual Art Gallery, CESCG 2001. (2001)
14. Wojciechowski, R., Walczack, K, White, M., Cellary, W.: Building Virtual and
Augmented Reality Museum Exhibitions, Proceedings of the 9th International
Conference on 3D Web Tecnology, pp 135-144. (2004)
15. Walczak, K., Cellary, W., White, M., Virtual Museum Exhibitions, IEEE
Computer, Vol 39 (3), pp 93-95. (2006)
16. Patias, P., Chrysantou, Y., Sylaiou, S., Georgiadis, Ch., Michail, D. M.,
Stylianidis, S.: The Development of an E-Museum for Contemporary Arts,
Conference on Virtual Systems and Multimedia. (2008)

316 INForum 2010 Jorge C. Gomes, Maria Beatriz Carmo, Ana P. Cláudio

GUItar and FAgoo: Graphical interface for
automata visualization, editing, and interaction?

André Almeida Nelma Moreira Rogério Reis
{bernarduh,nam,rvr}@ncc.up.pt

DCC-FC & LIACC, Universidade do Porto
R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

Abstract. GUItar is a graphical environment for graph visualization,
editing, and interaction, that specially focuses in finite automata dia-
grams. The application incorporates mechanisms to facilitate the editing
of these graphs. It also provides a style manager that allows the cre-
ation of rich state and arc styles to be used in the drawing of its ob-
jects. This style manager allows the system to cope with complex styles,
broaden the application scope to graphical representations of other com-
putational models like transducers or Turing machines. GUItar also has a
foreign function call (FFC) mechanism for the easy integration of exter-
nal modules and libraries like automata symbolic manipulators or graph
drawing libraries. For automatic graph drawing we are developing FA-
goo, a package that seeks to provide tools capable of finding pleasant
graph drawings. FAgoo implements graph drawing algorithms that find
embeddings which the user, with minimal manual changes, can adjust
to its aesthetically taste. Both GUItar and FAgoo are on going projects
licensed under GPL.

1 Introduction

GUItar [1] is a graphical environment tool for finite automata visualization and
editing. This application incorporates mechanisms, like the auto adjustment of
the nodes to avoid overlaps and the automatic positioning of the arcs which
assist the user through the graph drawing and visualization. GUItar also provides
powerful styling tools that not only allow the editing of node and arc styles but
also allows the creation of new node structures. Furthermore we present the
foreign function call (FFC) mechanism which is used to access external modules
or libraries as FAdo and FAgoo [1].

FAdo is a tool for symbolic manipulation of formal languages and specially
finite automata that can be incorporated with GUItar. Since most FAdo manipu-
lations result in finite automata diagrams with no embedding, we are developing
FAgoo which is a graph drawing library that specially focuses in that type of
diagrams. Finite automata diagrams require additional aesthetic and graphical

? This work was partially funded by Fundação para a Ciência e Tecnologia (FCT) and
Program POSI, and by project ASA (PTDC/MAT/65481/2006).

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 317–327

constraints over other type of graphs. Finite automata diagrams, for example,
are normally read from the left to the right therefore initial states are placed
on the left and final states more to the right. FAgoo is a Python module written
in C allowing us to maintain good performance and at the same time provide
a high-level interface. In this paper we will describe the main components of
GUItar as well as some algorithms already implemented in FAgoo.

2 Graph Drawing Libraries and Applications

There are several graph drawing libraries available with many layout algorithms
for generic and specific types of graphs. Most of these libraries focus in a spe-
cific type of graphs in order to achieve better drawings. Restricting the type of
graphs that an algorithm have to deal with, results in having graphs with par-
ticular properties which usually facilitates their drawings. Although there are
many applications and libraries as aiSee [2], yED from yWorks [3], Open Graph
Drawing Framework (OGDF) [4] and Graphviz [5] for automatic graph drawing,
the algorithms implemented by these software do not fit the drawing conventions
of finite automata drawings. This is because they were not specially designed to
deal with finite automata drawings. JFLAP [6] is an application that aims to
provide a way to experiment with formal languages representations, in particu-
larly finite automata. Clearly JFLAP do not focus its work on the visualization
and layout of the finite automata, thus, the available layout algorithms are very
basic and simple.

3 GUItar

GUItar is an ongoing project which aims to provide a software tool for finite
automata visualization and editing. Although GUItar specially focuses in finite
automata diagrams, it supports other types of diagrams. Currently GUItar is
implemented in Python and uses wxPython [7] graphical toolkit. The graphical
interface basic frame is composed by a menu bar, a tool bar and a notebook.
The menu bar is dynamically built from XML [8] configuration files. The note-
book can handle multiple pages, each one containing a canvas. The canvas is
implemented using the wxPython’s FloatCanvas module which provides a set of
graphical objects that can be bound with mouse events. To be able to draw
labeled arcs, a new object called ArrowSpline had to be created.

3.1 Styles

In order to have a good platform for graph visualization and editing, we need
to cope with a wide range of node and arc styles. GUItar provides a node and
arc style manager that not only allows management of multiple styles, but also
provides interactive creation and editing of complex node structures. The graph-
ical representation of a node on GUItar consists in a set of objects from ellipses,

318 INForum 2010 André Almeida, Nelma Moreira, Rogério Reis

Fig. 1. An automaton created in GUItar.

rectangles, arrow splines and scaled texts. There must exist at least an ellipse
or a rectangle to ensure that the node has a place to dock the incoming and
outgoing arcs. It must also have one scaled text to place the node’s label. This
node structure allows the creation of complex nodes, enriching the graph visual-
ization. For example, in finite automata diagrams we can represent final states
by using two concentric ellipses, or initial states using a arrow and a ellipse. The
Fig. 2 shows the node style manager of GUItar, editing a style that could be used
to represent a state which is initial and final.

The node and arc labels can be either simple or compound. Simple labels are
just text strings, while compound labels have custom fields with values specified
by the user. The user can choose either to display or not each label field, and in
this way, extra data can be associated to nodes and arcs.

These features can accommodate many purposes, expanding GUItar’s scope
to a larger range of graph types such as transducer diagrams, Turing machines,
and others.

3.2 Visualization

Large graphs are difficult to visualize. If we are focusing in a part of a graph and
we want to abstract ourselves from the rest of the graph we can select that part

GUItar and FAgoo INForum 2010 – 319

Fig. 2. GUItar’s node style manager.

of the graph and ask the application to find a specific embedding that favours
its visualization. There is also the case where we may want to have a overview
and simplify some parts of the graph collapsing a subgraph into a node. One
solution is to replace a subgraph by a node and transforming all the external
arcs of the subgraph in the respective arcs to the node.

3.3 Graph Manipulation

In GUItar it is possible to collapse multiple arcs between two nodes. To collapse
multiple arcs their labels must be merged. By default the concatenation opera-
tion is used, but other operations can be defined. As for the resulting style, if
all arcs share the same style then that one is used. If different styles are present,
one is arbitrarily chosen or the user is prompted to do it.

Two or more nodes can be merged into one. To do this there are three aspects
to take in consideration: the labels, the styles, and the arcs. The labels’ merging
and the style selection are done as above. The arcs of the merging nodes are
replaced by arcs to the resulting node, which can lead to the creation of multiple
arcs. Further collapsing of these resulting arcs can then take place.

320 INForum 2010 André Almeida, Nelma Moreira, Rogério Reis

3.4 FFCs

We do not intend this project to be a new monolithic graph visualization and
editing tool, but we see it more as a hub where graph manipulation libraries can,
together, provide better visualization and manipulation tools. This is achieved
by a FFC mechanism, using a Python interface to access the external tools (see
Fig. 3). There are three types of FFC: module FFC, object FFC and interactive
FFC. In the first case, the FFC calls a function directly from an external Python
module. In the second case, it creates a foreign object and then calls methods
of that object. In the last case, when a specified event occurs, the FFC triggers
the respective handler function from an external Python module that will return
a sequence of actions as script commands. FFCs require an XML configuration
file that specifies the available methods. FFCs can create their own menu entries
which makes its integration in GUItar smooth and practical. Most of the GUItar
tools are implemented using FFCs that interface FAdo and FAgoo.

3.5 Animations

Animation can be a good way to illustrate a complex algorithm behavior. One
application of interactive FFCs is algorithm animation. A simple algorithm as the
one that finds a path between two nodes can be annotated with commands and
events to animate its execution. These annotations allow to control the canvas
behavior and its contents. To control the animation flow, GUItar can provide
a set of interactive controls or the FFC can provide its own external interface.
An example of a more complex animation is the deterministic finite automata
minimization that uses nodes merging to illustrate some of the transformations
during the algorithm execution.

Fig. 3. A FFC mechanism overview.

GUItar and FAgoo INForum 2010 – 321

3.6 Graph Classification

The GUItar classification mechanism allows to test if a graph belongs to a certain
class by checking if the graph verifies a set of properties. These properties can
test graphical properties (e.g. if arcs have arrows) or semantic properties (e.g.
if a finite automaton is deterministic). A few of these methods are predefined
in GUItar to check the most usual graphical properties of a graph. Access to
external libraries with FFCs can be used to test graph properties, broaden the
class range. Biconnectivity and planarity tests can be done, for example, using
FAgoo.

A friendly interface is available for graph classification (see Fig. 4). This
interface lists the graph properties and identifies the ones that are verified for
the current graph. The user can create his own classes by stating the properties
that the class must comply. It is also possible to export and import these class
definitions.

Fig. 4. GUItar’s interface for graph classification.

322 INForum 2010 André Almeida, Nelma Moreira, Rogério Reis

3.7 Semaphores

When editing a graph it can be useful to constraint the actions performed such
that the resulting graph does not leave a certain class. The GUItar Semaphore tool
assists this task by warning the user, or even restricting his actions. For example,
suppose that we have a deterministic finite automata (DFA) as the result of some
manipulation, and we want to edit it. We can enable the semaphore for DFAs to
ensure that the changes that we apply to the graph do not compromise the DFA
class definition.

New Semaphores can be created by extending the Semaphore base class and
declaring them in a XML configuration file. An image of a traffic sign is associated
to each semaphore which its light color represent the current state of the graph
evaluation. There is also an image of a small padlock that when closed means
that actions are restricted, i.e., do not allow actions that compromise the desired
graph properties.

3.8 Import and Export

GUItar store its graphs using GUItarXML [9], which is an XML format specially
designed for this application and based on GraphML [10]. GUItar also imports
and exports to other formats, converting from and to GUItarXML. Currently
the available exporting formats are GraphML, dot [11], Vaucanson-G [12] and
FAdo. It is also possible to import from all these formats with the exception of
Vaucanson-G. The Xport mechanism provides an easy way to add new export
and import methods to GUItar. These methods can be coded in Python or use
XSL transformations [13].

3.9 Object Library

Automata manipulation involves many operations with automata which result in
large sets of new automata. What Object Library offers is a way of tracing these
operations (methods) and all the objects involved. With this information it is
possible to maintain an history of these operations and know the origins of each
object, as well as recreate them from the original object. This information can
be used to enrich an automata database by adding complementary information
about the automata origins. Another feature is the possibility of create scripts
with these operations, which the user can save and then apply to other objects.
An interesting application for this tool is the creation of scripts with sequences
of graph drawing algorithms, to generate specific layouts that then could be
applied to several graphs.

GUItar and FAgoo INForum 2010 – 323

4 FAgoo

Graph drawing is an active area of research with a lot of documented algorithms
for generic and specific graph types. However, there are not many specifically
designed for finite automata diagrams. To enhance the readability of each type
of diagrams, they are normally drawn according to a set of conventional rules.
A finite automata is better read if it flows from left to right. Initial states must,
thus, be placed in the left and final states tend to be pushed to the right. The
labels are another particularity of finite automata diagrams. Finite automata
labels can be very complex and large. A single arc can have a label with several
strings attached, each one being complex, like a regular expression. Another
constraint is the arcs and its labels placement. Arcs from the left to the right
are placed above the ones from the right to the left, with labels placed on their
left side. These constraints benefit the readability of these diagrams. Finally
the frequent occurrence of loops which is not so usual in another type graphs,
is another characteristic of finite automata diagrams. Generic graph drawing
algorithms usually discard loops during the layout process and arrange them in
a final stage, but loops are frequent in finite automata diagrams and can have
complex labels which hardens its positioning task.

4.1 Drawing Planar Graphs

When drawing a graph, edge crossing reduces its readability, thus, making this
an important aspect to consider [14]. A planar graph can be drawn on a plane
without edge crossing, in particular it can be drawn only using straight-line
edges. The algorithm implemented for planarity test is the one presented by
Hopcroft and Tarjan [15], which has a linear time execution and can be extended
to either construct a planar embedding (if the graph is planar) or determine the
Kuratowski subgraph (if the graph is non-planar) [16].

The implemented straight-line drawing algorithm assumes that the input
graph is triangulated, i.e., every face has exactly three vertices. To triangulate
a planar graph while minimizing the maximum degree, Kant presented a algo-
rithm that is a good approximation of the optimal solution, but this algorithm
takes as input a triconnected graph. Since FAgoo currently does not implements
a triconectivity augmentation algorithm, the canonical triangulation algorithm
presented by Kant [17] was implemented. This algorithm only requires the input
graph to be biconnected and computes a canonical ordering while triangulating
a planar graph. This algorithm was slightly modified to compute a left most
canonical (lmc) ordering. This ordering is a generalization of the canonical or-
dering of de Fraysseix et al. [18] and it is needed for the straight-line drawing
algorithm.

Most graph drawing algorithms require that the input graph to be bicon-
nected, i.e., a connected graph that remains connected after the removal of any
vertex. FAgoo implements algorithms to test a graph biconnectivity, that with
a few modifications computes the graph biconnectivity tree (BC-Tree), and the
biconnectivity augmentation. There are two types of nodes in a BC-Tree, the

324 INForum 2010 André Almeida, Nelma Moreira, Rogério Reis

B-Nodes and the C-Nodes. The B-Nodes represent the maximal biconnected
subgraphs and the C-Nodes represent the cutvertices. There is an edge between
a C-Node and a B-Node if that C-Node belongs to the biconnected component
represented by the B-Node. The biconnectivity augmentation algorithm takes a
planar embedding of each biconnected component of the graph and its BC-Tree
to biconnect the graph while preserving its planarity. This is a simple linear time
algorithm [17], which is an adaptation of the one presented by Read [19].

4.2 Drawing Non-Planar Graphs

Finding an embedding for a non-planar graph that minimizes its edge crossing
is NP-hard [20]. One possible approach for non-planar graphs is to remove arcs
from its Kuratowski subgraph, that can be found in linear time, until the graph
is planar. Finding this minimal set of arcs is the hard task. Another approach for
non-planar graphs is to find the maximum planar subgraph. Again, this problem
is NP-hard [21]. These problems have been researched over the last 20 years and
still do not have good solutions for generic graphs. As future work we intend to
develop these approaches and implement them in FAgoo.

4.3 Subgraph Drawings

Some times it is better to visualize a portion of the graph instead of the whole
graph. One way to do this in a straight-line drawing is to do a two step tri-
angulation. The selected subgraph is first triangulated and then the rest of the
graph is added and triangulated. This makes the selected subgraph to be drawn
disregarding the rest of the graph. But this may not always be possible because
of planarity constraints. In these cases another technique can be used to pop the
subgraph from the whole graph. The subgraph is separately drawn and softer
color tones are used in the rest of the graph.

4.4 Multi-arcs

As mentioned before FAgoo specially focuses in finite automata diagrams. These
type of graphs often use multi-arcs in their representation. However general
graph drawing algorithms do not support multi-graphs and simplify them in a
early stage. This may have bad repercussions during the recovery the original
graph. When the original graph is recovered multiple arcs may override other
nodes or even arcs. A way to overcome this problem is to replace every multiple
arc by a new node with arcs to the original arc source and target. The Fig. 5
illustrates this step. Then when recovering the original graph the created nodes
are used as control points for the arcs splines. This way no multiple arcs will
override other nodes or arcs. The graph planarity is also obviously not affected.

GUItar and FAgoo INForum 2010 – 325

Fig. 5. Multi-arcs step illustration.

4.5 Force Directed Model

An interesting approach to the automatic graph drawing problem as been the
simulation of forces. Increasingly force directed algorithms have been adopted by
graph drawing libraries. The model used in FAgoo replaces the arcs with springs
and the nodes with spheres. Between these spheres we introduce a repulsion force.
The spheres are spread in a plane and the simulation stops when a equilibrium
state is reached.

Reading directionality is achieved by fixing the initial states to the plane that
is then lent to the right and gravity does the rest. This cause the other states to
fall into to the right side of the initial states.

A graphical interface for this model is being developed. The idea of this in-
terface is to allow the user to interact in real time with the ongoing simulation.
The user can pause and resume the simulation to manually adjusting some com-
ponents of the graph. For example, the user may want to fix the position of one
or more nodes during a simulation or set specific strength values for some nodes
and springs.

5 Conclusion

In this paper we presented GUItar as a tool for the visualization and editing of
finite automata diagrams that combined with FAdo provides a potential graphical
environment for automaton manipulation. We also presented the FFC mechanism
that allows GUItar’s expansion broaden the application scope to other type of
graphs. We also presented FAgoo: a graph drawing library specialized in finite
automata diagrams. FAgoo is integrated with GUItar using the FFC mechanism.
Both GUItar and FAgoo are ongoing projects. FAgoo still needs improvements in
some of the presented algorithms as well the development and implementation
of many others.

References

1. FAdo Project: FAdo: tools for formal languages manipulation.
http://www.ncc.up.pt/FAdo (Access date:12.06.2010)

2. aiSee Graph Layout Software: aiSee. http://www.aisee.com/ (Access
date:12.06.2010)

326 INForum 2010 André Almeida, Nelma Moreira, Rogério Reis

3. yWorks GmbH: yWorks. http://www.yworks.com/ (Access date:12.06.2010)
4. Chair of Algorithm Engineering, Juniorprofessorship of Algorithm Engineering,

C.o.P.J., oreas GmbH: Open Graph Drawing Framework.
http://www.ogdf.net/doku.php (Access date:12.06.2010)

5. Labs, A.R.: Graphviz - Graph Visualization Software.
http://www.graphviz.org/ (Access date:12.06.2010)

6. Rodger, S.H., Finley, T.W.: JFLAP: An interactive formal languages and automata
package. Jones & Bartlett Publishers (2006)

7. Smart, J., Roebling, R., Zeitlin, V., Dunn, R.: wxWidgets 2.6.3: A portable C++
and Python GUI toolkit. (2006)

8. WWW Consortium: XML specification WWW page. http://www.w3.org/TR/xml
(Access date:12.06.2010)

9. Alves, J., Moreira, N., Reis, R.: XML description for automata manipulations. In
Simões, A., Cruz, D., Ramalho, J.C., eds.: Actas XATA 2010, XML: aplicações e
tecnologias associadas, ESEIG, Vila do Conde (2010) 77–88

10. GraphML Working Group: The GraphML file format.
http://graphml.graphdrawing.org (Access date:12.06.2010)

11. Graph Visualization Software: The dot language. http://www.graphviz.org (Ac-
cess date:12.06.2010)

12. Lombardy, S., Sakarovitch, J.: Vaucanson-G.
http://igm.univ-mlv.fr/~lombardy (Access date:1.12.2009)

13. WWW Consortium: XSLT specification WWW page.
http://www.w3.org/TR/xslt (Access date:12.06.2010)

14. Purchase, H.C., Cohen, R.F., James, M.I.: Validating graph drawing aesthetics.
In: Graph Drawing. (1995) 435–446

15. Hopcroft, J.E., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4) (1974)
549–568

16. Mehlhorn, K., Mutzel, P., Naher, S.: An implementation of the Hopcroft and
Tarjan planarity test and embedding algorithm. Technical report, Research Report
MPI-I-93-151, Max-Planck-Institut für Informatik, Im Stadtwald, D-66123 (1993)

17. Kant, G.: Algorithms for Drawing Planar Graphs. PhD thesis, Universiteit Utrecht,
Faculteit Wiskunde en Informatica (1993)

18. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1) (1990) 41–51

19. Read, R.C.: A new method for drawing a planar graph given the cyclic order of
the edges at each vertex. Congressus Numerantium (56) (1987) 31–44

20. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebraic
Discrete Methods (4(3)) (1983) 312–316

21. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of NP-completeness (1979)

GUItar and FAgoo INForum 2010 – 327

Instant Global Illumination on the GPU using
OptiX

Ricardo Marques and Lúıs Paulo Santos

Universidade do Minho, Braga, Portugal,
ricjmarques@gmail.com, psantos@di.uminho.pt

Abstract. OptiX, a programmable ray tracing engine, has been recently
made available by NVidia, relieving rendering researchers from the id-
iosyncrasies of efficient ray tracing programming and allowing them to
concentrate on higher level algorithms, such as interactive global illu-
mination. This paper evaluates the performance of the Instant Global
Illumination algorithm on OptiX as well as the impact of three differ-
ent optimization techniques: imperfect visibility, downsampling and in-
terleaved sampling. Results show that interactive frame rates are indeed
achievable, although the combination of all optimization techniques leads
to the appearance of artifacts that compromise image quality. Sugges-
tions are presented on possible ways to overcome these limitations.

Keywords: instant global illumination, ray tracing, graphics processors

1 Introduction

Interactive ray tracing became possible along the last decade on both CPU
and GPU based platforms. However, this has been achieved through extensive
optimization of code and data structures, thus developing such a ray tracer
is a complex and time consuming task. In September 2009 Nvidia launched
a programmable ray tracing engine for their GPUs, OptiX [1], which allows
researchers to concentrate on higher level algorithms while still being able to
trace rays efficiently.

The goal of this paper is to assess the performance of an interactive global
illumination (GI) algorithm on OptiX. This algorithm, referred to as Instant
Global Illumination [2], computes indirect diffuse interreflections by generating
a particle based approximation of this illumination component, resulting in a
three-dimensional distribution of secondary virtual point light (VPL) sources.
The algorithm in its original form is barely interactive due to the high number
of VPLs. Optimizations have been proposed under the form of imperfect visibility
[3], downsampling the indirect diffuse evaluation rate [4] and interleaving VPL
sampling patterns [5]. This paper assesses the performance achieved with these
three optimizations on a last generation NV 480 GTX GPU using OptiX and
proposes a few hypothesis for further performance gains.

The next section presents related work and details on the optimization tech-
niques. Section 3 briefly introduces OptiX, while the used algorithm is detailed

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 329–340

in section 4. Results are analyzed in section 5. The paper concludes with some
suggestions for future work.

2 Related Work

2.1 Interactive Ray Tracing and Global Illumination

Interactive Whitted-style [6] ray tracing (iRT) became possible along the first
decade of the XXIst century, for both static and dynamic scenes, through clever
exploitation of advances in available computing power and careful optimization
of both code and used data structures [7, 8]. The performance of such ray tracers
arises mainly from fine tuning data structures such that the memory hierarchy
performs to its maximum and by exploiting ray coherence: rays are grouped into
packets or frusta and SIMD instructions are used to trace them through the
scene. Ray coherence exploitation has been shown to be effective for primary
and shadow rays. Whether it can be used to speedup tracing of secondary rays
is still unclear, since these often do not share the same origin and exhibit less
directional coherence [9].

Ray tracing is an embarrassingly parallel algorithm which naturally leads
to the exploitation of parallel systems. Most the above cited approaches exploit
parallelism at several levels: SIMD, multicore and clusters of distributed memory
machines. With the computation power and core count of GPUs increasing at
a higher rate than those of CPUs, ray tracing solutions that harness the GPUs
processing capabilities begun to emerge [10, 11]. However, even with the appear-
ance of flexible, C-like, GPU programming languages such as CUDA [12], effi-
cient programming of these devices is still not straightforward due to their SIMT
(Single Instruction Multiple Threads) computing model. NVIDIA has recently
made available a GPU ray tracing engine, OptiX [1], which relieves researchers
from the idiosyncrasies of efficient ray tracing programming and allows them to
concentrate on higher level algorithms, such as global illumination.

While Whitted style ray tracing requires tracing a reasonable number of
mostly coherent rays (specular rays may exhibit less coherence, specially over
curved surfaces), GI entails simulating a huge number of incoherent light paths,
thus making it hard to maintain interactive frame rates. GI light transport phe-
nomena include diffuse interreflections, caustics and participating media. Indi-
rect diffuse interreflections, the focus of this paper, are typically simulated using
Monte Carlo path tracing [13], photon mapping [14], irradiance caching [15] or
instant radiosity [16]. The later is frequently used for interactive rendering [2,
17]: it generates a particle approximation of the indirect diffuse radiant scene
by performing quasi-random walks on a quasi-Monte Carlo integration frame-
work. Photons are traced from the light sources into the scene and Virtual Point
Light sources (VPLs) are placed at the intersections of the quasi-random photon
paths with diffuse geometry. The image is then rendered by sampling the VPLs
as point light sources. This algorithm exhibits ray coherence similar to direct
lighting and is thus expected to perform similarly on vectorial processors such
as the GPUs.

330 INForum 2010 Ricardo Marques, Lúıs Paulo Santos

2.2 Accelerating Indirect Diffuse

The quality of the indirect diffuse estimate is dependent on the number of VPLs
and the quality of their distribution throughout the scene. Unfortunately, ren-
dering time is linearly proportional to the number of VPLs, which requires clever
strategies to speedup indirect diffuse calculations.These strategies are based on
two key observations: indirect diffuse lighting is mostly a low frequency signal
that varies smoothly over the scene and accurate visibility is not required for
indirect illumination.

Accurate visibility is traditionally used in light transport at the cost of tracing
rays against the detailed scene description. However, indirect diffuse illumina-
tion varies smoothly across the scene, thus accurate visibility is perceptually
unnecessary in this case, since visibility errors are masked by the low frequency
nature of the signal [18]. This insight has been exploited by either performing
accurate visibility queries only on the neighborhood of the shading point [19] or
by testing visibility against a crude representation of the scene [3].

Instant radiosity, on its original form, requires evaluating VPLs visibility at
each shading point. The number of shading points is thus linearly correlated
with the number of pixels. By taking advantage of the low frequency nature of
indirect diffuse reflections, the estimate can be computed at a lower image res-
olution and then upsampled to the target resolution [4]. Despite being mostly
smooth, high frequencies are still present on the indirect diffuse signal, mostly
due to geometric discontinuities. Upsampling must thus be done using some dis-
continuity preserving filter, such as the joint bilateral filter, which uses geometric
information obtained at full resolution when computing direct illumination.

Sampling the whole set of VPLs for each pixel is expensive and might compro-
mise performance. Interleaved sampling [5] has thus been proposed to accelerate
instant radiosity resulting on the so-called Instant Global Illumination algorithm
[2]. The set of VPLs is divided onto m ∗ n subsets and for each pixel within a
m ∗ n tile of pixels only one of the subsets is sampled, spawning a much lower
number of VPL shadow rays. Results are then integrated over each tile by using
the discontinuity buffer.

3 OptiX

NVIDIA’s OptiX engine is a programmable ray tracing pipeline for NVIDIA
GPUs using the CUDA-C programming language [1, 20]. OptiX abstracts the
execution to single rays, simplifying the application programmer’s role, while in-
ternally exploiting the GPU architectural characteristics through deferred shad-
ing and built-in scheduling and load balancing. OptiX is tightly coupled with
graphics APIs to allow combinations of raster and ray tracing approaches. The
ray tracing pipeline is programmable through programmer supplied programs
(CUDA kernels) that handle the various ray tracing events, such as intersections
for procedurally accurate surface types, cameras for new composition potential,
shading and scene graph traversal. OptiX includes support for parallelism across

Instant Global Illumination on the GPU using OptiX INForum 2010 – 331

multiple GPUs and building and traversal of acceleration structures (BVH and
KD trees).

OptiX runs on most CUDA enabled GPUs although it is only fully functional
and supported on the latest architectures (GT200 and GF100). Currently, there
are two main drawbacks associated with OptiX: acceleration structure traversal
is not programmable, which precludes their utilization on tasks other than ray
traversal, and the CUDA context upon which OptiX runs is not visible to the
programmer, prohibiting explicit access to shared and constant memory, which
prevents the utilization of most common CUDA optimization techniques.

The availability of a programmable, high performance, ray tracing engine
relieves application developers from the idiosyncrasies of efficient ray tracing
programming, allowing them to concentrate on higher level algorithms such as
global illumination. However, applications using OptiX must still be carefully
designed and optimised if high performance is to be achieved.

4 The Algorithm

The algorithm proposed on this paper simulates direct illumination, specular
reflections and indirect diffuse interreflections using the Instant Global Illumi-
nation approach [2]. Figure 1 illustrates the fundamental stages of the proposed
pipeline; the upper arrow depicts the temporal order of the different stages, while
the arrows connecting the boxes illustrate data dependencies.

Fig. 1. Rendering pipeline for the canonical version of the algorithm

Particles are shot from the light sources following a quasi-random Halton
sequence. VPLs are then created at each intersection of the particles path with
geometric primitives whose material has a diffuse component. The number of
bounces along each path is a user supplied parameter. The OptiX context launched
to shoot the VPLs consists on as many threads as the number of paths, each
thread processing a whole path. The quasi-random numbers used to build the
particle paths are generated on the CPU and passed to the GPU as OptiX
buffers.

Direct plus specular illumination entails shooting one primary ray per pixel,
spawning a Whitted-style tree of rays. Only point light sources are supported.
Indirect diffuse is only separated from direct plus specular at the primary ray hit
point. Hit points further down the rays’ tree, resulting from tracing specular rays,

332 INForum 2010 Ricardo Marques, Lúıs Paulo Santos

have their indirect diffuse component calculated within the direct plus specular
stage of the pipeline. This approach was selected to exploit OptiX recursion
capabilities. Explicit separation of components could be implemented by storing
the hitpoints on a buffer, but this would increase access to global memory thus
increasing rendering time (shared memory can not be explicitly accessed from
within the OptiX context).

Indirect diffuse radiance, Lindirect(x), is evaluated by shooting, at each shad-
ing point x, one ray towards each VPL to assess its visibility:

Lindirect(x) =
N∑
k=1

ρ(x)Le,kV (x, yk)G(x, yk) (1)

where N is the number of VPLs, V (., .) is the visibility function between two
points, Le,k is the emitted radiance for the k-th VPL, yk is the position of the
k-th VPL, ρ is the diffuse reflectance coefficient and G is the bounded geometry
term, defined as

G(x, yk) =
cosθxcosθyk

‖x− yk‖2 f(0.8mind, 1.2mind, ‖x− yk‖)

where θx and θyk
are the angles between the normal at x, respectively yk, and

the direction x → yk, mind is the bounding distance (to avoid singularities in
G) and f(a, b, d) is a smoothing function returning 0 if d < a, 1 if d > b and a
quadratic value in the interval [0..1] if a <= d <= b.

Equation 1 is quite expensive to compute since visibility has to be evaluated
for all the VPLs and shading points. This motivates the acceleration strategies
proposed on the next subsections.

4.1 Imperfect Visibility

It has been shown that due to the low frequency nature of the indirect diffuse
illumination accurate visibility is not perceptually important [18]. Within our
instant radiosity inspired approach this means that assessing the term V (., .) on
equation 1 can be relaxed in an attempt to reduce rendering times. To validate
this hypothesis VPL shadow rays are tested against the triangles bounding boxes
rather than testing them for intersection against the triangles themselves.

The application supplied intersection program (or kernel) used by OptiX is
associated with the geometric primitive type and does not depend on the ray
type. In practice, this means that it is not possible to have OptiX calling a given
intersection program for all ray types and then another program, that would test
the ray against the triangle bounding box rather than the triangle itself, for VPL
shadow ray types. In order to use a different intersection algorithm there are two
alternatives: either a conditional statement is included on the general intersection
program or the scene graph is duplicated within the OptiX context and the
new intersection program is associated with the second scene graph. The former
has the disadvantage of implying evaluating the conditional statement for all

Instant Global Illumination on the GPU using OptiX INForum 2010 – 333

intersection tests and, worst, can lead to execution divergence due to the GPU’s
SIMT computation paradigm. The latter has the disadvantage of consuming
more memory (although only the bounding box coordinates are stored, not the
respective triangle vertices) and requires building a second acceleration structure
- on dynamic scenes this might compromise interactivity. Since dynamic scenes
are currently not supported, the second approach was selected and a second
scene graph is built with the triangles’ bounding boxes rather than the triangles
themselves.

4.2 Downsampling

Typically, indirect diffuse illumination is computed for all shading points. Image
resolution, however, continues to grow every year with advances in available com-
puting power, storage space and display capabilities. Since rendering complexity
is linear in time with the number of pixels, computing indirect illumination at
such high resolution prevents interactivity. The fact that the indirect diffuse
component is mostly a low frequency signal can be exploited by rendering it at
a lower resolution and then upsampling to the target final resolution [4].

Fig. 2. Rendering pipeline for indirect upsampling - the direct stage contributes with
full resolution normal and ρ maps for filtering and composition

The indirect diffuse signal, however, still has high frequencies, mostly due
to geometric discontinuities. Upsampling can not be performed by convolving
the signal with some low-pass kernel, since sharp edges would be unacceptably
blurred. Since a high resolution pass is still required to compute direct plus
specular illumination, this can be used to gather geometric information about
each pixel in the target image (see figure 2). This information, the normal at
the intersection point, can be used during upsampling to properly weight the
contribution of each neighbor to the final value. The reasoning is that pixels
in the neighborhood which have similar orientations to the center pixel will
contribute more to its final result. We use the joint bilateral filter to perform
this task: a spatial filter is applied to the low resolution image I and a range
filter is applied to the full resolution image Ĩ. Let p̃ and q̃ denote the coordinates
of two pixels in Ĩ, and p and q denote the corresponding coordinates in the low

334 INForum 2010 Ricardo Marques, Lúıs Paulo Santos

resolution solution I. The upsampled solution S̃ is

S̃p̃ =
1
kp̃

∑
q∈Ω

Iqf(|p− q|)(N p̃ ·N q̃) (2)

where f is the spatial Gaussian kernel centered over p, Ω is the spatial support
of f and kp̃ is a normalizing constant. The range filter is the cosine of the angle
of the normals at p̃ and q̃.

The indirect diffuse stage computes incident indirect radiance, rather than
reflected, such that the upsampling filter does not blur details due to local ma-
terial properties (e.g., mapped textures). Multiplication by the diffuse reflection
coefficient, ρ, is done just before composition.

The indirect diffuse stage computes indirect illumination only for the shading
points determined by the primary rays. Thus, upsampling is only applied to
these points. Shading points further down the tree of rays have their indirect
illumination calculated by the direct stage, which operates at full resolution.

4.3 Interleaved Sampling

In order to further reduce the number of VPLs visibility queries interleaved
sampling is applied [2, 5]. The VPLs are divided into 9 subsets and within each
pixel of a 3 ∗ 3 tile a different subset is used to compute indirect illumination.
The contributions of the different VPL subsets are then integrated using the
discontinuity buffer. The difference of depths and the dot product of the normals
of a pixel are compared to those of each of its 8 neighbors. If both these values
are below some given thresholds, then geometry is considered locally continuous
and incident irradiance from that neighbor is added to the center pixel. The final
indirect incident value is evaluated by dividing by the number of neighbors that
contributed (including the center pixel itself).

Fig. 3. Rendering pipeline for upsampling and interleaving - the direct stage con-
tributes with full resolution normal, depth and ρ maps for filtering and composition

Instant Global Illumination on the GPU using OptiX INForum 2010 – 335

5 Results

5.1 Experimental Setup

All experiments and measurements were performed using OptiX 2 Beta 5 and
Visual Studio 2008 on a dual core Intel Xeon 3.20 Ghz machine with 2 GB of
memory and the new Nvidia 480 GTX GPU with 4 GB of RAM. Two scenes
were used: the Conference room (190K triangles, 4 point light sources) and Office
(21K triangles, 2 point light sources). Images were rendered at a resolution of
800x600 pixels, no anti-aliasing, using OptiX built-in BVH as the acceleration
structure. Time measurements were performed with 30, 90 and 180 VPLs. Where
appropriate the downsampling window was 4x4 and interleaving was 3x3.

5.2 Results Analysis

(a) Conference (b) Office

Fig. 4. fps and time percentage spent on each illumination component

Figure 4 shows evaluation of the indirect diffuse component dominates ren-
dering time and that this aggravates with the number of VPLs. Although not
obvious for the conference scene (figure 4(a)), because it contains many specular
objects, the dependance on the number of VPLs for the office scene is quite ob-
vious. Thus, according to Amdahl’s law this component is the one that is worth
optimizing.

Figure 5 shows the frame rate and relative execution time for each of the
rendering and filtering kernels (see also figures 6 and 7).

Imperfect visibility achieves a speedup between 1.5 and 2.0 without any per-
ceptually significant impact on the rendered image. This technique accelerates
all indirect diffuse calculations, including those triggered by secondary rays - it
has thus a most significant impact on the conference scene.

Downsampling 16 times provides a speedup of approximately 5 times without
significantly impacting on the quality of the rendered images. Artifacts due to

336 INForum 2010 Ricardo Marques, Lúıs Paulo Santos

(a) Conference (b) Office

Fig. 5. fps and time percentage spent on each illumination component for the 4 different
approaches and 180 VPLs

incorrect geometric continuity assumptions are however visible along edges. See
for example the junction of the two halves of the table top in figure 6(c). The
indirect diffuse rendering time is so drastically reduced that it is no longer the
bottleneck: direct plus specular now takes more than 50% of the total rendering
time. Note, however, that indirect calculations triggered by secondary rays are
included in the direct stage and are not optimized by either downsampling or
interleaving. In scenes with reflective materials, such as the conference room, this
contributes to increase this stage relative weight on the total rendering time.

Interleaving VPLs sampling over a 3x3 window further accelerates indirect
diffuse evaluation. However, artifacts are now perceivable, most noticeably when
the indirect component has a strong contribution, such as on the Conference
ceiling and under the desk in the Office scene (figures 6(d) and 7(d)). These
artifacts are due to the regular interleaved sampling pattern over the image plane
and are further enhanced by the upsampling step. Minimization of such artifacts
might be possible by reducing the interleaving window size (e.g., 2x2) or by using
an irregular interleaving pattern [21]. The gains obtained with interleaving are
not enough to compensate for the added artifacts; furthermore, the direct plus
specular component together with secondary indirect diffuse calculations now
dominate rendering times, thus optimizing these is probably more important
than applying interleaved sampling.

6 Conclusions

This paper discusses an implementation of Instant Global Illumination over Op-
tiX and then evaluates three acceleration techniques: imperfect visibility, down-
sampling and interleaved sampling. Results show that these techniques combined
allow for interactive rendering of relatively complex scenes (e.g., conference room,
190 K triangles, 180 VPLs), achieving up to 2.8 fps.

Imperfect visibility is straightforward to put in practice, but it is downsam-
pling that results in the most impressive performance gains; artifacts are, how-
ever, slightly perceived throughout the image. Reducing the downsampling rate,

Instant Global Illumination on the GPU using OptiX INForum 2010 – 337

(a) Fundamental algorithm (0.26 fps) (b) Imperfect Visibility (0.56 fps)

(c) 4 x 4 downsampling (2.25 fps) (d) 3 x 3 interleaved (2.79 fps)

Fig. 6. Images for the conference scene - 180 VPLs

e.g. 3x3, will reduce such artifacts at some performance cost. Interleaved sam-
pling further contributes to reduce rendering times, but, in combination with
upsampling, artifacts become too obvious due to the regular interleaved sam-
pling pattern. These two last techniques only operate on indirect diffuse calcu-
lations triggered by primary rays; those associated with specular secondary rays
are neither downsampled nor interleaved. Improving such secondary irradiance
calculations would significantly enhance performance in scenes with reflective
materials and will be addressed as future work. We propose to adopt the instant
caching approach [22], which, similarly to the irradiance cache [15], interpolates
over scene space thus accelerating all indirect diffuse calculations.

Future work will include using irregular interleaved patterns and combining
the discontinuity buffer and the bilateral filter in a single pass. Also combining
rasterization with ray tracing, by resoting to shadow maps rather than shadow
rays, might result in significant performance gains. Since OptiX and OpenGL
interoperability is assured by NVidia, this should be straightforward to imple-
ment and evaluate. Finally, OptiX does not allow explicit access to CUDA shared
memory, which results on implementation penalties, particularly on operations
such as filtering. However, data can be passed between CUDA contexts and Op-

338 INForum 2010 Ricardo Marques, Lúıs Paulo Santos

(a) Fundamental algorithm (0.64 fps) (b) Imperfect Visibility (0.96 fps)

(c) 4 x 4 downsampling (5.36 fps) (d) 3 x 3 interleaved (7.63 fps)

Fig. 7. Images for the office scene - 180 VPLs

tiX contexts through GL buffers; we intend to use this feature to optimize the
discontinuity and bilateral filters, which might allow for the utilization of more
sophisticated discontinuity detection techniques.

Acknowledgements This work was partially funded by PT-FCT grant PTDC/
EIA/ 65965/ 2006 (IGIDE project: Interactive Global Illumination within Dy-
namic Environments)

References

1. Steven Parker. Efficient ray tracing on nvidia gpus. SIGGRAPH ASIA 2009
Presentation, December 2009.

2. Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander Keller, and Philipp
Slusallek. Interactive global illumination using fast ray tracing. In EGRW ’02:
Proceedings of the 13th Eurographics Workshop on Rendering, 2002.

3. T. Ritschel, T. Grosch, M. Kim, H.-P. Seidel, C. Dachsbacher, and J. Kautz. Imper-
fect shadow maps for efficient computation of indirect illumination. ACM Trans-
actions on Graphics (SIGGRAPH Asia), 27(5), 2008.

Instant Global Illumination on the GPU using OptiX INForum 2010 – 339

4. Johannes Kopf, Michael Cohen, Dani Lischinski, and Matt Uyttendaele. Joint
bilateral upsampling. ACM Transactions on Graphics, 26(3), 2007.

5. Alexander Keller and Wolfgang Heidrich. Interleaved sampling. In Proceedings of
the 12th Eurographics Workshop on Rendering Techniques, pages 269–276, London,
UK, 2001. Springer-Verlag.

6. Turner Whitted. An improved illumination model for shaded display. Communi-
cantions of the ACM, 23(6):343–349, 1980.

7. Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner. Interactive
rendering with coherent raytracing. In Computer Graphics Forum/Proceedings of
EUROGRAPHICS, volume 20, pages 153–164, 2001.

8. I. Wald, W. R. Mark, J. Günther, S. Boulos, Ize T, Hunt W, S. Parker, and
P. Shirley. State of the art in ray tracing animated scenes. In STAR Proceedings
of Eurographics 2007, pages 89–116, September 2007.

9. S. Boulos, D. Edwards, J. Lacewell, J. Kniss, J. Kautz, I. Wald, and P. Shirley.
Packet-based whitted and distribution ray tracing. In Graphics Interface, 2007.

10. Timo Aila and Samuli Laine. Understanding the efficiency of ray traversal on gpus.
In HPG ’09: Proceedings of the Conference on High Performance Graphics 2009,
pages 145–149, New York, NY, USA, 2009. ACM.

11. Min Shih, Yung-Feng Chiu, Ying-Chieh Chen, and Chun-Fa Chang. Algorithms
and Architectures for Parallel Processing, volume 5574 of LN in Computer Science,
chapter Real Time Ray Tracing with CUDA, pages 327–337. 2009.

12. David Kirk and Wen mei Hwu. Programming Massively Parallel Processors: a
Hands-on Approach. Korgan Kaufmann, 2010.

13. James T. Kajiya. The rendering equation. In SIGGRAPH ’86: Proceedings of the
13th annual conference on Computer graphics and interactive techniques, pages
143–150, New York, NY, USA, 1986. ACM.

14. Henrik Wann Jensen. Global illumination using photon maps. In X. Pueyo and
P. Schröder, editors, Rendering Techniques, pages 21–30. Springer-Verlag, 1996.

15. G. Ward, F. Rubinstein, and R. Clear. A ray tracing solution for diffuse inter-
reflection. Computer Graphics, 22(3), 1988.

16. Alexander Keller. Instant radiosity. In SIGGRAPH ’97: Proceedings of the 24th
annual conference on Computer graphics and interactive techniques, pages 49–56,
New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

17. Rui. Wang, R. Wang, K. Zhou, M. Pan, and H. Bao. An efficient gpu-based
approach for interactive global illumination. ACM Trans. Graph., 28(3):1–8, 2009.

18. I. Yu, A. Cox, M. Kim, T. Ritschel, T. Grosch, C. Dachsbacher, and J. Kautz.
Perceptual influence of approximate visibility in indirect illumination. In ACM
Transactions on Applied Perception, volume 6, 2009.

19. Okan Arikan, David Forsyth, and James O’Brien. Fast and detailed approximate
global illumination with irradiance decomposition. ACM Transactions on Graphics
(ACM SIGGRAPH 2005), pages 1108–1114, 2005.

20. Holger Ludvigsen and Anne Cathrine Elster. Real-time ray tracing using nvidia
optix. In Eurographics 2010 short papers, 2010.

21. Solomon Boulos, Dave Edwards, Dylan Lacewell, Joe Kniss, Jan Kautz, Peter
Shirley, and Ingo Wald. Interactive distribution ray tracing. Technical Report
UUSCI-2006-022, SVCI Institute, University of Utah, 2006.

22. K. Debattista, P. Dubla, F. Banterle, L.P. Santos, and A. Chalmers. Instant caching
for interactive global illumination. Computer Graphics Forum, 28(8):2216–2228,
2009.

340 INForum 2010 Ricardo Marques, Lúıs Paulo Santos

Projecções Interactivas na Sala de Aulas

Vasco M. A. Santos1 and Frutuoso G. M. Silva2

Instituto de Telecomunicações, Universidade da Beira Interior, Covilhã,
1m2059@ubi.pt,2fsilva@di.ubi.pt,

WWW home page: http://regain.it.ubi.pt/

Resumo Hoje em dia, o uso das Tecnologias de informação e Comu-
nicação (TIC) tem tido, cada vez mais, um papel chave nas escolas e nos
métodos de ensino. O uso de quadros interactivos está em profunda ex-
pansão. Os estudantes passam a ter as notas em formato digital em vez
do caderno, permitindo uma maior partilha de recursos e ideias entre es-
tudantes e professores. No entanto, o facto das soluções disponibilizadas
pelos grandes fabricantes terem um preço ainda alto, limitando o acesso
a esses recursos a um grande número de instituições de ensino, levou a
que se procurassem soluções mais baratas. Uma dessas soluções é o Wii-
mote Whiteboard apresentdo por Johnny Lee que permite que qualquer
pessoa tenha um quadro interactivo de baixo custo, usando apenas um
Wiimote e um emissor de infravermelhos. Com base nesta tecnologia,
criámos três aplicações de suporte às aulas para uso conjunto com o Wi-
imote Whiteboard. Estas aplicações serão descritas, mostrando as princi-
pais diferenças para com as soluções existentes no mercado. Além disso,
apresenta-se um novo método para controlar o computador à distância,
o qual permite uma maior liberdade ao apresentador.

Abstract Nowadays, the use of Information and Communication Tech-
nology (ICT) has had, increasingly, a key role in schools and the teaching
methods. The use of interactive whiteboards is in deep expansion. Stu-
dents come to have the notes in digital format instead of the notebook,
allowing greater sharing of resources and ideas between students and
teachers. However, the fact that the solutions offered by major manu-
facturers have a high price, limiting access to these resources to a large
number of educational institutions, meant that there was a demand for
cheaper solutions. One such solution is the Wiimote Whiteboard pre-
sented by Johnny Lee that allows anyone to have a low cost interactive
whiteboard using only the Wiimote and an infrared emitter. Based on
this technology, we have created three applications to support classes for
use in combination with the Wiimote Whiteboard. These applications
will be described, showing the main differences for identical solutions
existing in the market. Besides, we present a new way to control the
computer at distance that gives more freedom to presenter.

1 Introdução

Os métodos de ensino na sala de aula estão em constante evolução. Os profes-
sores recorrem cada vez mais a apresentações (ex: em PowerPoint) e a quadros

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 341–352

interactivos, em vez dos antiquados acetatos e quadros de giz, disponibilizando
apontamentos aos estudantes em formato digital através da Internet. Aplicações
que permitam ao professor fazer anotações sobre o que é apresentado e per-
mitam depois disponibilizar essas anotações para impressão, fazem com que os
estudantes se concentrem mais na apresentação e se preocupem menos em tirar
anotações.

Em 2001, os páıses da União Europeia (UE) definiram como objectivo o
aumento da qualidade e eficácia da educação e aprendizagem na UE, do qual
resultaram duas questões-chave [1]:
(1) fornecer equipamento adequado e software educativo para optimizar o uso
das TIC e os processos de e-Learning na educação e ensino e;
(2) encorajar o melhor uso das técnicas de ensino e aprendizagem inovadoras
baseadas nas TIC.

Mais tarde, um estudo realizado em Inglaterra [2] avaliou o impacto das TIC
na educação e, mais especificamente, o impacto dos quadros interactivos nos
estudantes e professores, e as barreiras que surgiram. Ao ńıvel dos estudantes e
da sua aprendizagem, o estudo mostrou que:

– as TIC têm um impacto positivo no desempenho educacional nas escolas
primárias, em especial no Inglês, mas menos nas Ciências, com a excepção
da Matemática;

– o uso das TIC aumenta o desempenho dos estudantes em Inglês (como ĺıngua
materna), Ciências, Desenho e Tecnologia entre as idades dos 7 e 16 anos,
especialmente nas escolas primárias;

– nos páıses da OCDE (Organização para a Cooperação e Desenvolvimento
Económico), existe uma associação positiva entre a quantidade de tempo de
utilização das TIC e o desempenho dos estudantes nos testes de Matemática
do PISA (Program for International Student Assessment);

– escolas com bons recursos de TIC alcançam melhores resultados que as es-
colas mal equipadas;

– a introdução de quadros interactivos nas salas de aula aumentou o desempe-
nho dos estudantes nos exames nacionais de Inglês, Matemática e Ciências
mais do que o desempenho dos alunos de escolas sem quadros interactivos.

Além disto, foram também observados benef́ıcios nos estudantes em relação à
motivação e competências, aprendizagem independente e trabalho de equipa.

Ao ńıvel dos professores e ensino, o estudo mostrou um conjunto considerável
de provas do impacto das TIC, nomeadamente:

– um maior entusiasmo ao ensinar os alunos;
– aumento da eficiência e colaboração dos professores;
– os quadros interactivos fazem a diferença em aspectos de interacção na sala

de aulas entre alunos e professores;
– aumento das competências dos professores no uso das TIC.

O objectivo do nosso trabalho foi implementar um quadro interactivo de
baixo custo baseado na proposta apresentada por Johnny Lee e desenvolver no-
vas maneiras de interacção humana com o computador à distância. Por isso,

342 INForum 2010 Vasco M. A. Santos, Frutuoso G. M. Silva

desenvolveram-se aplicações de suporte às aulas que permitem ao professor/a-
presentador utilizar o quadro interactivo como um quadro normal.

Este artigo está estruturado da seguinte forma: na secção 2 é feita uma breve
descrição das tecnologias dispońıveis no mercado em relação aos quadros inte-
ractivos; na secção 3 é descrita a nova forma de interacção à distância entre o
utilizador e o computador, bem com as aplicações desenvolvidas para tornar as
projecções interactivas; na secção 4 serão apresentadas as conclusões e trabalho
futuro.

2 Quadros Interactivos

Um quadro interactivo é um dispositivo ligado a um computador e a um v́ıdeo
projector [3]. O projector projecta a imagem do ecrã do computador na área
onde o utilizador pode interagir usando o dedo, uma caneta ou outro dispositivo.
Existem 3 tipos de quadros interactivos:

– Os quadros interactivos de projecção frontal têm o v́ıdeo projector em frente
ao quadro. Uma desvantagem destes quadros é a sombra que o utilizador
pode provocar durante a apresentação devido ao facto de se colocar entre
o projector e o quadro. Entretanto, colocar o projector numa posição alta
pode minimizar esta desvantagem. Outra desvantagem é o facto do utili-
zador poder ficar encadeado com a luz do projector enquanto fala para a
assistência;

– Os quadros interactivos de projecção traseira têm o v́ıdeo projector locali-
zado atrás do quadro de modo a remover sombras. Deste modo, o utilizador
não está sujeito a ser encadeado pela luz do projector enquanto fala para a
assistência. No entanto, este tipo de quadros interactivos são muito mais ca-
ros e ocupam mais espaço, visto que não podem ser montados numa parede.
Entretanto, é posśıvel embutir estes quadros numa parede de modo a não
ocupar tanto espaço;

– O painéis planos [4] são quadros interactivos em que a área de interacção é
um monitor LCD ou plasma.

Recentemente tem havido um grande interesse na educação para integrar
os quadros interactivos nos métodos de ensino. Isto levou a desenvolvimentos
positivos em relação à sua utilização, nomeadamente porque [5]:

– Facilitam a colaboração com colegas e parceiros;
– Recorre-se a desenhos para que a turma possa visualizar em conjunto, pois

a informação visual é partilhada e entendida mais facilmente;
– Aumentam a motivação dos alunos, pois estes gostam de interagir fisicamente

com o quadro, manipulando texto e imagens, fornecendo mais oportunidades
para interacção e discussão;

São ainda notadas vantagens psicológicas como o aumento do planeamento e
preparação, na marcação e avaliação, em guardar e editar lições, no estilo de
ensino, na sensibilização de estilos de ensino, no planear para o desenvolvimento

Projecções Interactivas na Sala de Aulas INForum 2010 – 343

cognitivo, na clara representação visual de conceitos e nas actividades que en-
corajam uma abordagem de pensamento activa. Podem ser encontrados vários
aspectos positivos associados a:

– Compromisso: há um aumento na motivação, credibilidade, validade e con-
centração da turma;

– Aspectos socioculturais: contribuem para uma melhor interacção social e um
melhor trabalho de equipa;

– Tecnologia: o recurso a tecnologias como drag-and-drop, esconder-e-revelar,
faça-a-correspondência e a utilização de movimento são boas maneiras de
interacção entre os alunos e o quadro interactivo.

No entanto, devido às grandes limitações dos quadros interactivos, como o
alto preço (ver Tabela 1) e a mobilidade, existe uma necessidade urgente de novas
tecnologias para encontrar soluções que tenham um ńıvel de desempenho similar,
mas com um custo muito mais baixo. Uma solução existente é o sistema eBeam
[6]. O dispositivo receptor de sistema eBeam é um dispositivo compacto, portátil
e fácil de utilizar que torna qualquer superf́ıcie lisa num quadro interactivo. O
sistema interactivo eBeam pesa menos de 200g, é instalado em minutos pois é
amov́ıvel. Este sistema elimina a desvantagem da portabilidade, mas não o alto
preço, pois custa 665€ sem o projector. Uma solução idêntica ao sistema eBeam
que apareceu recentemente no mercado é o sistema mimio Interactive [7] que
custa cerca de 595€ sem o projector. Apesar destes dispositivos já terem um
preço em conta, comparado com um quadro interactivo tradicional ainda têm
um preço alto quando se pensa em equipar várias salas de aula (i.e., nº salas ×
600€).

Modelo Reconhecimento
de escrita

Projecção Projector
inclúıdo

Preço

eBeam Integral 65 Não Frontal Não 790€
InterWrite 1071 Sim Frontal Não 1142€
Activboard 95 studio Sim Frontal Não 1890€
SMARTBoard ESP680-N Sim Frontal Sim 3390€
SMARTBoard 2000i Sim Traseira Sim 7090€

Tabela 1. Caracteŕısticas de cinco quadros interactivos (retirado de [5]).

Para fazer face às limitações dos quadros interactivos referidas anteriormente
(i.e., preço alto e mobilidade) surgiu recentemente uma solução baseada numa
caneta com um emissor de infravermelhos (IV) e uma câmara de IV. Neste caso
a caneta de IV que feita com os componentes mais básicos fica com um custo
a rondar os 5€, e para a câmara podemos usar o comando Wiimote, que custa
cerca de 40€. Este sistema de nome Wiimote Whiteboard foi apresentado por
Johnny Lee e teve uma ampla divulgação pela Internet [8].

344 INForum 2010 Vasco M. A. Santos, Frutuoso G. M. Silva

O Wiimote é o comando da consola Nintendo Wii e pode ser ligado a qual-
quer computador através de Bluetooth, tal como um telemóvel. Entre várias
caracteŕısticas, o comando tem uma câmara de IV incorporada, capaz de detec-
tar até quatro pontos emissores de IV, com uma resolução de 1024x768 pixeis,
uma taxa de actualização de 100Hz e um ângulo de visão de 45º na horizontal
[5,8,9]. Entretanto, a câmara sofre do mesmo problema dos projectores, isto é,
se o apresentador estiver entre a câmara e o emissor de IV, poderá detectar a
posição do emissor incorrectamente, ou mesmo não a detectar. Se a projecção for
frontal, e o projector for colocado numa posição alta, colocar o Wiimote junto do
projector é uma boa solução (ver Figura 1). O sistema desenvolvido por Johnny

Figura 1. Posicionamento do Wiimote (retirado de [10]).

Lee permite ao utilizador calibrar a área de projecção sempre que o entender,
usando quatro pontos de referência. Este fornece ainda alguma informação sobre
o comando tal como, o estado da bateria, o total de fontes IV detectadas e a uti-
lização de rastreamento. Também permite ao utilizador configurar a suavidade
da detecção do emissor de IV, bem como activar ou desactivar o controlo do
cursor. No entanto, este sistema tem uma grande limitação: só permite emular
o evento de clique do botão esquerdo do rato. Assim um dos objectivos do nosso
trabalho foi também tentar eliminar esta limitação. Uma aplicação que interage
com o Wiimote Whiteboard é o Smoothboard [11]. O Smoothboard permite ao
utilizador usar o quadro tal como se fosse um quadro interactivo, tirando no-
tas directamente sobre o que é apresentado. No entanto, se o utilizador quiser

Projecções Interactivas na Sala de Aulas INForum 2010 – 345

guardar as notas, o Smoothboard apenas permite ao utilizador guardá-las numa
imagem JPEG através da captura de uma imagem do ecrã do computador.

3 O nosso sistema de projecções interactivas

Com base na tecnologia apresentada por Johnny Lee, desenvolvemos o nosso
próprio sistema de modo a termos um quadro interactivo de baixo custo. Deste
sistema fazem parte uma aplicação de suporte ao quadro interactivo, que permite
ao utilizador fazer apontamentos sobre o que é apresentado e uma aplicação
que permite editar, à posteriori, as notas capturadas durante a apresentação.
Além disto, foi ainda desenvolvida uma aplicação visual de suporte às aulas de
Introdução à Programação. Estas aplicações foram desenvolvidas em Windows
Presentation Foundation [14].

Foi também desenvolvida uma aplicação em C# que permite ao utilizador
controlar o computador à distância sem necessidade de usar o teclado e o rato.
Isto foi alcançado usando um segundo Wiimote, no qual foram mapeadas algu-
mas das funções chave do rato e teclado nos botões do Wiimote, como se ilustra
na Figura 2. Sendo assim, o utilizador pode controlar a apresentação à distância,
logo torna o quadro mais interactivo.

Figura 2. Teclas no Wiimote.

346 INForum 2010 Vasco M. A. Santos, Frutuoso G. M. Silva

3.1 Aplicação iiNote

Para suportar o uso do quadro interactivo, decidiu-se implementar uma aplicação
que permite ao utilizador anotar sobre o que está a ser apresentado (ver figura
3). Esta aplicação usa tinta digital para fazer as notas, estando dispońıvel uma
variedade de cores e tamanhos. É também disponibilizado um teclado virtual e
uma borracha para apagar as anotações. Desta forma é posśıvel ao apresentador
efectuar anotações sobre a apresentação, as quais poderão ser depois disponibili-
zadas aos estudantes. Para isso, o apresentador tem ao seu dispor a possibilidade
de guardar as anotações em memória e depois salvaguardá-las em ficheiro.

Figura 3. Aplicação iiNote.

Em vez de guardar cada nota num ficheiro de imagem através da captura do
ecrã como faz o Smoothboard, o utilizador pode ir capturando as várias notas,
sendo armazenadas em memória, durante a apresentação. No final, o utilizador
pode exportar as notas em memória directamente para um documento XPS
(XML Paper Specification) [12], ou guardá-las num ficheiro para futura edição.
Deste modo, o utilizador pode partilhar rapidamente as notas tiradas durante
uma apresentação.

A aplicação permite ainda suavizar o desenho e fazer o reconhecimento de
formas geométricas desenhadas pelo utilizador, redesenhando-as de modo a fica-
rem mais perfeitas. Este reconhecedor de formas geométricas foi implementado
usado a API InkAnalysis [13]. Note-se que as anotações são efectuadas à mão
pelo utilizador como quem escreve ou desenha tal como num quadro a giz. As-
sim para notas do tipo texto, quando são reconhecidas pelo sistema, o texto é
inserido em separado no documento XPS, como mostra a Figura 4.

Projecções Interactivas na Sala de Aulas INForum 2010 – 347

Figura 4. Anotação exportada para um documento XPS.

3.2 Aplicação eeNote

Como complemento à aplicação iiNote, foi criada outra aplicação, designada de
eeNote, que permite editar as notas capturadas anteriormente pelo utilizador.
Assim é posśıvel completar as notas tiradas durante uma apresentação, corri-
gindo ou apagando-as e adicionando mais notas. Esta aplicação (ver Figura 5),
tal como a aplicação iiNote, permite usar tinta digital, a borracha para apagar
as notas, reconhecer formas geométricas e texto, suavizar o desenho e exportar
as notas para um documento XPS e/ou guardá-las em ficheiro.

Esta é uma aplicação que permite editar à posterior as anotações tiradas
numa apresentação e corrigi-las e/ou melhorá-las de modo a que possam ser
disponibilizadas sem erros. Desta forma, o apresentador não tem de estar de-
masiadamente preocupado com a perfeição das anotações que efectua durante a
apresentação, pois poderá corrigir ou melhorar as mesmas posteriormente e com
mais tempo.

Esta ferramenta pode ser bastante útil quando se pretende disponibilizar sem
erros a apresentação juntamente com as anotações e o mais completa posśıvel.

348 INForum 2010 Vasco M. A. Santos, Frutuoso G. M. Silva

Figura 5. Exemplo da aplicação eeNote.

3.3 Aplicação iiProgramming

A outra aplicação desenvolvida serve de suporte às aulas de Introdução à Pro-
gramação. Esta é uma aplicação visual que permite ao professor criar, através de
um fluxograma o algoritmo em pseudo-código e o correspondente código fonte
em linguagem C (ver Figura 6). Para isso, o professor escolhe a instrução preten-
dida de uma lista de instruções pré-definidas e, através de drag-and-drop coloca
a instrução na posição desejada do algoritmo.

Como o objectivo da aplicação é o apoio ao ensino, esta apenas suporta
instruções genéricas e simples tais como: ler do teclado; escrever no ecrã; declarar
variáveis; usar ciclos While, Do-While e For; efectuar testes If-Then, IF-Then-
Else e Switch-Case; e suporta ainda funções definidas pelo utilizador. A aplicação
permite apenas o uso de quatro tipos de dados: int, float, char e char[].

A aplicação para além de gerar o pseudo-código e código fonte associado ao
fluxograma criado permite ainda guardar o fluxograma em ficheiro para poder ser
distribúıdo aos alunos (ver Figura 7). No entanto, a aplicação não faz verificação
de instruções, ou seja, não verifica se uma instrução inserida pelo utilizador
está bem definida como, por exemplo se é feita uma operação entre variáveis de
tipos diferentes. Actualmente a aplicação apenas cria o código correspondente às
instruções definidas pelo utilizador não fazendo qualquer verificação de sintaxe.

Projecções Interactivas na Sala de Aulas INForum 2010 – 349

Figura 6. Exemplo da aplicação iiProgramming.

Figura 7. Fluxograma simplificado.

4 Conclusões e trabalho futuro

Durante algumas demonstrações do sistema desenvolvido, efectuadas a várias
turmas de escolas secundárias, notou-se que mesmo aquelas que já têm acesso
a quadros interactivos, e por isso já estão mais familiarizados com este tipo
de tecnologias, tanto alunos como professores, mostraram-se entusiasmados com
o funcionamento das aplicações desenvolvidas. No entanto, no futuro é preciso

350 INForum 2010 Vasco M. A. Santos, Frutuoso G. M. Silva

ainda efectuar alguns testes de usabilidade do sistema de forma a validá-lo com
um maior número de utilizadores.

Podemos concluir ainda que, pelo facto da aplicação iiNote guardar as notas
em memória de um modo simples e rápido, leva a que o tempo que o apresentador
perde a armazenar essas notas seja bastante pequeno, maximizando por isso o
tempo de duração da apresentação.

Além disso, a possibilidade de editar as notas posteriormente leva a que o
professor/apresentador não esteja preocupado se as notas estão perfeitas, per-
mitindo ao professor/apresentador corrigir as notas depois sem limitações de
tempo. No entanto, pretende-se que a aplicação eeNote venha também a per-
mitir a introdução de texto através do teclado, de modo a poder complementar
ainda mais as notas.

Em relação à aplicação iiProgramming, esta ainda apresenta algumas li-
mitações, pois está bastante dependente dos dados introduzidos pelo utilizador
de modo a produzir código sem erros. No entanto, pretende-se no futuro im-
plementar um analisador de instruções de modo a assistir o utilizador a gerar
código correcto.

O uso de um segundo Wiimote, em conjunto com o Wiimote Whiteboard
para permitir o controlo remoto do computador, cancela quase completamente
a dependência que o apresentador tem do rato e do teclado. Isto permite ao
apresentador estar perto do quadro onde, além de o poder usar sem limitações,
pode também controlar à distância o que quer ver projectado no quadro (e.g.,
PowerPoint, imagens, v́ıdeos, etc.). No entanto, devido ao número limitado de
botões do Wiimote, não foi posśıvel implementar algumas funcionalidades tais
como, o scroll do rato ou as teclas Backspace, Delete, Page Up e Page Down.
Por isso, no futuro esperamos poder desenvolver o nosso próprio dispositivo
para controlar o computador à distância e, então, eliminar as limitações atrás
referidas.

Referências

1. Council of the European Union: Official Journal of the European Communities C
142/1. Brussels, 2002.

2. Balanskat, A., Blamire, R., Kefala, S.: The ICT Impact Report: A review of studies
of ICT impact on schools in Europe. European Schoolnet, 2006.

3. Wikipedia: Interactive whiteboard. Dispońıvel em http://en.wikipedia.org/

wiki/Interactive_whiteboard, consultado em Março de 2010.
4. Wikipedia: Smart Board. Dispońıvel em http://en.wikipedia.org/wiki/Smart_

Board, consultado em Março de 2010.
5. Silva, M., Reis, L., Sousa, A., Faria, B., Costa, A.: iiBOARD, Development of

a Low-Cost Interactive Whiteboard using the Wiimote Controller. Internatio-
nal Conference on Computer Graphics Theory and Applications, Lisboa, 337–344
(2009).

6. Luidia Inc.: Interactive Whiteboard - Enhance Classroom Com-
munications. Dispońıvel em http://www.luidia.com/products/

ebeam-edge-for-education-page.html, consultado em Abril de 2010.
7. Laxmidas, D.: Aulas 2.0. Exame Informática nº 177, Março de 2010.

Projecções Interactivas na Sala de Aulas INForum 2010 – 351

8. Lee, J.: Wii Projects. Dispońıvel em http://johnnylee.net/projects/wii/, con-
sultado em Março de 2010.

9. Lino, F., Dias, P., Oliveira, A., Santos, B.: Comparação de Dispositivos de Inte-
racção em Ambientes de Realidade Virtual: Desenvolvimento de um Setup Ex-
perimental e Estudos com Utilizadores. 17º Encontro Português de Computação
Gráfica, Covilhã, 175–183 (2009).

10. SmoothboardWiki.: Mount and position theWiimote. Dispońıvel em http:

//www.boonjin.com/smoothboard/index.php?title=Mount_and_position_the_

Wiimote, consultado em Março de 2010.
11. Smoothboard.net.: Smoothboard - The Wiimote Whiteboard. Dispońıvel em http:

//www.smoothboard.net/, consultado em Março de 2010.
12. Microsoft.com.: Explore the features: XPS documents. Dispońıvel em http:

//www.microsoft.com/windows/windows-vista/features/xps.aspx, consultado
em Março de 2010.

13. Egger, M.: Analyze This: Find New Meaning In Your Ink With Tablet PC APIs
In Windows Vista. MSDN Magazine, Março de 2006.

14. Wikipedia. Windows Presentation Foundation. Dispońıvel em http://en.

wikipedia.org/wiki/Windows_Presentation_Foundation, consultado em Setem-
bro de 2009.

352 INForum 2010 Vasco M. A. Santos, Frutuoso G. M. Silva

WAACT - Widget Augmentative and Alternative

Communication Toolkit

Gonçalo Fontes1 , Salvador Abreu2,

1 LabSI{2} – ESTIG, Instituto Politecnico de Beja, Portugal
goncalo.fontes@ipbeja.pt

2 Universidade de Évora e CENTRIA FCT/UNL, Portugal
spa@di.uevora.pt

Sumário. Neste artigo descreve-se uma proposta de implementação de uma
plataforma de desenvolvimento de sistemas de Comunicação Aumentativa e
Alternativa para programadores, com o objectivo de melhorar a produtividade e
diminuir os tempos dispendidos na implementação deste tipo de soluções. Esta
proposta assenta numa estrutura composta por widgets configuráveis por
código, integráveis em novas aplicações, numa filosofia de reaproveitamento de
objectos e funcionalidades. Esta plataforma pretende ainda dar flexibilidade aos
programadores, através da possibilidade de introdução de novas
funcionalidades e widgets. A implementação em tecnologias open source
independentes da plataforma, permitirá utilizar os objectos deste toolkit em
vários sistemas operativos.
Abstract. In this article we describe an implementation proposal for an
Augmentative and Alternative Communication Framework for developers, with
the objective of improves the productivity and reduces the implementation
times for these types of solutions. This proposal is based on a customized
widgets structure that can be integrated in new applications, with the objective
of reuse common features of these applications. This framework intends to
provide flexibility to programmers giving them the possibility of introduce new
functionalities and widgets. The implementation based on open-source
technologies, platform independent, allows the use of this toolkit in several
different operating systems.

Palavras-chave: Framework, ToolKit, Comunicação Aumentativa e
Alternativa, Pessoas com necessidades especiais, Tecnologias de Apoio.

1 Introdução

A comunicação é uma prática e uma necessidade fundamental para todos os seres
humanos. No entanto, por diversos motivos, muitos de nós sofrem de condições
físicas que tornam a comunicação tradicional difícil ou até mesmo impossível.

Certas perturbações sensoriais, cognitivas ou motoras podem comprometer total ou
parcialmente as capacidades comunicativas humanas. As estimativas apontam para
que cerca de 10% da população mundial seja portadora de um qualquer tipo de

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 353–364

deficiência, sendo que nesse grupo, uma percentagem bastante significativa é afectada
por deficiências ao nível da comunicação [1].

Nestas circunstâncias pode-se recorrer à Comunicação Aumentativa e Alternativa
(CAA).

Segundo a American Speech-Language-Hearing Association (ASHA), esta área de
prática clínica tenta compensar de forma temporária ou permanente incapacidades de
comunicação por parte de pessoas com dificuldades ao nível da fala ou escrita [2].
Ainda segundo a ASHA um sistema de CAA é, “um grupo integrado de componentes,
incluindo símbolos, ajudas, estratégias e técnicas usadas por indivíduos para
melhorar a comunicação” [1].

Os sistemas de informação e as tecnologias actuais podem ser um importante
auxílio para os sistemas de CAA, tendo sido desenvolvidos nos últimos anos esforços
nesse sentido com o desenvolvimento e a implementação de diversas soluções. No
entanto, grande parte das soluções até agora desenvolvidas, não tem em consideração
qualquer integração com outros sistemas, não sendo assim aproveitado o trabalho já
desenvolvido e o conhecimento já adquirido de forma a fazer mais e melhor.

No desenvolvimento de soluções deste tipo, é importante a incorporação de todo o
discurso existente, vocalizações, gestos e sempre que necessário o recurso a
elementos externos de apoio à comunicação (e.g. tabela com letras e frases). Neste
sentido têm vindo a ser desenvolvidos diversos sistemas tecnológicos que auxiliam a
composição e transmissão de mensagens escritas ou faladas.

O Laboratório de Sistemas de Informação e Interactividade (LabSI2), em conjunto
com o Centro de Paralisia Cerebral de Beja (CPCB) e o Instituto de Engenharia de
Sistemas e Computadores Investigação e Desenvolvimento em Lisboa (INESC-ID),
têm vindo a desenvolver algumas ferramentas de apoio à CAA, entre as quais se
destaca o “Eugénio – O Génio das Palavras” [3].

Este sistema é uma ferramenta de apoio à escrita de textos em Português Europeu
que recorre a modelos estatísticos baseados em n-gramas[4] para sugerir um conjunto
de palavras prováveis na sequência do texto já escrito. O Eugénio funciona no
ambiente MS Windows e apoia a escrita de mensagens em qualquer aplicação deste
sistema operativo.

Para pessoas incapacitadas de utilizar um teclado de computador, o sistema dispõe
de um teclado de ecrã1. A selecção destes elementos pode ser efectuada através de
métodos de acesso directo que utilizam, por exemplo, um dispositivo de ponteiro (e.g.
rato, caneta, luva virtual, entre outros.), ou métodos de acesso indirecto que recorrem
apenas a um ou dois interruptores. Para o reforço da interacção com o utilizador foi
incorporado no sistema um agente de interface e um sintetizador de fala, podendo
estes componentes da interface do sistema ser adaptados às necessidades particulares
de cada pessoa.

No desenvolvimento de outros sistemas de apoio à CAA, como é o caso do
Caderno Escolar – Electrónico (CE-e)[5] tem-se verificado a necessidade de
reutilização de componentes de software já desenvolvidos para outros sistemas. Por

1 Componente que apresenta uma matriz contendo os vários caracteres disponíveis para a

composição de mensagens.

354 INForum 2010 Gonçalo Fontes, Salvador Abreu

exemplo, no CE-e, que pretende ser uma alternativa digital aos tradicionais cadernos
de papel para alunos com necessidades especiais, verificou-se a utilidade de
incorporação de algumas funcionalidades já desenvolvidas para o Eugénio, como a
predição de palavras ou o teclado de ecrã. Além disso, se estas ferramentas adoptarem
uma estrutura modular que facilite a substituição dos seus componentes, então poder-
se-ão experimentar e avaliar de forma mais eficaz novas abordagens a determinadas
técnicas de CAA, como é o caso da predição de palavras.

Contudo, a integração de componentes entre as duas aplicações anteriormente
descritas não é tarefa fácil, visto que tais sistemas não foram desenvolvidos de forma
modular e nem sequer na mesma tecnologia.

Neste contexto, este artigo propõe uma plataforma de desenvolvimento transversal
ao sistema operativo que permita a reutilização de componentes de software, numa
linguagem multiparadigma e de uso geral.

A nossa solução, que se encontra neste momento em desenvolvimento, é
implementada numa arquitectura modular que permite a reutilização de variados
widgets ou a criação de novos componentes, podendo estes ser usados isoladamente,
num novo projecto ou ainda integrados num projecto existente. Devido ainda ao
middleware utilizado e a um módulo de gestão de eventos criado, garantimos total
liberdade na compilação e execução dos projectos para os sistemas operativos mais
comuns do mercado.

Por fim, devido ao facto das tecnologias utilizadas serem abrangidas pelo
licenciamento LGPL, é-nos garantida total liberdade no desenvolvimento e
disponibilização dos componentes.

De forma a introduzir o trabalho até agora desenvolvido, na secção 2 apresentamos
uma revisão do estado da arte, sendo na secção 3 apresentado e descrito o sistema. Na
secção 4 será explicada a avaliação e o trabalho relacionado, e por fim, na secção 5,
concluímos e propomos direcções para trabalho futuro.

2 Estado da Arte

É comum, no que diz respeito às tecnologias de informação, que no desenvolvimento
de um software ou sistema, o público portador de um qualquer tipo de deficiência
cognitiva ou motora, acabe por não ser contemplado pelos requisitos das várias fases
do projecto. Duas das razões para esta situação prendem-se com a especificidade que
os sistemas devem ter neste tipo de casos e a variedade de situações entre cada
utilizador e o seu estado.

No entanto, o desenvolvimento de software de apoio à CAA é imprescindível para
as pessoas que conseguiram ganhar parcial ou total autonomia graças as tecnologias,
bem como para futuros utilizadores.

WAACT INForum 2010 – 355

2.1 Comunicação Aumentativa e Alternativa

Um dos principais objectivos desta área, é fornecer a ajuda necessárias as pessoas
incapazes de satisfazer as suas necessidades diárias de comunicação através de meios
convencionais.

Ao contrário do que normalmente é sugerido, a Comunicação Aumentativa e
Alternativa abrange todas as formas de comunicação, não sendo esta apenas um
exclusivo da forma oral, sendo assim usada para a expressão de pensamentos,
necessidades, vontades ou ideias. Todos usamos CAA, mesmo que
inconscientemente, quando fazemos expressões faciais ou gestos, usamos símbolos ou
imagens, ou ainda quando escrevemos. Todas estas utilizações de CAA permitem-nos
usufruir de uma prática fundamental, a comunicação.

As pessoas com graves dificuldades ao nível da fala ou expressão têm nestes
métodos de comunicação, uma forma de complementar o seu discurso existente, ou,
se este for inexistente, uma forma de o substituir. Para se exprimir, estas pessoas
dispõem de diversas ajudas aumentativas, como os quadros de comunicação por
imagens ou símbolos, ou ainda equipamentos electrónicos, no entanto, mesmo com
este tipo ajudas, é importante que os seus utilizadores nunca deixem de se exprimir de
uma forma natural, se o conseguirem, devendo estes métodos ou mecanismos ser
apenas uma melhoria na sua comunicação.

Contudo, se estas ajudas permitem uma melhoria significativa da comunicação dos
seus utilizadores, estas também apresentam alguns problemas, tais como o facto de a
sua utilização ser bastante lenta comparativamente com os métodos de expressão mais
utilizados, a fala ou escrita. Este é um dos principais problemas ligados ao
desenvolvimento de soluções de auxílio a comunicação, sendo que os dois valores
mais importantes expressados por pessoas que utilizam este tipo de sistemas são: (i)
Dizer exactamente o que querem dizer; (ii) Dizê-lo o mais depressa que consigam [6].

2.2 Software de apoio a CAA

A introdução dos sistemas de informação e das tecnologias actuais vieram melhorar
significativamente a eficácia dos sistemas de CAA.

Como já foi referido, ao logo dos últimos anos têm sido desenvolvidos muitos
esforços da construção de soluções tecnológicas com o intuito de auxiliar os
utilizadores com dificuldades comunicativas.

A grande maioria dos softwares de CAA desenvolvidos tem por base, de uma
forma ou de outra, um teclado de ecrã, tanto na sua forma tradicional funcionando nos
tradicionais computadores de secretária ou portáteis, como em interfaces físicas
adaptadas (dispositivos do tipo “handheld”), sendo os mesmos utilizados para a
obtenção de frases, podendo estas ser formadas por letras, palavras ou por sequências
de símbolos pictóricos. Um exemplo deste tipo de sistemas é o Eugénio (Fig. 1.) [3].
Esta ferramenta que dispõe de uma funcionalidade de predição recorre a modelos
estatísticos baseados em n-gramas[4] para sugerir um conjunto de palavras prováveis
na sequência do texto.

356 INForum 2010 Gonçalo Fontes, Salvador Abreu

A ideia por detrás das n-gramas ou modelo de Markov é prever a probabilidade da
letra seguinte num determinado texto. Para isso são examinadas amostras de textos
denominadas de textos de treino que, com base numa estimativa de parecenças, irão
identificar a letra com maior probabilidade possível de ser a seguinte.

Para além da predição de palavras, o Eugénio dispõe de um sistema de varrimento
da aplicação que permite aos utilizadores que tenham deficiências motoras, estando
por isso impossibilitados de usar os tradicionais mecanismos de I/O, como é o caso
dos dispositivos apontadores, usar métodos que recorrem a um ou dois interruptores,
para que o utilizador não tenha que movimentar os membros podendo apenas
seleccionar a opção desejada.

Como já foi também referido, um dos principais requisitos para os sistemas de
CAA é o facto de o utilizador poder ser rápido na escrita da mensagem que pretende
comunicar. Assim, para além dos mecanismos já descritos, o Eugénio dispõe ainda de
um mecanismo de extensão de abreviaturas que permite ao utilizador escrever
palavras ou frases digitando apenas a sua abreviatura. Esta funcionalidade recorre a
um dicionário de abreviaturas predefinido, podendo este ser configurado para um
incremento dos termos, permitindo uma melhor adaptação ao seu utilizador.

Fig. 1. Interface do Eugénio apresentando o teclado de ecrã e a predição de palavras e interface

do Talkactive apresentando o teclado de símbolos pictóricos.

Isolando todas estas funcionalidades, podem-se extrair componentes dos mais
diversos tipos, como a predição de palavras, o teclado de ecrã, o varrimento e a
expansão de abreviaturas. Todos estes componentes que trabalham em conjunto foram
implementados sobre uma estrutura hierárquica de classes. Todos eles seriam de uma
grande utilidade em sistemas similares.

Para além do Eugénio, existem algumas outras ferramentas de CAA que permitem
a expressão de palavras ou frases, quer de uma forma escrita, quer de uma forma
falada, por intermédio de sintetizadores de voz. Um desses casos é o Talkactive (Fig.
1.)[7] que recorre a modelos de High Frequency Vocabulary ou Core Vocabulary:
Este tipo de modelo define que um número relativamente pequeno de palavras pode

WAACT INForum 2010 – 357

constituir a grande maioria do que é dito em comunicações normais. Com algumas
centenas de palavras uma pessoa pode dizer cerca de 80% de tudo o que é necessário
em comunicações diárias [8].

Este é um sistema de utilização simples que recorre a símbolos pictóricos para
identificar palavras, que conjugadas entre si permitem formar as frases que o
utilizador pretende comunicar.

Assim, o utilizador apenas precisa de seleccionar as imagens representativas do
que este pretende transmitir a outro interveniente, tendo a vantagem de num único
click poder transmitir uma palavra, frase ou ideia.

Devido em grande parte a sua simplicidade, estes sistemas de símbolos ganharam
grande popularidade em vários países, sendo usados com grande sucesso por pessoas
portadoras de paralisia cerebral [9][10].

Contudo, o Talkactive também possui claras desvantagens, como o facto de,
devido a sua extensão, não ser possível disponibilizar num único ecrã todo o
vocabulário de utilização diária ou de não estar disponível em português.

No entanto, à semelhança do que se passa com o Eugénio esta aplicação também é
composta por diversos componentes distintos, tais como o teclado, o corpus de
símbolos pictóricos e um editor de texto, que poderiam por sua vez também ser de
grande utilidade em aplicações do mesmo género.

Por outro lado, estes dois sistemas acabam por se revelar bastante semelhantes ao
nível da sua estrutura gráfica, bem como, ao nível de algumas das suas
funcionalidades, sendo ambos baseados numa grelha de teclas permitindo a escrita de
palavras e frases.

Fig. 2. Interface principal do notetaking do CE-e, apresentando a inserção de texto e de
formulas matemáticas.

Outro software de apoio a pessoas com necessidades especiais, mas desta vez
essencialmente direccionado para estudantes, é o Caderno Escolar electrónico (CE-e)
[5]. Este sistema que pretende ser um substituto dos tradicionais cadernos escolares
em papel, disponibiliza aos seus utilizadores uma interface e variadas funcionalidades
de notetaking organizado, permitindo a escrita de texto, inserção de imagens e

358 INForum 2010 Gonçalo Fontes, Salvador Abreu

hiperligações, upload de ficheiros e aplicação de fórmulas matemáticas, entre outras
(Fig. 2.).

No entanto, ao contrário dos sistemas anteriores este não possui qualquer
ferramenta de apoio ou aceleração da escrita, como o preditor de palavras, o teclado
de ecrã com varrimento ou ainda a grelha de símbolos pictóricos, ferramentas estas,
de grande importância para aumento da produtividade deste tipo de utilizadores.

2.3 Sistemas com Paradigmas Semelhantes

A ideia da criação de uma plataforma de auxílio ao desenvolvimento de aplicações de
CAA não é propriamente nova, tendo sido nos anos 90 desenvolvidos esforços nesse
sentido por parte do Consórcio Comspec. Este consórcio que reuniu uma equipa
multidisciplinar constituída por educadores, engenheiros e programadores
provenientes de diversos países europeus [11] tinha por objectivo a criação de uma
plataforma que permitisse plena transversalidade entre quatro tipos de utilizadores
(programadores, integradores de sistema, facilitadores e utilizadores finais).

Contudo, devido a necessidade de garantir o cumprimento dos requisitos
necessários a todos estes utilizadores, acabaram por serem impostas grandes
limitações na interface bem como na configuração de componentes, o que levou ao
esquecimento do projecto, alguns anos mais tarde.

O projecto Ulysses tentou ser um pouco menos ambicioso que o Comspec tendo
sido definidos apenas três tipos de utilizadores principais (programadores,
integradores e utilizadores finais), no entanto o desenvolvimento do sistema acabou
por não conhecer grandes avanços, tendo acabado por ser abandonado [14].

3 Apresentação e Descrição do Sistema

Como foi dito na secção 2, a maior parte dos sistemas de apoio à CAA foram
desenvolvidos de forma monolítica, sendo a sua implementação, a sua alteração ou
integração noutros sistemas bastante difícil.

Este problema acaba por ter diversas origens, tais como o desenvolvimento de
aplicações proprietárias, a falta de estrutura para reaproveitamento de código, ou
ainda, a utilização em diferentes estruturas ou linguagens durante a sua
implementação. São estes os problemas que este projecto pretende resolver.

Para isso, encontra-se em fase de estudo e codificação uma plataforma de
desenvolvimento para programadores, denominada de Widget Augmentative and
Alternative Communication Toolkit (WAACT), que lhes permitirá criar projectos de
ferramentas de CAA, utilizando uma variedade de componentes gráficos predefinidos
e configuráveis comuns neste tipo de aplicações, permitindo assim aumentar a
produtividade no desenvolvimento, bem como experimentar e avaliar novas
abordagens a estas aplicações durante a investigação.

WAACT INForum 2010 – 359

3.1 Framework ou Toolkit

Analisando as suas características e estrutura podemos classificar esta ferramenta
como Toolkit ou como Framework.

Existem varias definições para ambas as estruturas entre as quais se destaca, para
os Frameworks, a de Ralph E. Johnson que diz que estes “são a reutilização da
totalidade ou de parte do desenho de um sistema que é representado por um conjunto
de classes abstractas e pela forma como as suas instâncias interagem”[13].

Ainda o mesmo autor diz que “um Framework é um esqueleto de uma aplicação
que pode ser configurada por um programador”.

Assim, quando se utiliza um Framework o corpo da aplicação está implementado,
permitindo a sua reutilização, devendo apenas ser particularizadas as chamadas às
funções, o que reduz significativamente as decisões de concepção, ao contrário do que
é feito em sistemas como os Toolkits ou livrarias partilhadas(dll’s), em que é
codificado o corpo das aplicações e apenas se faz a chamada ao código que se quer
reutilizar [14].

Não sendo as duas definições anteriormente descritas semelhantes, também não
são contraditórias, acabando até por se completar uma a outra. Enquanto a primeira
define a estrutura de um Framework a segunda define o seu objectivo.

O WAACT pode assim ser considerado um Toolkit com características de
Framework.

3.2 Análise e Decisões

Durante a análise deste projecto foram surgindo diversas questões, tais como, a
quem seria o sistema disponibilizado e quem o poderia desenvolver.

Assim, como o principal objectivo é a uniformização da estrutura das aplicações
em questão bem como a reutilização de componentes já desenvolvidos e validados,
verificou-se que a melhor forma de atingir esse objectivo seria através da participação
no desenvolvimento de todos aqueles que utilizarão o sistema. Para isso, foram
escolhidas ferramentas e linguagens de uso geral e abrangidos por licenciamento
aberto, permitindo a utilização e possível desenvolvimento de todos.

Contudo, o uso de sistemas Open Source não era de todo suficiente, tendo em
conta que a maior parte dos profissionais destas áreas acabam por trabalhar em
sistemas e softwares proprietários, tendo sido assim necessário a utilização de
tecnologias multi-plataforma, bem como a criação de uma estrutura modular que
permita um desenvolvimento contínuo e flexível.

O desenvolvimento do WAACT é feito em C++ e apoiado na User Interface
Framework, QT [15], o que permite resolver alguns dos problemas atrás referidos.

Por outro lado, a necessidade de garantir a gestão dos eventos enviados por
equipamentos de Input (podendo estes ser ratos, teclados, interruptores, entre outros.),
processando-os e, se necessário, enviando-os para algum equipamento de Output,
originou a criação de uma interface Event Manager que tem por missão tornar os
módulos independentes dos eventos, permitindo o isolamento de cada Widget,
podendo estes ser desenvolvidos com total independência uns dos outros (Fig. 3.).

360 INForum 2010 Gonçalo Fontes, Salvador Abreu

Fig. 3. Estrutura de implementação do WAACT

Sendo o QT também desenvolvido em C++, este middleware permite uma grande
liberdade e interoperabilidade entre sistemas operativos, podendo assim ser
desenvolvidas aplicações para as diversas plataformas existentes no mercado, com
recurso à versatilidade que o paradigma da programação orientada a objectos oferece.

Assim, as aplicações desenvolvidas não só podem ser implementadas com recurso
às bibliotecas standard do C++ como podem ser programadas com recurso as
bibliotecas específicas do QT.

O QT dispõe ainda de um mecanismo de SLOTs e SIGNALs que se podem definir
como uma alternativa às técnicas de callback. Estas são as funcionalidades centrais
deste sistema e o maior aspecto diferenciador de outros Frameworks. Esta
funcionalidade permite ligar funções a eventos, ou funções a outras funções, o que
permite despoletar acções em qualquer tipo de evento predefinido ou em qualquer
evento programado.

3.3 Utilização

Como já foi dito, foi necessária a utilização de um middleware que fosse multi-
plataforma, de forma a não restringir a utilização de software desenvolvido a um
determinado sistema, tendo sido o QT a plataforma escolhida.

Esta escolha permite alguma flexibilidade ao programador, pois como também já
foi referido, este poderá desenvolver utilizando varias tecnologias. Contudo,
pensamos ser importante proporcionar aos utilizadores do WAACT uma metodologia
de implementação mais direccionada e que não obrigue a utilização de todas as
tecnologias disponíveis na plataforma.

Assim, numa óptica de programação orientada a objectos, foram criadas, para além
dos widgets, funções que permitissem absorver as bibliotecas do QT, para que o
programador apenas programe em C++ com recurso ao WAACT, libertando o
utilizador de mais uma tecnologia.

Exemplo de código na programação do WAACT

W_KeyBoardKey *k = new W_KeyBoardKey();

WAACT INForum 2010 – 361

k->keySized("B", "b", 50, 50);

W_TextPad *t = new W_TextPad();

t->textPad();

EventManager *e = new EventManager();

e->clickedKeyToTextpad(k, t);

4 Avaliação e Trabalho Relacionado

Numa primeira fase do projecto, foi importante avaliar a real mais-valia que poderia
ser proporcionada por um toolkit deste tipo no desenvolvimento de software
específico.

Normalmente este tipo de avaliação é feita numa fase final de implementação, no
entanto, sentimos a necessidade de validar as escolhas e caminhos percorridos, tendo-
nos então decido a implementar algumas ferramentas já desenvolvidas noutras
tecnologias de forma a dai tirar algumas ilações.

Uma dessas ferramentas foi o CE-e, da qual implementamos um protótipo bastante
simples que apenas dispunha das principais funcionalidades de notetaking.

Para além, da portabilidade entre vários sistemas operativos, tendo este protótipo
sido compilado, executado e testado em Sistemas Microsoft e Linux (Fig. 4.); este
teste demonstrou-nos que estas aplicações poderiam ser implementadas com um
relativo baixo esforço de programação, desde que os widgets pretendidos estejam
disponíveis no WAACT. Verificamos assim, que com poucas linhas de código,
poderemos obter uma aplicação gráfica, mesmo que rudimentar, mas funcional.

Como já foi referido anteriormente, este projecto assentou no pressuposto da
reutilização de componentes existentes noutras aplicações, bem como no teste de
novas abordagens de integração dos mesmos, tendo sido introduzido no nosso
protótipo um teclado de ecrã bastante semelhante ao do Eugénio (Fig. 4.).

Fig. 4. Protótipo de uma aplicação desenvolvida pelo WAACT em ambiente Windows e Linux

Neste caso fizemos a integração de um teclado QWERTY (disposição adoptada

pelos países ocidentais), no entanto, poderão ser utilizados ou criados outros, sendo

362 INForum 2010 Gonçalo Fontes, Salvador Abreu

que, o WAACT está preparado para qualquer disposição de teclas, podendo
inclusivamente ser criado um teclado de raiz.

Baseado no protótipo anterior, a integração de um teclado virtual, que é um
componente comum e bastante utilizado, necessitou apenas do registo de mais duas
linhas, no código já implementado.

Assim, com base nestes dados, verificamos que desde que alguns dos componentes
necessários ao desenvolvimento de determinada aplicação estejam implementados no
WAACT, o aumento de produtividade e eficiência é visível no desenvolvimento de
soluções deste tipo.

Por outro lado, é possível garantir flexibilidade para a investigação, podendo ser
integrados ou trocados diversos componentes, ou ainda para o desenvolvimento,
podendo ser avaliadas novas perspectivas por parte do programador.

5 Conclusões e Trabalho Futuro

Neste artigo propusemos e descrevemos o WAACT e qual o seu objectivo, passando
ainda pelas necessidades existentes ao nível de softwares CAA bem como pela
história dos mesmos.

Como já foi referido este é um trabalho que se encontra em curso, estando ainda
muito do desenvolvimento por efectuar, no entanto, o actual estado permite-mos
verificar uma necessidade crescente na existência de uma plataforma com as
características apresentadas pelo WAACT.

Actualmente dispomos de variados widgets implementados, tais como, teclados de
ecrã e seus componentes, caixas rich text, botões gerais e específicos, entre outros.

Para além dos widgets propostos dispomos ainda de um módulo chamado de Event
Manager que gere os eventos de input, processando-os e despoletando um evento de
output, caso seja esse o objectivo, permitindo ainda o desenvolvimento de
componentes dependentes ou independentes dos já existentes.

Contudo, este é um trabalho que deve ser contínuo e atento às necessidades nas
áreas de CAA, devendo ainda ser implementados vários componentes que permitam
completar, pelo menos para já, o leque das necessidades actuais.

Pretendemos ainda, numa fase mais avançada, disponibilizar o WAACT em regime
de “Open Source”, bem como uma documentação adequada que permita uma fácil
utilização e expansão por parte dos programadores.

No entanto, nesta fase, podemos desde já validar o QT como uma escolha bem
sucedida no que diz respeito as questões de portabilidade, bem como, no que diz
respeito a qualidade gráfica fornecida no desenvolvimento de aplicações.

Agradecimentos

Nesta secção, gostaríamos de agradecer a colaboração do corpo docente do Instituto
Politécnico de Beja afecto ao Laboratório de Sistemas de Informação e
Interactividade (LabSI2), pelo contributo e ideias dadas para esta plataforma.

WAACT INForum 2010 – 363

Referencias

1. Universidade de Aveiro – Biblioteca digital, http://portal.ua.pt/bibliotecad
2. Scvcik, R., Romski. M.: Aac: More than three decades of growth and development.

The ASHA Leader (2000)
3. Garcia, L.: Concepção, Implementação e Teste de um Sistema de Apoio à

Comunicação Aumentativa e Alternativa para o Português Europeu. Master Thesis,
Instituto Superior Técnico (2003)

4. Brown, P. F., Pietra, V. : Class-Based n-gram Models of Natural Language.
Association for Computational Linguistics. Volume 18, Number 4 (1992)

5. Alexandre, L., Garcia, L., Bruno, L.: Development of an Electronic Scholar
Notebook for Students with Special Needs. DSAI2007 - Vila Real (2007)

6. AAC Institute, http://www.aacinstitute.org
7. Sensory Software International, Lda., http://www.sensorysoftware.com/

Talkative.html
8. Vanderheiden, G. C., Kelso, D. P.: Comparative Analysis of Fixed-Vocabulary

Communication Acceleration Techniques. AAC Augmentative and Alternative
Communication, 3, 192--206 (1987)

9. Besio, S., Ferlino L.: Blissymbolics Software Worldwide: from Prototypes towards
Future Optimized Products. In Proceedings of the 2nd ECART Conference (1993)

10. Schlosser, R. W., Koul, R., Raghavendra, P., Lloyd, L. L.: State-of-the-Art in
Blissymbolics Research: Implications for Practice. In Proceedings of the 6th
ISAAC Conference, 121--123 (1994)

11. Lundälv, M.: Comspec - The Advent of an Integrated Modular
Communication System. Proceedings of the Future Integrated Solutions
Conference, ACE Centre, Oxford (1994)

12. Kouroupetroglou, G., Pino, A.: A New Generation of Communication Aids
under the ULYSSES Component-Based Framework. The 5th International ACM
SIGCAPH Conference on Assistive Technologies (2002)

13. Johnson, R. E.: Components, Frameworks, Patterns. Communications of the
ACM (1997)

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J. M.: Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley (1994)

15. Nokia QT – Cross Platform Application and UI Framework,
http://qt.nokia.com

364 INForum 2010 Gonçalo Fontes, Salvador Abreu

Computação Móvel e Ub́ıqua

365

A system for coarse-grained location-based

synchronisation

André Coelho
1
, Hugo Ribeiro

1
, Mário Silva

1
, Rui José

2

1Mestrado em Informática, Universidade do Minho

2Departamento de Sistemas de Informação, Universidade do Minho
andresilvacoelho@sapo.pt, hugomsribeiro84@gmail.com, mario_jsilva@netcabo.pt, rui@dsi.uminho.pt

Abstract. This paper describes a system for supporting coarse-grained location-

based synchronisation. This type of synchronisation may occur when people

need only some awareness about the location of others within the specific

context of an on-going activity. We have identified a number of reference

scenarios for this type of synchronisation and we have implemented and

deployed a prototype to evaluate the type of support provided. The results of the

evaluation suggest a good acceptance of the overall concept, indicating that this

might be a valuable approach for many of the indicated scenarios, possibly

replacing or complementing existing synchronisation practices.

Keywords: location-based synchronisation, synchronised activity,

connectedness, reassurance, remote presence awareness, calendar system.

1 Introduction

Daily life is full of situations in which we have to synchronise our actions with

other people. This is an integral part of social interaction and may occur in the context

of very diverse social situations. For example, parents need to coordinate to get their

kids from school, work colleagues may want to go to lunch together and friends may

want to meet at their favourite place. Calendars and agendas are the primary tool for

synchronising with others as they enable us to plan and anticipate synchronisation.

However, they only represent the expectation that events will happen in a particular

way at a particular moment. More recently, mobile phones have also become an

important synchronisation tool, allowing people to make only basic arrangements,

like “We will meet tonight at one of those bars”, and then fine-tune the

synchronisation process through the situated exchange of phone calls or SMSs. In

fact, many phone calls start by some variant of the question “where are you”,

especially when there is some expectation that the other person might be somewhere

nearby. These forms of synchronisation may reflect pragmatic needs associated with

people finding each other, but they are also often just a reflection of a need for

reassurance and connectedness towards other people [1].

In this work, we explore how the increasing ubiquity of mobile technologies may

support new forms of synchronisation [2]. In particular, we explore the concept of

synchronised activity as some type of social activity in which multiple people are

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 367–378

involved and desire to maintain a coarse-grained location-based synchronisation

between each other. A synchronised activity associates calendar data with a certain

physical scope and a set of participants. It provides the context in which those

participants will be able to generate and receive relevant location-based notifications

that will allow them to perceive how the activity is unfolding in terms of the location

of the other participants. We hypothesise that this may extend the role of calendars

from planning tools to situated synchronisation tools, and thus from a focus on plans

to a focus on situated action as the essence of interpersonal synchronisation [3].

In this paper, we describe the study we have conducted to explore the viability of

this concept and gain a more in-depth understanding about its potential and

limitations. We start by reviewing systems that share similar objectives and concepts.

We then analyse some of the main reference scenarios that we have identified for this

type of synchronisation. These scenarios provided the basis for the identification of

the requirements of our proposed systems for enabling synchronised activities, which

we describe in Sec. 3. Based on these requirements, we propose an architecture to

support these synchronisation models and we have created a prototype

implementation of that system, both described in Sec. 4. In Sec. 5, we describe the

evaluation procedures in which six users have tried the system simulating realistic

social situations. The results highlight some important findings, but overall they seem

to confirm the validity and opportunity of the concept of synchronised activity.

2 Related Work

Our work has some similarities with location sharing systems, like Locaccino or

Google Latitude. Locaccino [4] is an application for desktop computers and mobile

devices that enables users to share their location with people from their Facebook

social network. Location sensing can be done through the use of Wi-Fi or GPS. This

system puts great emphasis on the user’s privacy. People can set themselves as

undetectable whenever desired and they can express the location disclosure

preferences using multiple variables, such as time spans and the locations where a

group of people is allowed to know the user’s location.

Google Latitude [5] is a location-aware application for both desktop and mobile

devices that enables users to share their location with their friends with Google

accounts. On the desktop, location sensing is achieved through IP geolocation while

on mobile devices it is achieved through cellular positioning and GPS. This system,

much like Locaccino, puts great emphasis on privacy, reason for which it offers

varying degrees of precision in location information, according to what users have

chosen to show to other users. Location information can be as precise as the exact

GPS coordinates location or as vague as just the city name. The system also overrides

old location data with new one so as to avoid the possibility of a user’s activity being

tracked, unless the user specifically tells the system to keep a history of his locations.

The system allows for users to contact users with whom they share their location via

Google Talk. This facilitates the possibility of users synchronising for some activity,

especially if they are near each other.

368 INForum 2010 André Coelho, Hugo Ribeiro, Mário Silva, Rui José

The location sharing features of these systems also provide the ground for multiple

forms of location-based synchronisation. However, in these systems, synchronisation

comes as a by-product of the system’s features and not as an integrated part of the

tool’s design. As a consequence, many of our targets scenarios cannot be properly

supported or can only be supported with strongly negative consequence in terms of

privacy. In our work, we do not intend to make users traceable all the time, our

system is only meant to alert other users of the system when someone has arrived at a

predetermined location in the context of some prearranged activity. The fact that

location data is only used for the purpose of synchronising people within the scope of

a specific activity, together with the potential anonymity of many of our scenarios,

means that privacy is much easier to handle in our system than it is within any general

purpose location sharing system.

From the perspective of supporting structured awareness about the activity of

others, our system also has similarities with several types of ambient display systems.

The Whereabouts Clock [6] is a system composed of an ambient display tied to a

computer/SMS gateway and a mobile application. The ambient display works as a

situated awareness device enabling onlookers to have a persistent, dynamic and at-a-

glance view of other peoples’ whereabouts. For this purpose the researchers used the

clock design metaphor, divided into three portions, each indicating a user’s presence

in a different location, “in the building”, “at home” and “out”. Location sensing is

achieved through the identification of GSM cells in the user’s current vicinity and the

different locations indicated by the display must be registered once in the mobile

application. In addition users can also broadcast their activity, choosing from a

specific list. This system enabled it’s users to feel imbued with a sense of remote

presence awareness and connectedness.

The key difference to our work is that the whereabouts clock is designed to stay in

the same location, the home, and to inform the people that are in that space. Our work

is very different in this respect, its purpose is to make such information available to a

user anytime and anywhere, in essence, empowering users by making the information

mobile. In spite of these differences, the study behind the Whereabouts Clock still

allowed us to extract valuable insight, namely the need for the users of the system to

understand the context of the information they receive about others and to be able

adapt the system to suit their needs.

HomeNote [7] is a system that consists of a software application installed on a

tablet PC which is used as a situated display in the houses of families chosen to test

the application. The display can receive SMS messages and users can write notes by

hand using the tablet PC’s stylus. HomeNote aims to exploit the potential and value of

person-to-place communication, as opposed to person-to-person communication, in a

family environment. With this they aimed to extend their comprehension on the types

of communication interactions that are carried on in a family environment and

develop support for remote and local situated messaging. The system was regularly

used for purposes of synchronisation in the context of an activity. Over the course of

the study, tests showed that there were seven types of messages that were common

amongst all the households where the system was tested. From those messages we

would like to call attention to the following ones: Call for Action, Awareness and

Reassurance, Social Touch and Reminders. These are the types of messages whose

A system for coarse-grained location-based synchronisation INForum 2010 – 369

content and social implications replicate the type of human interaction that our system

intends to support and that are most relevant in the scope of synchronisation between

people.

The authors conclude that by paying attention to the considerations of some

mundane household technologies it is possible to support existing practices and also

to create new forms of communication. This is an objective our works share with

HomeNote, but on a different perspective. While HomeNote aims to explore people-

to-place messaging, our system calls for a more persons-to-persons background

interaction. Analysis of this project leads us to believe that, when deploying our

application, there is a need to collect information about the extension, quality and

diversity of the types of interactions that our application enables.

3 Reference Scenarios

In this section, we present a set of reference scenarios that demonstrate possible

uses of our system and which have also been used as a basis for requirement

identification.

“Let us meet here in roughly one hour”. This is the scenario where a group of

people arrives somewhere and then separates for some time, while doing separate

activities. For example, a family may arrive together at a shopping centre. While one

of the family members goes to the supermarket, the others will be visiting some local

shops. They intend to meet at the end, although they do not know exactly who is

going to take longer. Another example may be a tourist bus dropping tourists at a

museum. The passengers are expected to be back to the bus after finishing their visit,

but the duration of the visit is variable. In this scenario the synchronisation activity is

one that is truly very common in everyday life. A group of people separates and

agrees to meet at roughly the same time in a designated spot knowing that the

subsequent activity is bound by the arrival of all the elements.

“Who is already there, who is arriving”. In this scenario a store or company

organizes a flash mob at some location. They intend to gather a certain number of

people in that location, for that effect they might offer some sort of reward for

showing up. People adhering to the activity are interested in knowing how many

people have shown up already. Another example for this reference scenario is a

dinner party. A group of people wanting to get together for dinner, possibly at a

restaurant are interested in knowing who has and who has not yet arrived. In such a

scenario, synchronisation happens for the effect of gathering multiple people around

an activity at a designated location. Synchronisation information here has the role of

informing people about activity attendance however, depending on the social context

of the activity, the content of such information could come in different forms, due to

privacy issues.

 “Your ride is arriving”. Two co-workers go to work together in the same car.

One of the co-workers offers to pick the other one up at his house, at a specific time.

370 INForum 2010 André Coelho, Hugo Ribeiro, Mário Silva, Rui José

The person being picked up finds it useful to know whether or not his colleague is

close to the pick-up point, so he is better able to time his arrival and avoid spending

unnecessary time waiting on the street. Synchronisation in this scenario happens for

the purpose of sharing a resource. Information needed for the purpose of

synchronisation is more vital to one of the interested parties involved than to the other

because one depends on the actions of the other in order to achieve his goal.

“Yes, he already took care of that”. This scenario is typical among family

members. The heads of the household always need to be in synch to coordinate their

efforts with numerous tasks, picking up the children from school, picking up the

laundry from the dry cleaner, grocery shopping, etc. As such there is a need to know

how things are and who has done what. Synchronisation in this scenario occurs

around an activity that benefits more than one person, but can be carried out by a

single individual. Synchronisation comes into play because of the fact that other

individuals interested in the outcome of the activity feel interest in getting feedback

relative to the activity’s status, in order to be reassured that things are going along as

planned. For instance if one of the parents picks up the children from school, the other

parent will feel a need to know when that happens and if everything goes along well.

4 System support for coarse-grained location systems

In this section, we describe the platform that we created to support coarse-grained

location-based synchronisation.

4.1 Requirements

From the analysis of the previous scenarios we were able to identify the

following list of requirements:

 Activity support is bounded by a temporal context in which it is to

happen.

 Activity support is tied to the existence of a geographic scope

associated with each activity.

 Activities must support the involvement of multiple people.

 The system must enable users to activate/deactivate synchronisation

functionalities regarding an activity at a time of their choosing.

 The system must act as mediator because people might not know each

other and they might not know of each others’ whereabouts, but they

must still be able to synchronise in the context of an activity.

Other requirements are tied to details such as configuration parameters and

privacy. Depending on the social context of the activity, users may desire to enforce

different privacy policies regarding identity disclosure.

A system for coarse-grained location-based synchronisation INForum 2010 – 371

4.2 Architecture

The architecture we envisioned for our system, represented in Fig. 1, is composed

of three distinct entities: a mobile application running on a smartphone with internet

connectivity and GPS, a server that handles all notifications to and from users of the

mobile application and a shared calendar system, where activities can be specified

using common mechanisms to create events in the calendar.

Figure 1. System architecture.

4.2.1 Mobile synchronisation application

The mobile synchronisation application is the primary point of entry into the

system allowing users to create and manage activities while on the move. The mobile

application supports several activity creation models. Users can create an activity

while: being physically present at the site; not being present at the site but knowing

the location’s coordinates beforehand; or, creating an activity without location

coordinates and adding them at a later time. Regarding activities the application

supports different privacy policies chosen by the user for each activity; these policies

will affect issues like identity disclosure. The mobile application is also responsible

for warning the server when a user enters the physical region that was associated to an

on-going activity. This will cause the server to generate notifications for all

participants relevant to the activity and these notifications will be delivered to them

via the application in their mobile devices, which effectively makes the application

the endpoint for server notifications.

4.2.2 Shared calendar system

The shared calendar system (e.g. Google Calendar) provides an alternative entry

point for calendar functionality and participant invitation, enabling people to create

activities using a familiar interface. The participants invited to the calendar event will

also become the participants in the synchronised activity The only difference for

common calendar events is the possibility to encode coordinates in the calendar event

and the need to include the system’s own e-mail address in the invited list to make the

system aware of this new activity.

372 INForum 2010 André Coelho, Hugo Ribeiro, Mário Silva, Rui José

4.2.3 Synchronisation server

The server is the part of the system responsible for receiving user notifications

related to activities and generating and forwarding the appropriate notifications to

other users in the context of said activities and according to the privacy policies

appropriate for each activity type. When invited to a calendar event, the

synchronisation server will interface with the shared calendar system and download

activity data, such as participants list, location, start time, end time and type of

activity. It will then manage the necessary notifications to the mobile synchronisation

applications.

4.2.4 System operation

When someone creates a new activity, from either the mobile application or the

shared calendar system, the indicated participants will be notified through their

mobile applications and they can either accept or deny participation in the activity.

This allows the synchronisation server to keep track of which guests have accepted or

not to participate in an activity, and it allows it to manage activities for the purpose of

issuing notifications to users.

When an activity’s start time has been reached, the server will start accepting

communication from mobile devices regarding that activity. As users enter the

geographic region defined for the activity, they will be notified of this occurrence on

their devices and the devices will notify the synchronisation server of user arrival.

When this happens the synchronisation server will issue notifications to the mobile

devices of participants informing them that a user has arrived. Depending on the

privacy policy the notification can feature the identity of the person that has arrived.

Different activity types cause different notifications to be generated and with

different frequency, for instance, if the activity is a flash mob, the server will notify

users of arrivals at a frequency of X arrivals, so as to not annoy users with too many

notifications.

4.3 Implementation

To support the evaluation of the key concepts proposed in this work, we have

implemented a simplified version of our coarse-grained location-based personal

synchronisation system. Based on the technical requirements we had for the mobile

application, we have implemented that part of the system using the Android platform.

This choice is tied to several factors, the main one being that the LBS (location-based

services) API seemed very strong and provides an easy way to obtain the desired

behaviour for our application in what regards user presence detection in a specified

geographical region. The fact that the Android OS allows us to run applications in the

background and its power management features, namely the fact that applications and

GPS still work while the phone is on standby were also critical to this choice. Other

factors that drew us to this platform were: the familiarity with Java and the general

tidy, regulated and balanced feel of the programming model as a whole, which we

feel results in applications being more suited to a mobile environment’s requirements.

A system for coarse-grained location-based synchronisation INForum 2010 – 373

This implementation works as a standalone application that is designed to be tested

by one individual carrying an Android device. All behaviour related to other users, in

the context of an activity, is simulated by the prototype via notifications pertaining to

alterations in the system caused by a user’s actions, like arriving at the rendezvous

point.

5 Evaluation

The overall objective of our evaluation was to gain some insight into the viability of

the concept of coarse-grained synchronisation and inferring its potential as a method

for replacing or complementing existing synchronisation practices. Within this

broader objective, we also intended to assess more specific characteristics of our

implementation, such as:

 Determine user’s ease of use and learning of the application’s interface;

 Determine whether the users were able to ascertain the general state of the

activities he is involved in, as well as the repercussions of his actions for the

system and for the other users of the system, from the perspective of what it

means to be in synch with other people in the context of an activity;

 Determine if the system’s feedback was appropriate and useful to users in

regards of achieving the objective of synchronising with other people.

5.1 Methodology

The methodology for this evaluation is composed of a field test followed by a

questionnaire. Field testing the application with volunteers was conducted using the

following scenario: “Two family members who are out together decide to split up

because one of them wants to embark on an activity that the other is not very keen on

undertaking, in this case, shopping at a fair. As a result, they schedule a time and a

place to meet up so they can both go their separate ways and use their time as they

see fit.”

The tests were carried in three distinct locations, University of Minho’s Campus,

Mire de Tibães and Maximinos. All of these locations constitute a viable setting for

the occurrence of a synchronisation activity as defined in the scope of our work.

We recruited 6 volunteers, chosen amongst friends whom we felt would be able

to deliver a straightforward opinion in their evaluation. They had varying degrees of

expertise in interfacing with touch based devices and more specifically the Android

OS, which undeniably reflects in their opinions on the usability portion of the test.

After having set the scenario and contextualizing the experiment for them, they

were presented with the Android device so they would be able to evaluate the system

and draw their own conclusions. Upon finishing the field test and assimilating the

experience, users were presented with a questionnaire. The part of the questionnaire

related to usability was conducted in the moulds of a publicly available online

heuristics questionnaire [8], this was fused together with an additional section of

questions pertaining to our other more fundamental evaluation objectives, questions

374 INForum 2010 André Coelho, Hugo Ribeiro, Mário Silva, Rui José

which we thought were relevant and capable of directing the users to providing us the

feedback we wanted. Some of the heuristics questions were adapted to better suit the

purposes of our evaluation. Each questionnaire was answered in approximately 10

minutes and all information resulting from them stored in digital format. The only

audiovisual record created was a demonstration of the working prototype.

5.2 Platform and test prototype

The platform used for testing is an HTC mobile device, model name Legend. The

device comes equipped with an integrated GPS module, a 3.2” screen with a

resolution of 320x480 (HVGA), running Android 2.1 (Éclair) with HTC Sense UI and

all the input is touch driven.

The test prototype application uses GPS and the Android LBS API to sense a

user’s presence in the area chosen for an activity. It provides a help menu so that the

user may clarify any doubts regarding what each of the controls do and regarding the

process of activating a presence alarm for an activity. All activity data is collected

using the calendar component that’s provided in the Android OS, which is called from

within our own application. This data is then stored in the devices SQLite database.

The following images present screenshots of the test prototype used in

evaluation. In Fig. 2a we can see a detailed view of an on-going activity and its status.

Fig. 2b shows the user receiving an update, Fig. 2c shows the content of the update,

indicating that Mario has arrived to the activity location.

Figure 2. (a) Detailed view of an activity. (b) Statusbar notification for an activity. (c)

Notifications pane with detailed description of the notification.

A system for coarse-grained location-based synchronisation INForum 2010 – 375

5.3 Analysis

Overall, the results obtained during the evaluation suggest that the system was

positively perceived by the volunteers. In this section, we describe some of the main

findings.

5.3.1 Usability

Regarding usability, opinions amongst testers were varied, some felt that the

interface was simple, intuitive and to the point, while others felt it needed some

refinement and glare. We have perceived that some of the problems that the users

have identified were clearly connected with their lack of experience with touch based

devices and especially the Android OS’s UI interaction model.

Another issued raised by users was directly connected with the use of the Android

notification model. We used this notification framework to warn users when someone

arrives at the location of the activity. Users expressed concerns over the possibility of

missing notifications, due to the default notification sound being too short and also,

because there was no vibration or flashing LED warnings.

Other issues that were pointed out by some users regard the approach used to fill

out the activity location field with GPS coordinates and the activation of a location

alarm. Those users felt there should be a better way to get and set the GPS coordinates

of an activity. Initially we had made that process automatic and transparent to the

user, which on the face of it might seem ideal, but it posed a serious limitation in the

way that it was done because it forced the user to be physically present at the point of

rendezvous when setting the alarm, which is not ideal. So we opted for another

approach which was to have the users press the GPS Coordinates button, which

copies them to the clipboard and then have users paste them in the activity location

field. This decoupled coordinate setting and alarm activation, so the users can have

more freedom when it comes to the process of setting the meeting point for an

activity. Still, we consider none of these approaches to be ideal and the application

needs further refinement in this aspect. At the beginning of an activity, when still at

the would-be meeting point, the alarm could be immediately activated. In doing so,

the system will notify other users of an arrival, which was not the intention.

5.3.2 Main learnings from the study

The overall results suggest that users see great potential in a synchronisation tool,

such as this one, as a method for replacing, or in some cases complementing, the

traditional forms of synchronisation (SMS/phone call). The data suggests users testing

the system find that the feedback given to them by the system is adequate and can

easily substitute the one obtained via the traditional methods referred, thus validating

our goal of facilitating interpersonal synchronisation in the context of an activity by

extending the calendar as a tool of coarse-grained location based synchronisation.

User feedback showed that users are able to accompany and realize what the state

of an activity is, as well as the repercussions of their actions, towards others and the

system. This tells us that users trust the system and the information it relays to them,

which is critical towards application viability in this context.

376 INForum 2010 André Coelho, Hugo Ribeiro, Mário Silva, Rui José

In spite of these promising results, users still expressed concerns that phones with

the necessary capabilities may not be adequately priced, while others consider that the

need for internet connectivity may result in them spending more money than they

would with an SMS or a phone call. Other users pointed out other potential issues like

internet connectivity and GPS connectivity driving down the device’s autonomy. This

issue is in part addressed by the Android platform itself with its advanced power

management features, but it will continue to be mitigated by hardware evolution and

also continued software evolution as Android is constantly evolving.

6 Conclusions

One of the main objectives was to explore the concept of coarse-grained

interpersonal synchronisation using a calendar as an underlying tool and extending the

calendar’s functionality to provide coarse-grained location based synchronization.

This is a goal we believe to have hit with a good measure of success, since the results

of our evaluation with users suggest that the application developed to explore this

concept seems to hold great potential and value for users.

In our study we were able to identify some issues in the ecosystem that could

impact adoption of such a system. Factors like the current market and economic status

quo in what regards mobile devices, namely smartphone pricing, adoption rate and

internet data plans are a source of concern for users and may affect system adoption.

Another key issue pertaining to the ecosystem is related to the architecture of the

system, specifically, the shared calendar component. There is a definite need for one,

but not obvious solution. Google Calendar is a viable option given that it’s widely

used and seems like a good approach to the issue, but its API is still not very matured.

Ideally, our system should easily integrate with multiple types of calendar system, as

we only make a very simple use of their features.

Privacy is also an important issue in such systems but in our research we were not

able to determine any critical issues and users presented no objections.

As with any other project there is always work to be done in the future. At this

point in time, we can point out an obvious issue to be addressed, which is to

implement the remainder of the system. Additionally, there is room for optimizing the

way polling to the synchronisation server is done. Factoring in information we already

possess about planned activities, like the starting time and the type of activity, one can

adjust the frequency with which the application polls the server. This would result in a

better usage of battery and data, and would also contribute to the user having more

up-to-date data at relevant times. Further into the future, one could extend the

application functionalities. For instance, one feature we can see as being useful in a

tool like this is to have the application interface with Google Maps to give the person

directions to the meeting point. Users pointed out other interesting features like the

production of graphics with user attendance and assiduity and possibly the ability to

share them with friends.

Overall, we feel our research project is of valuable use to someone wanting to

explore the underlying concept of synchronisation and that such an exploration could

be carried out using the foundations we have laid down with our work.

A system for coarse-grained location-based synchronisation INForum 2010 – 377

7 References

[1] K. Tollmar and J. Persson, "Understanding remote presence," Proceedings of

the second Nordic conference on Human-computer interaction - NordiCHI

'02, New York, New York, USA: ACM Press, 2002, p. 41.

[2] C. Schmandt and N. Marmasse, "User-centered location awareness,"

Computer, vol. 37, 2004, pp. 110-111.

[3] L.A. Suchman, Plans and Situated Actions: The Problem of Human-

Machine Communication (Learning in Doing: Social, Cognitive and

Computational Perspectives), Cambridge University Press, 1987.

[4] Carnegie Mellon University Mobile Commerce Lab, "Locaccino," 2009,

http://locaccino.org/.

[5] V. Gundotra, "Google Latitude," The Official Google Blog, 2009,

http://googleblog.blogspot.com/2009/02/see-where-your-friends-are-with-

google.html.

[6] A. Sellen, R. Eardley, S. Izadi, and R. Harper, "The whereabouts clock,"

CHI '06 extended abstracts on Human factors in computing systems - CHI

'06, New York, New York, USA: ACM Press, 2006, p. 1307.

[7] A. Sellen, R. Harper, R. Eardley, S. Izadi, T. Regan, A.S. Taylor, and K.R.

Wood, "HomeNote," Proceedings of the 2006 20th anniversary conference

on Computer supported cooperative work - CSCW '06, New York, New

York, USA: ACM Press, 2006, p. 383.

[8] S.U. School Of Cognitive And Computing Sciences, "Interactive Heuristic

Evaluation Toolkit," Human-Centred Computer Systems Masters, 2001,

http://www.id-book.com/catherb/.

378 INForum 2010 André Coelho, Hugo Ribeiro, Mário Silva, Rui José

Ad Hoc Routing Under Randomised
Propagation Models ⋆

João Matos and Hugo Miranda

University of Lisbon
Faculty of Sciences

LaSIGE

Abstract. The deployment of mobile ad hoc networks is difficult in a re-
search environment and therefore the performance of protocols for these
networks has been mostly evaluated on simulators. A simulator must
replicate realistic conditions and one of the most difficult aspects is the
radio signal propagation model. The literature shows that many perfor-
mance evaluations were conducted using propagation models that are not
realistic for the expected application scenarios. This paper shows that
the non-determinism present in some radio propagation models induce
randomness which may compromise the performance of many protocols.
To demonstrate the problem, this paper compares and discusses the per-
formance of some routing protocols under different propagation models.

1 Introduction

Mobile Ad Hoc Networks (MANETs) are wireless networks with no fixed infras-
tructure and therefore are composed exclusively by the devices of the partici-
pants. All management and communication operations are assured by the partic-
ipating devices. These networks are particularly relevant in scenarios where the
deployment in advance of an infra-structure is not possible or desirable. Nodes
communicate using their wireless network interfaces, which have a limited trans-
mission range unlikely to cover all the nodes in the network. Message delivery is
achieved by having nodes located between a source and a destination to retrans-
mit the messages. Routing protocols are responsible for discovering a sequence
of intermediate nodes (a route) that connects two endpoints.

Radio propagation considerably influences the performance of wireless com-
munication systems, including ad hoc routing. The transmission path between
two nodes can be a direct and unobstructed line-of-sight or a complex and
strongly obstructed one, due to the presence of all kind of obstacles. Experiment-
ing with wireless networks is usually done in simulated environments, because i)
it is common for the number of devices involved to be high, ii) devices are often
expensive and therefore it is wise to assure feasibility before deployment.

⋆ This work has been partially supported by FCT multiannual fund and by project
PATI (PTDC/EIA-EIA/103751/2008) through POSI and FEDER.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 379–390

There are many kinds of wireless networks, environments and radio technolo-
gies and all these aspects influence the effective signal propagation in the ether.
As a consequence many radio propagation models have been devised. Unfortu-
nately, some popular propagation models for network simulators do not account
with multi-path propagation effects caused mostly by surrounding obstacles. The
randomness caused by these unpredictable irregularities is frequently present in
numerous types of radio wave propagation, including those used in most popular
wireless network technologies, like IEEE 802.11 (WiFi).

Many ad hoc routing protocols ([1,2,3] to name a few) were tested under
propagation models like two-ray-ground [4] and free space [5]. These propaga-
tion models are not adequate for testing realistic ad hoc networks (for example
using WiFi technology in a region with obstacles). Therefore, the expected per-
formance of many routing protocols may not be observed when used in a real
deployment. This paper aims to highlight this problem through simulations by
comparing the performance of three routing protocols using two different radio
propagation models. Results confirm our expectations by showing a significant
performance degradation in a more realistic propagation model. The paper also
dissects these results and identifies the design characteristics of the protocols
that make them more vulnerable. The paper is organised as follows: in Sec. 2
the routing protocols in comparison are presented. Section 3 describes the most
relevant propagation models and Sec. 4 addresses the adaptation problems of
routing protocols to specific radio propagation models. The evaluation results
are discussed in Sec. 5 and in Sec. 6 the related work is presented.

2 Routing Protocols

Depending on their eagerness in populating routing tables, routing protocols
for MANETs can be arranged in two broad categories: reactive and proactive.
Reactive routing protocols are distinguished by having routes being discovered
on-demand, while proactive routing protocols aim to keep their routing tables
permanently up-to-date. For completeness, our study focused on protocols of
both categories. The following presentation is oriented to the aspects relevant
for our evaluation. The interested reader is referred to [1,2,3,6] for in-depth
descriptions of these protocols.

2.1 Reactive Routing Protocols

In reactive routing protocols routing tables are filled and updated during route
discovery operations, which are initiated only when a route to a certain destina-
tion is required and is absent on the routing table. The node requiring a route
for an unknown destination broadcasts a route request message, disseminated to
the entire network.The most simple and popular way to deliver a message to the
entire network is to flood it, that is, to have all the nodes retransmitting it when
it is received for the first time. This broadcast algorithm is called flooding and
is used by many reactive routing protocols for route discovery operations.

380 INForum 2010 João Matos, Hugo Miranda

When a node receives a route request message for the first time, it verifies if
its routing table contains a route to the required destination and if not, continues
the propagation of the route request. Otherwise, the node sends a point-to-point
route reply message addressed to the source of the route request. The route reply
message will follow the route created during the propagation of the route request.
That is, each node broadcasting the route request message must keep track of
the node from which it was received. The destination node also produces a route
reply when a route request message is received.

Node’s movement, network congestion and multi-path propagation effects
frequently invalidate routes. Route Error messages are notifications addressed
to the source of some data message and produced by intermediate nodes unable
to deliver the message to the next hop.

In our study, the performance of reactive routing protocols was evaluated
using two of the most representative routing protocols of this class, which are
detailed below.

AODV The route request message of the Ad hoc On-demand Distance Vec-
tor (AODV) routing protocol [3] includes, among others, fields for the sender’s
address, destination’s address and broadcast id. The pair <sender’s address,
broadcast id> of each route request message allow nodes to detect duplicates.
Other fields, like sender sequence number and destination sequence number, al-
lows nodes to determine the freshness of the route. The sequence number for
each destination is stored in the routing table, together with the number of hops
to the destination and the address of the next hop, that is, the node to whom
messages addressed to the destination should be relayed.

Routes are learnt in the opposite direction of message propagation. That is,
the reception of a route request or route reply message is used by nodes to learn
a route to the sender of the message. The next hop for this route will be the
node from which the message was received.

AODV purges from the routing table routes that have not been used for
a predefined time. In addition, it updates its routing table if: i) the sequence
number of the new route is strictly higher or; ii) the sequence number is equal
but the number of hops to the destination is lower. One aspect of AODV very
relevant for this paper is that every node replies only once to the same route
request. This means that if a node receives the same route request from several
neighbours, it replies only to the neighbour who first delivered the route request.

DSR The structure of the routing table in the Dynamic Source Routing (DSR)
protocol [2,6] is significantly more complex as it stores complete routes. In addi-
tion, nodes cache multiple routes to any destination. This allows a faster reaction
to routing changes given that there will be no additional overhead from a new
route request operation. DSR data packets carry the full list of nodes that should
be traversed to reach the destination.

During the propagation of a route request, each intermediate node appends
its address to the header of the route request message, thus providing the com-
plete sequence of intermediate nodes that lead to the destination.

Ad Hoc Routing Under Randomised Propagation Models INForum 2010 – 381

One important aspect of DSR for our work, is that whenever a route error
message is received by the source, it tries all the routes present in its cache, before
starting a new route discovery operation. When a new route request message is
disseminated, it carries information about the broken links found in the routes
cached by the source. The network interfaces of nodes running DSR are expected
to operate in promiscuous mode, receiving and interpreting every message sent
by any neighbour. Listened messages are used to update node’s routing table.
Examples of applications of promiscuous mode are the learning of new routes
listened from data packets and the removal of stalled routes learnt from snooping
route error messages.

2.2 Proactive Routing Protocols

In proactive routing protocols every node maintains in its routing table an up to
date list of all participants and routes to reach them. This is achieved by having
nodes to periodically broadcast their routing tables.

Each node in the network maintains, for each destination, a preferred neigh-
bour and each data packet contains a destination node identifier in its header.
When a node receives a data packet, it forwards the packet to the preferred
neighbour for its destination. The methods used to construct, maintain and up-
date routing tables differ between various routing protocols.

The proactive routing protocol Destination-Sequenced Distance Vector
(DSDV) [1] requires each mobile node to advertise its own routing table to
its 1-hop neighbours. Routing tables include all available destinations with the
respective routes and the number of hops. The entries in this list may change
dynamically over time, so the advertisement must be made often enough to avoid
unavailability problems. When significantly new update information is available,
nodes transmit it immediately.

In a very large population of nodes, adjustments are likely to be made a
short while after an exchange of complete routing tables. In order to reduce the
amount of information exchanged, two types of packets are defined. One carries
all the available information, and is called full dump and the other possesses
only the information changed ever since the last full dump, called incremental.

3 Propagation Models

Propagation models are used in simulators to predict the received signal strength
indicator of each packet received by a node. Propagation models that predict
the mean signal strength for an arbitrary distance between two nodes are called
large scale propagation models, because these distances may become very large.
This section covers this type of propagation models and presents three common
methods for received signal strength prediction.

The path loss, which represents signal attenuation as a positive quantity
measured in dB, is defined as the difference between the transmitted power
and the received power. Different propagation models may be distinguished by

382 INForum 2010 João Matos, Hugo Miranda

the method used to calculate the path loss between two nodes. Therefore, the
received signal strength is predicted by the subtraction between the effective
transmitted power and the path loss calculated.

The popular network simulator ns-2 1 in particular, creates a threshold vari-
able which defines the minimum possible value of the Received Signal Strength
Indicator (RSSI) with which a node is still able to receive a packet. Considering
the propagation model in use, it then calculates the RSSI with which a packet
was received by a node. If the value is smaller than the threshold, ns-2 considers
that the packet was not received by the node. The following sections present
three popular distinct propagation models available in ns-2.

3.1 Deterministic Models

The free space propagation model [5] is a deterministic propagation model that
defines the communication range as a perfect sphere around the transmitter. In
free space only one clear and unobstructed line-of-sight path between the trans-
mitter and receiver exists. The received signal strength indicator is calculated by
the Friis free space equation Pr(d) = PtGtGrλ2

(4π)2d2L , where d is the distance between
nodes, Pt is the transmitted power signal, Gt and Gr are the antenna gains of
the transmitter and the receiver respectively, L is the system loss and λ is the
wavelength in meters. The free space propagation model is considered accurate
to predict rssi for satellite communication systems and microwave line-of-sight
radio links [4].

In a mobile radio channel, a single direct path between the base station and
a mobile node is seldom the only physical means for propagation, and hence
free space is in most cases inaccurate when used alone [4]. Instead of having
a single line-of-sight path between two nodes, the two-ray ground reflection
model considers both the direct path and a ground reflection path, as shown
in Fig. 1. The total received electrical field (ETOT) is the result of the direct
line-of-sight component (ELOS) and the ground reflected component (Eg). This
model gives more accurate prediction at a long distance than the free space
model [4]. However, the two-ray ground reflection model is also deterministic
when predicting the received signal strength indicator. It is calculated using the
formula Pr(d) = PtGtGrht2hr2

d4L , where ht and hr are the heights of the trans-
mit and receive antennas respectively. Like in free space, the communication
range in the two-ray ground reflection model is an ideal circle, centred at the
transmitter. This model has been considered reasonably accurate for mobile ra-
dio systems that use tall towers and also for line-of-sight microcell channels in
urban environments [4].

3.2 Randomized Models

The models above do not consider the fact that the surrounding clutter may be
very different at two different locations having the same distance to the source
1 http://www.isi.edu/nsnam/ns/

Ad Hoc Routing Under Randomised Propagation Models INForum 2010 – 383

Fig. 1. Two-ray Ground Reflection
Model [4]

Fig. 2. Log-normal Shadowing: (P is
the probability of receiving a packet)

or even for the same location at different moments in time. Therefore their
use is inappropriate, in various scenarios because the received power is actually
affected by unpredictable multi-path propagation effects. The Log-normal shad-
owing model considers that the signal fades log-normally and randomly. That
is, the path loss increases log-normally with distance but a random component,
whose influence becomes more visible as the path loss increases, must also be
considered. In practice, the model results in having nodes located farther from
the transmitter possibly receiving packets while some nodes located closer might
not. This also means that the probability of a node receiving a message becomes
smaller as the distance increases, as illustrated in Fig. 2.

Like most propagation models, the shadowing propagation model determines
the received power at distance d removing the calculated path loss value from
the transmitted power value, as shown in Eq. 1. However, as shown in Eq. 2, the
path loss is divided in two parts. One part is the log-distance path loss model and
predicts log-normally the mean received power at distance d, denoted by PL(d)
(Eq. 3). This part uses a close-in distance d0 as a reference. The second part of
the model consists on the variation of the received power at a certain distance.
It is a zero-mean Gaussian distributed random variable (in dB) with standard
deviation σ (also in dB). Therefore, considering Eq. 2, the variable Xσ represents
the random part of the model and the variable PL(d), the deterministic part.

Pr(d)[dBm] = Pt[dBm]︸ ︷︷ ︸
Transmitted power

−PL(d)[dB]︸ ︷︷ ︸
Path loss

(1)

PL(d)[dB] = PL(d)︸ ︷︷ ︸
log-normal path loss

+ Xσ︸︷︷︸
Random path loss

(2)

PL(d) = PL(d0)− 10β log(
d

d0
) (3)

The log-normal distribution describes the random shadowing effects which
occur over a large number of measurement locations which have the same dis-
tance to the source, but have different levels of clutter on the propagation
path [4]. The close-in reference distance d0, the path exponent β and the stan-
dard deviation σ, statistically describe the model for an arbitrary location. It

384 INForum 2010 João Matos, Hugo Miranda

should be noted that, in contrast with two-ray ground and free space, log-normal
shadowing does not assume the communication range to be a perfect sphere.

4 Routing Protocols and Propagation Models

Energetic, communicational and computational resources of the devices in a
MANET are usually limited. Networking operations, namely transmissions are
expensive in terms of energy consumption [7] and routing protocols aim to reduce
them to a minimum. Metrics used by routing protocols usually combine cost
and congestion, evaluated respectively by the number of hops and delay. The
randomness imposed by fading effects is usually neglected and the protocols
tend to adapt poorly to shadowed environments. In this paper, we identify two
adaptation problems that can be observed in some of the most popular routing
protocols for MANETs.

Shadowing induced link asymmetries [8,9] In the shadowing model, neighbour
nodes farther from the source have a low probability to receive the route dis-
covery message than closer ones (as illustrated in Fig. 2). However if a node
has many neighbours, chances are that at least one of the distant neighbors does
receive it. Additionally, the route discovery message usually travels through mul-
tiple hops and therefore, it is likely for a route to include at least one such ”weak”
(long) link.

Surprisingly, routing protocol metrics (like those used by AODV, DSR and
DSDV) tend to favour routes that include weak links as they are expected to
have a lower number of hops (thus reducing cost) and to be discovered faster
(which is interpreted as a sign of lower congestion). Although this route would
indeed be preferable, the weak link has the same low probability of delivering
the route reply in the reverse path. Probabilities suggest that in most cases,
the route ends up not being established. When the waiting period expires, the
source will be required to start a new route discovery operation which might be
unsuccessful for the same reason.

Despite not having route request nor route reply messages, proactive routing
protocols are also affected by this problem. Nodes exchange routing information
through periodic messages which are likely to contain routes including some
weak link. Again, these routes are likely to be preferred because metrics suggest
they have a better performance.

Route stability in a shadowed environment The second problem appears after a
route between two nodes has been established. In deterministic models like free-
space and two-ray ground if a node is located within the transmission range of
another, it will certainly receive every packet sent. In practice, a route does not
break unless some node that composes it moved away or a congestion problem
made some node believe that its neighbour moved. On the other hand, a propa-
gation model such as shadowing does not guarantee that a node close enough to
the sender will receive the message. Such transient problems are usually handled

Ad Hoc Routing Under Randomised Propagation Models INForum 2010 – 385

at the link layer level, at the expenses of additional traffic produced by retrans-
missions. However, in some cases, the time took by the link layer to deliver the
packet can be misinterpreted by the routing protocol as a sign of route breakage.
More frequent route invalidation result in additional traffic produced by route
errors and route discoveries.

5 Evaluation

To validate the two hypothesis stated in Sec. 4, we analyse the performance
of three routing protocols, AODV, DSR and DSDV under two radio propaga-
tion models, two-ray ground and shadowing. The goal is to look for patterns
that appear in the performance of the routing protocols while using shadowing
propagation model and are not present when two-ray ground is used. Both free
space and two-ray ground are deterministic propagation models and represent
the transmission range as an ideal sphere and therefore including the two models
in our evaluation would not provide any additional contribution. Three routing
protocols, two reactive and one proactive are used to evaluate if the problems
are exclusive to one particular protocol or class of routing protocols. Results are
obtained using v. 2.34 of the ns-2 network simulator. This simulator already
implements all the propagation models and routing protocols experimented.

Simulation Test Bed The performance of routing protocols is affected by a myr-
iad of factors like mobility and congestion. The experiments presented in this
paper aimed to reduce to a minimum the interference on performance of external
factors not strictly related with the propagation model. Therefore, we defined
a baseline scenario of quasi ideal conditions for any of the protocols. To avoid
congestion, traffic is kept constant at a low rate of one 512 bytes data packet per
second. To enforce route discovery operations the source and destination of the
packets changes every 60 seconds. Nodes do not move for the entire extent of
the simulations, thus preventing “legitimate” route errors and additional route
discovery operations.

Experiments consist of 160 simulations for each pair of routing protocol and
propagation model. Each simulation has the duration of 1800 seconds. To evalu-
ate the impact of the number of neighbours and route length on the performance
of each pair, the simulations have been arranged in 4 different scenarios, pre-
sented in Tbl. 1. In each simulation nodes are randomly deployed over a region
with the specified dimension according to an uniform distribution. An uniform
distribution is also followed on each simulation to define the traffic sources and
destinations. To make comparisons acceptable, the exact same conditions of node
deployment and traffic are used for every pair of routing protocol and propaga-
tion model. Plots present the average of the 40 simulations for each <routing
protocol,propagation model,scenario> tuple. Error bars depict the values ob-
served for the 10% lowest and highest simulation.

In the two-ray ground propagation model each node was configured for a
transmission range of 250m. The shadowing simulations test an outdoor shad-
owed urban area with a path loss exponent β of 2.7 and a standard deviation σ

386 INForum 2010 João Matos, Hugo Miranda

Name Stands for Density Nodes Region Size

HD High Density 3750m2.node 200 1500m× 500m

MDN Medium Density Narrow area 7500m2.node 100 1500m× 500m

MDW Medium Density Wide area 7500m2.node 200 3000m× 500m

LD Low Density 15000m2.node 100 3000m× 500m
Table 1. Comparison of the configurations experimented

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

HD MDN MDW LD

R
ou

tin
g

m
es

sa
ge

s
(lo

g
sc

al
e)

Node Density

AODV
DSR

DSDV

(a) Two-ray ground

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

HD MDN MDW LD
R

ou
tin

g
m

es
sa

ge
s

(lo
g

sc
al

e)

Node Density

AODV
DSR

DSDV

(b) Shadowing

Fig. 3. Route discovery messages

of 4, with a 95% of correct reception at 250m [10]. These are values commonly
used in ad hoc routing experiments ([8,11] for example). We recall that an ex-
act range cannot be defined for the shadowing propagation model. Therefore,
with some probability, some nodes closer than 250m from the transmitter do not
deliver a packet while others, more distant will.

Evaluation Results The number of route request messages originated by each
tested protocol are depicted in Fig. 3. For DSDV, the plots depict the number of
periodic route advertisement messages that is characteristic of proactive routing
protocols. The figures show that in all three protocols, considerably more routing
messages are originated when the shadowing propagation model is used. This is
more significant on DSR that suffers an increase of more than 1000 times.

Confirmed the negative impact of the shadowing propagation model on the
number of route discovery operations, we proceed to investigate the origin of
the problem. Figure 4, that depicts the average time between the triggering of
a route discovery operation and the reception of the first route reply, confirms
the presence of the Shadowing induced link asymmetries problem. Knowing that
no obstacle is made to the message propagation speed by any of the propaga-
tion models, an increased delay in the delivery of the route replies can only be
attributed to the need of the route discovery initiator to perform multiple re-
tries. Again, the problem is more visible in DSR, what follows naturally from
the observed increase in the number of route requests that have been initiated.
We note that for DSDV the delay is always null because routes are immediately
available on the route cache of any node.

Ad Hoc Routing Under Randomised Propagation Models INForum 2010 – 387

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

HD MDN MDW LD

D
el

ay
 (

s)

Node Density

AODV
DSR

(a) Two-ray Ground

 0

 20

 40

 60

 80

 100

 120

HD MDN MDW LD

D
el

ay
 (

s)

Node Density

AODV
DSR

(b) Shadowing

Fig. 4. Route discovery latency

 0

 20

 40

 60

 80

 100

 120

HD MDN MDW LD

N
um

be
r

of
 r

ou
te

 e
rr

or
s

Node Density

AODV
DSR

(a) Two-ray Ground

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

HD MDN MDW LD

N
um

be
r

of
 r

ou
te

 e
rr

or
s

Node Density

AODV
DSR

(b) Shadowing

Fig. 5. Number of route errors

However, Shadowing induced link asymmetries is not the only problem af-
fecting DSR and AODV. Figure 5, counts the number of observed route error
messages and confirms that in the shadowing propagation model routes: i) are
equally established and ii) break far more often than in deterministic propa-
gation models. Because nodes do not move during the simulation, ii) supports
the conclusion that the Route stability in a shadowed environment problem is
equally present. Again DSDV is not accounted for this metric because route
invalidation is detected within the periodic exchange of routing information.

The consequences of the problems discussed above are depicted in Fig. 6. In
Fig. 6(a) all protocols present an average delivery over 95% for all topologies.
On the other hand, the delivery ratio in Fig. 6(b) is bellow 60% for AODV, 50%
for DSDV and 30% for DSR.

6 Related Work

In [8] a comparison of these three routing protocols for Wireless Sensor Networks
under two-ray ground and shadowing propagation models was also preformed.

388 INForum 2010 João Matos, Hugo Miranda

 0

 0.2

 0.4

 0.6

 0.8

 1

HD MDN MDW LD

D
el

iv
er

y
ra

te

Node Density

AODV
DSR

DSDV

(a) Two-ray Ground

 0

 0.2

 0.4

 0.6

 0.8

 1

HD MDN MDW LD

D
el

iv
er

y
ra

te

Node Density

AODV
DSR

DSDV

(b) Shadowing

Fig. 6. Delivery rate

However, the effects induced by the shadowing propagation model described
above are not identified nor described in the paper and the analysis presented
does not provide the same conclusions as this paper. The authors focus mostly
on the properties of the wireless sensor network studied and give little attention
to the radio propagation models and to their relevance in routing. In addition,
the delivery rate is the only metric presented and therefore does not support the
conclusion that the shadowing problems described above are actually present.
The authors continued their work and presented a similar study for Mobile Event
using AODV [11].

Solutions for these effects are very few. Studies about the minimum node
density required to achieve a connected large-scale ad hoc network, where ev-
ery node has the same transmitting and receiving capabilities under a shadowed
environment are presented in [12,9]. The authors in [13] created a sub-layer be-
tween the network and the MAC layer that provides a bidirectional abstraction
of a shadowed environment for routing protocols. Another example of attenua-
tion for these problems was presented on [14] where the authors propose a model
for estimation of the bit error rate for each link made available to a node. The
use of MIMO devices and multiple frequency networks may diminish consider-
ably the problems discussed in this paper. However, transmission errors are an
integral part of the wireless propagation medium and are not expected to be
fully avoided.

7 Conclusions and Future Work

Mobile ad hoc networks (MANETs) are a promising technology for a number of
scenarios. However, they present a networking environment that is considerably
different of what can be found in wired networks. An effective deployment of
MANETs is not possible without a realistic estimation of the performance of a
number of protocols that are fundamental for MANETs expected applications.
This paper compared the performance of 3 routing protocols when distinct sig-
nal propagation models are simulated. The paper shows that all protocols have

Ad Hoc Routing Under Randomised Propagation Models INForum 2010 – 389

a significant performance degradation when the log-normal shadowing propaga-
tion model is used. Unfortunately, this is the most realistic model for expected
MANET deployment scenarios.

As future work, authors plan to extend this study to other protocols and to
devise mechanisms that may help to attenuate the difficulties observed by these
protocols to cope with the shadowing propagation model. The apparently better
resilience of AODV to transient connectivity in comparison with DSR will be
used as an important guideline in our future work.

References

1. Perkins, C.E., Bhagwat, P.: Highly dynamic destination-sequenced distance-vector
routing (DSDV) for mobile computers. In: SIGCOMM ’94: Proc. of the Conf. on
Communications architectures, protocols and applications. (1994) 234–244

2. Johnson, D.B., Maltz, D.A., Broch, J.: DSR: The Dynamic Source Routing Pro-
tocol for Multi-Hop Wireless Ad Hoc Networks. In: Ad Hoc Networking. Addison-
Wesley (2001) 139–172

3. Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: Procs.
of the 2nd IEEE Works. on Mobile Comp. Systems and Applications. (1999) 90–100

4. Rappaport, T.: Wireless Communications: Principles and Practice. Prentice Hall
PTR (2001)

5. Friis, H.T.: A note on a simple transmission formula. Proc. IRE 34 (1946)
6. Johnson, D.B., Maltz, D.A.: Dynamic Source Routing in Ad Hoc Wireless Net-

works. In: Mobile Computing. Kluwer Academic Publishers (1996) 153–181
7. Feeney, L.M., Nilsson, M.: Investigating the energy consumption of a wireless

network interface in an ad hoc networking environment. In: IEEE Infocom. (2001)
1548–1557

8. Yang, T., Ikeda, M., De Marco, G., Barolli, L.: Performance behavior of AODV,
DSR and DSDV protocols for different radio models in ad-hoc sensor networks. In:
Parallel Processing Workshops, 2007. ICPPW 2007. Int’l Conf. on. (2007)

9. De Marco, G., Longo, M., Postiglione, F.: Connectivity of ad hoc networks with
link asymmetries induced by shadowing. Communications Letters, IEEE 11(6)
(2007) 495 –497

10. Greis, M.: The ns manual (2010)
11. Yang, T., Ikeda, M., Barolli, L., Durresi, A., Xhafa, F.: Performance evaluation of

wireless sensor networks for different radio models considering mobile event. In:
Complex, Intelligent and Software Intensive Systems (CISIS), 2010 Int’l Conf. on.
(2010) 180–187

12. Bettstetter, C., Hartmann, C.: Connectivity of wireless multihop networks in a
shadow fading environment. Wirel. Netw. 11(5) (2005) 571–579

13. Ramasubramanian, V., Chandra, R., Mosse, D.: Providing a bidirectional abstrac-
tion for unidirectional ad hoc networks. In: INFOCOM 2002. 21st Joint Conf. of
the IEEE Computer and Communications Societies. Proc. IEEE. Volume 3. (2002)
1258–1267

14. Agrawal, R.: Performance of routing strategy (bit error based) in fading en-
vironments for mobile adhoc networks. In: Personal Wireless Communications
(ICPWC). IEEE Int’l Conf. on. (2005) 550–554

390 INForum 2010 João Matos, Hugo Miranda

Decentralized Processing of Participatory
Sensing Data?

Heitor Ferreira, Sérgio Duarte and Nuno Preguiça

CITI / Dep. de Informática - Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa,

Quinta da Torre, 2829 -516 Caparica, Portugal

Abstract. Participatory Sensing is an emerging application paradigm
that leverages the growing ubiquity of sensor-capable smartphones to al-
low communities to carry out wide-area sensing tasks, as a side-effect of
people’s everyday lives and movements. This paper proposes a decentral-
ized infrastructure for supporting Participatory Sensing applications. It
describes an architecture for modeling, prototyping and developing the
distributed processing of participatory sensing data. Our initial evalua-
tion shows that the proposed architecture can efficiently distribute the
load among participating nodes.

Keywords: participatory sensing, decentralized processing, data stream-
ing, mobile computing

Sumário. Participatory sensing é um novo paradigma aplicacional po-
tenciado pela crescente difusão de telemóveis equipados com sensores,
permitindo a colecção de dados sensoriais em áreas alargadas, por uma
comunidade de utilizadores, aproveitando as actividades e percursos do
seu quotidiano. Este artigo propõe uma infra-estrutura distribúıda de
suporte a aplicações Participatory Sensing. É descrita uma arquitectura
para a modulação, prototipagem e desenvolvimento de processamento
distribúıdo de dados de participatory sensing, tendo como objectivo o
desenvolvimento mais fácil e rápido deste tipo de aplicações. A avaliação
inicial mostra que a arquitectura proposta permite distribuir a carga
eficientemente entre os nós participantes no sistema.

Palavras-chave: Sensoriamento participativo, processamento distribúıdo,
data streaming, computação móvel

1 Introduction

Participatory Sensing [2,3] is a new application paradigm that aims to turn
personal mobile devices into advanced mobile sensing networks. Thanks to the

? This work was partially supported by FCT/MCTES, project #PTD-
C/EIA/76114/2006 and CITI.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 391–402

willingness of the users and the inherent mobility of their daily routines, it is
possible to assemble detailed views and interpretations of the physical world
without the costs associated with the deployment of dense, wide-area, sensing
infrastructures. Examples of the potential of this paradigm already exist, such
as experiments combining accelerometer and GPS data to monitor road con-
servation [5] and traffic congestion [8,11]. The expected outcome from this new
movement is the creation of rich data sets, a data commons, supporting new
services, discourses and interpretations.

The first wave of case-study applications already shows the potential of this
paradigm, but their relatively confined specificity also exposes their exploratory
stage. In general, these applications stand on top of adapted middleware archi-
tectures, in many cases using centralized entities [5,8,11], or limited distribution
models. The more encompassing efforts at platform support tend to originate
from fixed sensor networks backgrounds, with limited allowances for mobility
[10,7]. Centralized solutions raise several problems. On one hand, there are the
implications of having a centralized repository hosting privacy sensitive infor-
mation. On the other hand, a centralized model has financial costs that can
discourage community-driven initiatives.

This paper focuses on the issue above and proposes a decentralized infras-
tructure for supporting participatory sensing applications, whose goal is to ease
the prototyping and development of participatory sensing applications. The pro-
posed system includes a framework for modeling and carrying out the processing
of participatory sensing data in a decentralized, fully distributed fashion. Our
initial evaluation shows that the proposed architecture can efficiently distribute
the load among nodes, thus tackling the issues mentioned above.

The rest of the paper is organized as follows. Section 2 describes the overall
system model, including the proposed system architecture, programming ab-
stractions and execution environment. A case-study application and experimen-
tal results are presented and discussed in Section 3. Section 4 presents a review
of related work and Section 5 concludes the paper with our plans for future work
and some final remarks.

2 System model

2.1 Architecture

The proposed distributed system for running participatory sensing applications
consists of a high number of mobile nodes equipped with sensors, and a fixed
support infrastructure. A mobile node can be any mobile computing platform,
typically a mobile phone, and is expected to have limited resources, in particular
in terms of computing power and battery life. Mobile nodes are connected to a
fixed infrastructure, composed by a set of nodes structured in an overlay network,
that supports the more resource intensive operations, such as data processing,
routing and storage. Fixed nodes can be personal computers, virtual machines
running in a utility computing infrastructure, or servers hosted by independent
entities.

392 INForum 2010 Heitor Ferreira, Sérgio Duarte, Nuno Preguiça

Applications are hosted in this hybrid environment, supported by a service
middleware running in both mobile and fixed nodes. On the fixed infrastructure,
an application context defines data acquisition, processing and storage require-
ments, while on the mobile side, contexts support the data acquisition tasks.
Applications clients - hosted on mobile nodes or, in case of desktop or server
based clients, connected directly to the fixed infrastructure - issue queries and
receive result streams through the service middleware, thus supporting the in-
teraction between user and service.

2.2 Data Processing Model

Streams Participatory sensing applications manage a continuous flow of data
resulting from sensing and data processing activities. Generally, a stream is a
sequence of data tuples with a common structure and semantic, represented as a
set of named attributes. Regarding its origin, a data acquisition stream is a tuple
sequence produced by mobile nodes according to the acquisition requirements
expressed by an application. This raw data has a spatial and temporal nature
- a timestamp records the time when the sensor reading was sampled, while
physical coordinates, or a spatial extent, convey the location in space that the
sample refers to. A derived steam results from the application of a transformation
operation over a source stream.

Virtual Tables Similarly to the relational paradigm, where a data set with
a common schema is represented by a relation, or table, participatory sensing
applications model data by defining virtual tables. A virtual table specifies a
derived stream in terms of one or more inputs - either a set of data acquisition
streams or another virtual table - and a sequence of stream operators structured
in a processing pipeline. The term virtual is used here because tables do not
necessarily have associated storage - although the same abstraction can be ex-
tended to support persistence by storing and replaying a previous live stream.
A query expresses a spatial constraint over a virtual table - a bounding box, for
instance. The result of a query is a continuous tuple stream produced by the
target virtual table, resulting from the application of the spatial restriction over
its base stream.

Stream Transformations A stream transformation can be modeled as a se-
quence of stream operators structured in a processing pipeline. Data tuples flow
in a pipeline, being processed in sequence by each operator - transforming, ag-
gregating, filtering and classifying data. Following is a description of the stream
operators considered in the context of this work.

Processing and Filtering The processor operator is the main extension basis for
the implementation of domain specific processing, such as interpolation of sensor
readings, unit conversion and data mapping. Mapping classifies data according to
an uniform representation - e.g., a grid over the geographical space or the buckets
in an histogram - thus establishing relations between data in order to support
aggregation operations. Spatial mapping operations assign a spatial extent to
data tuples, such as a bounding box, or physical coordinates representing the
centroid of the extent.

Decentralized Processing of Participatory Sensing Data INForum 2010 – 393

Partitioning The groupBy operator partitions data by specific tuple attributes,
or an arbitrary partitioning condition, producing independent data streams.
Each independent stream is processed by a sub-pipeline specified by the opera-
tor - for simplicity, each sub-pipeline cannot include itself a groupBy operator.
Partitioning is used to group related data, for instance by creating independent
streams for data in particular cells, according to an uniform grid introduced by
a mapping operator.

Stream decomposition To aggregate data, continuous streams have to be broken
down into discrete tuple sequences. A timeWindow partitions the stream into
possibly overlapping time periods using a sliding window.

Aggregation An aggregator operates over a finite tuple sequence applying oper-
ations, such as maximum, minimum, count, sum and average, over one or more
input attributes of the input tuples. An aggregator can be used together with
mapping, partitioning and stream decomposition in order to continuously pro-
duce independent aggregate values over the spatial decomposition defined by the
mapping operator.

Classifier A classifier is a specialized processor used to generate inferences from
aggregated data, such as detecting an event. A classification tuple is forwarded
whenever an input aggregate is complete and satisfies an application defined
condition. An aggregate tuple is complete when it takes into account all the
information bounded by its spatial extent - see section 2.3.

2.3 Distribution Strategy

A stream transformation pipeline can be broken down into two stages, or roles -
data sourcing and global aggregation. Data sourcing refers to the process through
which each node produces partial state tuples from the continuous sensor input
received from mobile devices, while global aggregation refers to the production
of an aggregate result by merging the partial states from several nodes. One key
aspect of the proposed system is that processing of these stream transformation
operations is performed in a fully distributed way, using a strategy called QTree,
as explained next.

In QTree, each fixed node is assigned a latitude and longitude. Data parti-
tioning is based on subdivision (or splitting) of geographic space into quadrants
that hold at least a minimum number of nodes (the minimum occupancy). Each
node belongs simultaneously to all the quadrants that contain it, down to the
smallest - called its maximum division quadrant. Mobile nodes upload sensor
readings to an acquisition node whose physical coordinates lie in the same max-
imum division quadrant (M1 and M2 in figure 1). Areas with low node density
can result in data dispersion across the entire node base; to reduce query scope,
QTree assumes a minimum division level - meaning that geographic space is
fully divided at this level i.e., all partitions have minimum occupancy.

Query Distribution To reach all relevant data, a query has to be distributed
to all nodes within its search area, defined as the union of quadrants, at the
minimum division level, that completely cover the query area. This is illustrated

394 INForum 2010 Heitor Ferreira, Sérgio Duarte, Nuno Preguiça

in figure 1, where the shadowed quadrant represents the search area for query
Q.

N1

A

N2
B

Q

M1

M2

Fig. 1: QTree spatial partitioning with a minimum occupancy of 2 nodes and
minimum division level of 2

A query is disseminated by recursively subdividing the search area until
all nodes are reached, building a distribution tree in the process as depicted in
figure 1. Initially, the root node divides the world into four quadrants, finds their
interceptions with the search area and forwards the query to a randomly selected
peer in each interception. Target nodes repeat the same procedure; for quadrants
that do not have minimum occupancy, the node assumes the aggregation role
and forwards the query to all peers in the area - these nodes become the tree
leaves, acting as data sources. QTree provides an inherent balancing mechanism,
given that a different node is chosen each time the aggregation tree is built and,
the wider the aggregation area, the larger the set of candidate nodes.

Query Processing Aggregation is performed using the reverse path of the query
dissemination tree. An important aspect of QTree, that allows the reduction of
computation and communication costs, is that aggregate tuples are complete at
the tree level where the assigned quadrant completely encloses its spatial extent
- i.e., upper tree levels will not hold additional data regarding that extent -
and can be forwarded to the query root without further processing. In figure 1,
extents A and B are complete at the nodes N1 and N2 respectively. Another
relevant characteristic in QTree is that although nodes closer to the root cover
wider areas, they only aggregate data for spatial extents that are not completely
enclosed at lower levels of the aggregation tree.

Network Dynamism Node failures in an aggregation tree impact query results,
the severity of this impact depending on how close to the root the failure occurs.
Failure requires rebuilding the tree for the affected quadrant, possibly after merg-
ing imposed by the minimum node occupancy requirement. When a node joins
the network during query execution it can be incorporated into the aggregation
tree after any necessary subdivision of space and consequent tree restructuring.

Decentralized Processing of Participatory Sensing Data INForum 2010 – 395

3 Evaluation

The system presented in the previous sections has been evaluated with two goals
in mind. Firstly, to obtain a initial assessment of the expressivity of the proposed
programming abstractions and, secondly, to evaluate in quantitative terms the
performance of the distribution strategy that has been adopted. To this end,
we modeled and implemented a case-study application, in a simulation setting,
focused towards realtime participatory sensing data processing. This application,
called SpeedSense, continuously monitors the current traffic status in an urban
setting to allow client applications to access the current traffic speed per road
and information about congested roads. For this purpose, simulated users collect
real-time data while driving, using GPS equipped mobile devices. While, at this
point, this case-study does not intend to be a realistic implementation of road
traffic estimation, the scenario involved is a paradigmatic one for Participatory
Sensing and is featured in some of the most referenced works in the area [8,11].

3.1 Case study - SpeedSense

SpeedSense infers the current average speed, and congestion detections in a given
area, based on GPS data sampled by in-transit vehicles at periodic intervals. For
this purpose, two virtual tables have been designed: TrafficSpeed, which supports
querying for average speed per road segment, while the other, TraficHotspots,
allows for querying for congestion detections.

For the road network (and traffic) model, SpeedSense requires a map rep-
resentation of the application’s geographic area of coverage. The Open Street
Map (OSM) [12] vectorial representation of the road network is used for that
purpose. This map data is used to map geographic coordinates to road segments,
to determine the spatial extent of segments and their associated road type. The
network model used in the evaluation divides roads, as needed, into segments
with a maximum of 1 km and uses separate segments for each driving direction.
Each road is assigned an expected (uncongested) driving speed according to its
type: highway, primary to tertiary and residential.

TrafficSpeed Virtual Table This table derives directly from the GPSRead-
ing sensors input and produces an output stream of AggregateSpeed tuples that
convey a segment, sample count, and total and average speed. Average speed is
computed using a time-window to break down the continuous acquisition stream
into finite time intervals (cf. Definition 1). Specifically, the data sourcing pipeline
stage handles local aggregation of raw GPS input data, by mapping incoming
samples to road segment using the process operator (for simplification, raw GPS
readings reference the segment identifier); a timeWindow accumulates data sam-
ples for the given time period, then groupBy partitions the resulting data into
independent substreams for each segment. For each of these, aggregate accumu-
lates data samples for the given time period to compute the intermediate sum
and count results that are used to produce the actual (moving) average speed
for that segment as an AggregateSpeed tuple.

The global aggregation stage receives AggregateSpeed values from descendent
peers and produces the overall average speeds by merging the partial records.

396 INForum 2010 Heitor Ferreira, Sérgio Duarte, Nuno Preguiça

A timeWindow and operator groupBy are again used to accumulate data and
partition the stream. For each of the resulting partitions (or substreams) aggre-
gate is once more used for summing and counting all partial contributions and
produce the actual AggregateSpeed value at this peer.

Definition 1 TrafficSpeed virtual table specification
sensorInput(GPSReading)

dataSource {
process{ GPSReading r ->

r.derive(MappedSpeed, [boundingBox: model.getSegmentExtent(r.segmentId)])

}
timeWindow(mode: periodic, size:15, slide:10)

groupBy([’segmentId’]){
aggregate(AggregateSpeed) { MappedSpeed m ->

sum(m, ’speed’, ’sumSpeed’)

count(m, ’count’)

} } }
globalAggregation {

timeWindow(mode: periodic, size:10, slide:10)

groupBy([’segmentId’]){
aggregate(AggregateSpeed) { AggregateSpeed a ->

avg(a, ’sumSpeed’, ’count’, ’avgSpeed’)

} } }

TrafficHotspots Virtual Table This table outputs a stream of Hotspot tuples
representing real-time detections of congested road segments. It is based on a
simple model that compares the current average speed of a segment against a
congestion threshold, given as a fraction of the maximum speed for that par-
ticular road, obtained from the road network model. It also takes into account
the number of samples used to compute the average speed of the segment to
provide a measure of the confidence or reliability in a detection result. Refer
to Definition 2 for the actual specification of this table, where it can be seen
that it derives from the TrafficSpeed table and, essentially, extends its global
aggregation stage with the hotspot detection classifier. This classifier operator
receives an AggregateSpeeds stream and produces a Hotspot tuple whenever the
computed average is complete, reliable and below the congestion threshold.

Definition 2 TrafficHotspots virtual table specification
tableInput(”TrafficSpeed”)

globalAggregation {
classify(AggregateSpeed) { AggregateSpeed a ->

if(a.count > COUNT THRESHOLD && a.avgSpeed <= SPEED THRESHOLD * model.maxSpeed(a.segmentId))

a.derive(Hotspot, [confidence: Math.min(1, a.count/COUNT THRESHOLD*0.5)])

} }

Decentralized Processing of Participatory Sensing Data INForum 2010 – 397

Definition 3 Q1 and Q2 query specification
def q1 = new Query(”speedsense.TrafficHotspots”).area(

minLat: 38.7379878, minLon: -9.1821318, maxLat: 38.758213, maxLon: -9.145832)

def q2 = new Query(”speedsense.TrafficHotspots”).area(

minLat: 38.727875, minLon: -9.2002818, maxLat: 38.7683250, maxLon: -9.1276818)

3.2 Evaluation

The SpeedSense evaluation was performed in a custom simulation environment
of a fixed and mobile node infrastructure. Fixed nodes are distributed randomly
across the urban space with a minimum inter-node distance of 250 meters. A
one-hop overlay network connecting the fixed infrastructure is simulated through
a shared common peer database that provides a consistent view of the network
membership. The network is static i.e., membership is determined on startup
and there are no node entries or exits during execution, or node failures. Mobile
nodes interact with a fixed-node homebase counterpart directly, resulting in the
delivery of raw GPS data with no latency. Communication between fixed nodes
experiences latency and jitter. Each mobile node simulates a vehicle, according
to a traffic model, and reports its GPS reading every 5 seconds as it follows the
assigned path. A common clock is used to timestamp readings; thus, any effects
of clock desincronization are not considered.

Traffic is modeled by emulating a fleet of vehicles driving through random
routes. The maximum speed for a given segment is the same value used for
congestion detection and depends on the road type. An average speed, for each
road segment at a given time, is determined by its car density (averaged over
the previous 10 seconds) and used to generate the random speed individually for
each vehicle, according to a normal distribution. In the experiments performed,
congestion occurs in segments with a density of at least 5 vehicles. Vehicle paths
are determined by choosing a random start position and sequence of road in-
tersections. In order to induce traffic confluence, higher probability is given to
highways and primary roads; a new path is computed whenever a vehicle reaches
its destination. Figure 2 shows a rendering of the traffic simulation.

The simulation scenario covers the Lisbon urban area. This area is served
by 500 fixed nodes and the mobile infrastructure comprises the same number
of nodes. Two queries were tested, Q1 and Q2, covering respectively 6.25% and
25% of the overall simulation area (cf. Definition 3). Both were placed on a high
mobile node density area. The set of metrics captured was averaged over 10 runs,
corresponding to different fixed node placements, and compared to a centralized
processing architecture, where GPS data is received and processed by a central
node.

Workload Distribution One of the purposes of the experimental evaluation
was to determine how the effort required to evaluate a query is spread among the
fixed nodes. For that, workload is measured as the number of data acquisition
and aggregation events occurring and processed at each fixed node. Specifically,
the former pertains to the number of GPS sensor readings received and processed

398 INForum 2010 Heitor Ferreira, Sérgio Duarte, Nuno Preguiça

Mobile node (congested)

Fixed node

Mobile node (normal)

Fig. 2: Snapshot of the traffic simulation showing congested mobile nodes in red

by the acquiring node, while the latter refers to the number of inputs handled
by the global aggregation stage and corresponds to the updates received for each
segment aggregated by that node. To derive a total workload at each node, the
two are added with equal weights.

Tabe 1 presents the workload obtained for Q1 and Q2 using a centralized
approach, while Figure 3 shows the workload distribution for the same queries
using the QTree distribution strategy.

Query Acquisition Aggregation Total
Q1 17,541 6,448 23,989
Q2 44,634 16,493 61,127

Table 1: Workload for Q1 and Q2 using centralized processing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

500

1000

1500

2000

2500

3000

3500

Query Q1
Query Q2

Most Loaded Nodes

Pr
oc

es
se

d
Tu

pl
es

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

500

1000

1500

2000

2500

3000

3500

Query Q1
Query Q2

Most Loaded Nodes

Pr
oc

es
se

d
Tu

pl
es

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

500

1000

1500

2000

2500

3000

3500

Aquisition
Aggregation
Total

Most Loaded Nodes

Pr
oc

es
se

d
Tu

pl
es

(b)
Fig. 3: Workload using QTree (a) Total workload for query Q1 and Q2 (b) work-
load decomposition for Q1

Decentralized Processing of Participatory Sensing Data INForum 2010 – 399

In QTree, the most loaded node handles 7.4% and 3.1% of the total work for
Q1 and Q2, respectively. The additional work introduced by Q2 is distributed
among participating nodes and does not affect significantly the maximum work-
load. Relative to a centralized approach, the most loaded node in QTree handles
12.5% and 5.2% of the total workload processed by a central node for Q1 and
Q2, respectively.

Query Success and Latency Query success is given by the percentage of ac-
curate detections, including false negatives, where a false negative occurs when
no detection is received within 120 seconds of occurrence. Detection latency
times the lag between the occurrence of a segment congestion and the arrival
of the respective detection at the query root. Transient congestions (lasting less
than 20 seconds) were not considered for the evaluation. The results are only
indicative, as the traffic patterns produced by the traffic model are highly dy-
namic compared to real world conditions, with several short lived congestions
occurring during query evaluation. Figure 4a, which plots query success versus
detection latency for both queries, shows a success rate in excess of 90% within
the 120 second allowed window. Average query latency is higher relative to a
centralized approach, which can be explained by the intermediate aggregation
levels required by QTree.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

10

20

30

40

50

60

70

80

90

100

Centralized
QTree

Latency (seconds)

D
et

ec
tio

ns
 (%

)

(a)

Q1 Q2
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Binding
Data

M
es

sa
ge

s

(b)
Fig. 4: (a) Query success and latency (b) Messages exchanged for Q1 and Q2
using QTree

Communication Load Cost measurements were also made regarding the num-
ber of messages exchanged during the execution of a query, providing an indica-
tion of the expected performance in terms of network usage. The communication
load measures the overhead introduced by QTree relative to a centralized ap-
proach, including data messages and binding events. The former accounts for
tuples exchanged between peers, relative to query data (incomplete aggrega-
tions that are forwarded up the aggregation tree) and query results (complete
aggregations that are forwarded to the query root. While the latter capture the
additional overhead associated with uploading the data from mobiles to a fixed
node.

In all cases, the number of messages sent by individual nodes is limited at
1 message per pipeline stage every 10 seconds by the use of the timeWindow

400 INForum 2010 Heitor Ferreira, Sérgio Duarte, Nuno Preguiça

operator, thus the exchanged messages reflect the number of nodes involved in
query processing.

It was observed, as shown in Figure 4b, that the impact of the query area
on message traffic is significant, resulting in an increase of around 140% in the
total number of messages for a 300% increase of the query area.

4 Related Work

The availability of mobile devices with several sensors, such as smartphones, has
lead to the creation of a large number of personal sensing applications, such
as applications to record walks, routes, etc. These applications focus mostly on
archiving and personal monitoring, for instance for health monitoring or fitness
applications.

Some of these applications involve sharing among a specific community group
or social network. In public sensing, data is open to the public at large. For ex-
ample, in BikeNet [4], users can record their bike rides in their mobile phones
and share this information with a community. The aggregation of this informa-
tion, executed in a single server, allows community members to get information
about the most popular bike routes.

CarTel [8] focus on vehicle based sensing applications. The system has a cen-
tralized architecture, where applications are hosted in a central server. Mobile
nodes, executing in vehicles, collect the information needed by the running ap-
plications. Example applications include hot spot detection, and monitoring of
road surface conditions [5].

Our approach differs from these systems in a number of ways, the most
important being its decentralized architecture. A decentralized solution helps
scalability by spreading the load and storage requirements by the participants
in the system. Lacking the need for having a powerful server infrastructure also
makes this approach more suitable for community-based sensing, with the needed
resources being contributed by the community.

Some sensing systems present an architecture built entirely in the mobile
nodes and ad-hoc coordination to support applications (e.g. [13] and [9]). A
limitation of this approach is that mobile nodes have to spend computation,
communication and energy resources in coordination efforts, regarding node and
service discovery and context dissemination. This is specially relevant given that
communication can be expensive and energy is scarce.

Other systems (e.g., [10,7]) have an architecture more similar to ours, based
on the combination of fixed and mobile nodes. For example, in SensorWeb [7],
a set of fixed nodes act as gateways for sensor network and proxies for mobile
devices. In this system, a coordinator node mediates and coordinates the access
of applications to the different gateways and proxies. Unlike SensorWeb, in the
proposed architecture, nodes are also used to process information, thus allowing
to more evenly distribute the load.

5 Final remarks

The proposed framework abstracts application developers from the complexity
inherent to a distributed infrastructure, such as the actual location of relevant

Decentralized Processing of Participatory Sensing Data INForum 2010 – 401

data and the balancing of processing work, and supports common processing
and aggregation tasks through a library of out-of-the-box components. Appli-
cations can share data through virtual tables, thus promoting the development
of application mashups, while keeping control over the granularity of published
data. Although the QTree distribution strategy is affected by the unbalanced
distribution of sensed data, the strength of the strategy resides in the ability
to limit the propagation of partial state by leveraging the partitioning of geo-
graphical space. Our initial evaluation shows that the proposed architecture can
efficiently distribute the query processing load among nodes.

Directions for future research include the exploration of efficient delivery of
query results to the mobile node base, and the optimized processing of multiple
overlapping queries; finally we would like to investigate the aspects related to
data persistence and historical queries.

References

1. W. Bloomin. http://whatsbloomin.com, June 2010.
2. A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, R. A. Peterson, H. Lu,

X. Zheng, M. Musolesi, K. Fodor, and G.-S. Ahn. The rise of people-centric sensing.
Internet Computing, IEEE, 12(4):12–21, 2008.

3. D. Cuff, M. Hansen, and J. Kang. Urban sensing: out of the woods. Commun.
ACM, 51(3):24–33, 2008.

4. S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G.-S. Ahn, and A. T.
Campbell. The bikenet mobile sensing system for cyclist experience mapping. In
SenSys ’07: Proceedings of the 5th international conference on Embedded networked
sensor systems, pages 87–101, New York, NY, USA, 2007. ACM.

5. J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakrishnan. The
Pothole Patrol: Using a Mobile Sensor Network for Road Surface Monitoring. In
The Sixth Annual International conference on Mobile Systems, Applications and
Services (MobiSys 2008), Breckenridge, U.S.A., June 2008.

6. P. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. Irisnet: an architecture for a
worldwide sensor web. Pervasive Computing, IEEE, 2(4):22–33, Oct.-Dec. 2003.

7. W. Grosky, A. Kansal, S. Nath, J. Liu, and F. Zhao. Senseweb: An infrastructure
for shared sensing. Multimedia, IEEE, 14(4):8–13, Oct.-Dec. 2007.

8. B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. K. Miu, E. Shih,
H. Balakrishnan, and S. Madden. CarTel: A Distributed Mobile Sensor Computing
System. In 4th ACM SenSys, Boulder, CO, November 2006.

9. N. Kotilainen, M. Weber, M. Vapa, and J. Vuori. Mobile chedar ” a peer-to-peer
middleware for mobile devices. In PERCOMW ’05: Proceedings of the Third IEEE
International Conference on Pervasive Computing and Communications Work-
shops, pages 86–90, Washington, DC, USA, 2005. IEEE Computer Society.

10. Y. J. L. Marie Kim, Jun Wook Lee and J.-C. Ryou. Cosmos: A middleware for
integrated data processing over heterogeneous sensor networks. ETRI Journal,
30(5), October 2008.

11. Mohan, Prashanth and Padmanabhan, Venkata and Ramjee, Ramachandran . Ner-
icell: Rich Monitoring of Road and Traffic Conditions using Mobile Smartphones.
In Proceedings of ACM SenSys 2008, November 2008.

12. OpenStreeMap. http://www.openstreetmap.org/, April 2010.
13. O. Riva and C. Borcea. The urbanet revolution: Sensor power to the people!

Pervasive Computing, IEEE, 6(2):41–49, April-June 2007.

402 INForum 2010 Heitor Ferreira, Sérgio Duarte, Nuno Preguiça

 Displaybook - Bringing online identity to situated

displays

Abel Soares
1

, Pedro Santos
1

, Rui José
2

1

Mestrado em Informática, Universidade do Minho, Portugal

{pg13019, pg15964}@alunos.uminho.pt
2

DSI, Universidade do Minho, Portugal

rui@dsi.uminho.pt

Abstract. This work is part of a study in which we aim to explore multiple

bridges between on-line and off-line forms of socialisation by creating bi-

directional connections between Facebook and situated social interactions. In

this paper, we specifically describe a study on the use of public displays for the

public presentation of data from the Facebook profiles of people near the

display. The key challenge is how to map the concept of sharing information

within a social network, to the concept of sharing information with the places

you visit. For this to be viable, people must have full control over what they

share and in what circumstances they will share it. This paper addresses this

issue by studying the sharing alternatives, how this sharing of profile data in a

public display is perceived by people and what are the main factors affecting

that perception. The results suggest that, overall, people seem to be willing to

expose parts of their Facebook profiles if given proper privacy controls.

However, the study has also revealed a clear gap between privacy control in

Facebook and the type of privacy controls that would be needed for this

particular use of Facebook information.

1 Introduction

With their increasingly huge popularity, Social Network Sites (SNSs) have been

reshaping many notions of socialisation. These sites are essentially about people

wanting to stay connected with their friends and other people around them. This

normally involves sharing with those people information regarding multiple facets of

their lives. By feeding their social profile, posting content, expressing feedback and

commenting on the activity of others, people are continuously generating massive

quantities of user generated content that is quickly disseminated through the user

network. All this activity is inherently on-line, occurring in the web almost as a

parallel world of relationships and interactions that may seem independent from the

situated interactions of the physical world. However, research has shown that

Facebook connections normally have a strong correlation with off-line proximity

[1][2]. More than a way to meet new people, SNSs are mainly a new mechanism for

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 403–414

managing already existing connections, albeit weak ones. Many of these “weak ties”,

i.e. relationships with people outside the normal groups of which we are a part of,

emerge from the existence of a common offline element, such as working in the same

place, studying at the same college, or frequenting the same places. The role of these

weak ties in SNSs is well-know, but the role of SNSs in the off-line interactions

between those people has been less explored, meaning that there is still a strong

potential in extending SNSs to situated interaction and presence. This might be

particularly important to the process of meeting new people, something that SNSs still

do not seem to afford very effectively [2].

1.1 Bridging between on-line and off-line social interactions

This work is part of a study in which we aim to explore multiple bridges between on-

line and off-line forms of socialisation by creating bi-directional connections between

SNSs and the situated social interactions occurring between sets of co-located people.

In this paper, we specifically describe a study on the privacy implications for the use

of public displays to present data from the Facebook profiles of people near the

display.

The motivation behind this work is the idea that, in some situations, bringing SNSs

profiles into the off-line world of situated interactions may enrich those interactions.

SNSs profiles may provide a relevant, yet spontaneous and informal, representation of

identity that can be useful for many types of situated services. Public displays, in

particular, may provide an additional channel for self-exposure and new opportunities

for augmenting co-located social interactions. Also, from the perspective of SNSs,

this type of bridge may lead to a stronger presence in the life of their users, something

that may turn out to be crucial to their long-term sustainability.

However, the use of Facebook profiles outside their normal context also raises

considerable challenges, both technical and social. The key challenge is clearly how

to map the concept of sharing information within a social network, to the concept of

sharing information with the places you visit. For this to be viable, people must have

full control over what they share and in what circumstances they will share it. This

paper addresses this issue by studying the sharing alternatives, how this sharing of

profile data in a public display is perceived by people and what are the main factors

affecting that perception.

To support this study we have developed Displaybook, an application that enables

people to share Facebook profile information with public displays. The information

from a particular profile is only presented when that person is detected near a display.

This achieved by associating a Bluetooth address with each profile and scanning

Bluetooth devices in the vicinity of the display. When installing the application,

404 INForum 2010 Abel Soares, Pedro Santos, Rui José

people are given the opportunity to choose between a set of privacy preferences. We

have collected data on the privacy specifications selected by people and we have

conducted interviews with some of the users to gain a more in-depth perspective on

individual perceptions. The results suggest that overall people seem to be willing to

expose parts of their Facebook profiles given proper privacy controls. However, the

study has also revealed a clear gap between privacy control in Facebook and the type

of privacy controls that would be needed for this particular use of Facebook

information.

2 Related Work

The use of SNSs within multiples situations of everyday life is increasingly possible

through all forms of mobile versions of the respective software, allowing people to

continuously maintain their on-line presence and possibly generate life streams

representing their off-line social activity. However, these mobile applications do not

really take advantage of the opportunity to connect the social context of SNSs with

the social context of co-located people interacting with each other.

One of the early experiments in bridging between social networks and social

situations, more specifically a conference setting, was proposed by Konomi et. al. in

[3]. The conference badges were RFID tags and when participants approached a

display, a social network was presented base on publication records in DBLP. The

expectation was that presenting the professional social network within that specific

context would help co-located participants to communicate and develop relationships.

The injection of real-world presence data into social networks is explored in CenceMe

[4]. A mobile application is continuously collecting data from any sensors the mobile

phone might have and inferring the current activity of the person. This data can then

be injected into multiple social networks, including Facebook, thus enriching the

information flow from the real-world to the SNSs. CenceMe also leverages on the

social networks for defining access policies. It basically takes the buddy lists users

have already created in those services to determine who can have access to the

CenceMe data.

Kostakos has conducted a study in which Facebook connections of 2602 individuals

were analysed in conjunction with data about their Bluetooth encounters [2]. This

study provides important insight into the multiple similarities and shared connections

between these two types of social structures. This work also involves the use of a

Facebook application and Bluetooth, but in this case they are being used as data

collection tools for studying the social networks themselves. In a separate piece of

work within CityWare, Kostakos and O’Neill have also explored the use of a

Displaybook - Bringing online identity to situated displays INForum 2010 – 405

Facebook application in association with Bluetooth traces [5]. In this case, Bluetooth

mobility traces were presented in public displays, but the system also allowed people

with the Facebook application to have access to data about their physical co-presence

with members of their social network.

WhozThat [6] uses the SNSs profiles of people nearby to create context information

that can then be used to support spontaneous interactions or drive the music selection.

People are expected to use a mobile phone running an identity sharing protocol that

will advertise their on-line identities to the other nearby devices. This system does not

consider the use of public displays or any explicit selection of which information to

share, but it is an example of using SNSs profiles as a sort of personal data aura that

can be used to mediate digital self-exposure.

Bohmer and Muller [7] conducted a study on the exhibition of SNSs profiles in public

settings. Using mockup images they asked people about their willingness to expose

profile information in two types of what they called social signs. The first was a

personal social sign projected around the person and showing parts of the respective

profile. The second was a interpersonal sign, projected in such a way to link two

people and representing some type of connection between them, such as having a

mutual friend or sharing an interest. The study consisted in presenting the scenarios

and interviewing people about their perception of those hypothetical uses. The results

suggested that there is some interest in the overall idea, but also highlighted serious

concerns about the particular circumstances in which such exposure should occur.

This study, however, did not address real usage situations or how to map particular

types of self-exposure to specific situations.

3 System Overview

3.1 Mapping Facebook concepts into public displays

A key part of this work is to study how to map Facebook concepts to the needs of

publication in information displays. Regarding which information to take from

Facebook, we have studied the existing information and how it can be accessed. In

principle, any piece of information and activity generated by a Facebook Profile could

be shown on the public display, as long as the respective user had authorised access to

that information to our Displaybook application. However, information presentation

in public displays represents a very unique context for exposing personal information.

Therefore, individuals should have a clear opportunity to specifically express

permissions to that particular form of presentation. We have focused specifically on

profile information, making a separation between public information (name and

photo) and non-public information (Likes, music, TV, movies, books, quotes, About

406 INForum 2010 Abel Soares, Pedro Santos, Rui José

me, Activities, Interests, Groups, Events, Notes, Birthday, Religious and political

views, Education History, Work history and Facebook status).

The information sharing model in Facebook was conceived with a rather different set

of assumptions, and thus it was without surprise that we have identified a number of

mismatches when trying to map that model into a model for presenting data in public

displays. More specifically, the following issues were identified:

- Facebook privacy model defines how information in Facebook can be

accessed, in this case by applications. It does not really support any type of

considerations on how the information is going to be used. This basically

means that before we present users with our own application-specific privacy

settings, they will first have to go through the standard privacy settings in the

Facebook platform, where they will have to authorise information access

regardless of how it will be used by Displaybook.

- Facebook applications are mainly designed to be used interactively, and thus

the basic permission model only allows applications to access user’s data

when the user is logged in. There is an alternative to overcome this limitation

in which users may allow applications to access their data without the need

of an active session. This is however not a common need for most Facebook

applications and represents an additional step for privacy-sensitive users.

- The user can easily specify its privacy preferences for an application, but it is

normally very easy for an application acting on behalf of the user to gather

data about friends of users (and friends of friends), even if they are not aware

of this information usage. This is a reflection of the Facebook network and

privacy model, in which friends normally have the ability to access much

more data than “anyone”.

To summarize, and because of these mismatches, simply installing Displaybook

seems to entail many more privacy risks than what it would seem necessary when we

consider the information actually presented on the public displays. Regardless of the

information actually being presented, regardless of any blurring or aggregation

mechanisms that might be used to preserve privacy, the fact remains that to be usable,

Displaybook will always end-up having considerably extensive permissions to access

Facebook profiles.

3.2 The Displaybook application

As part of this study, we have developed the Displaybook application for enabling the

presentation of parts of Facebook profiles in public displays. The application is

composed by 4 key components, as represented in Fig. 1.

Displaybook - Bringing online identity to situated displays INForum 2010 – 407

Fig. 1. – System overview.

Internal Facebook Application – This is an application that runs as a Facebook

application and can be accessed from inside Facebook. It serves as an integration

point for users, allowing them to specify privacy settings for data on displays and

associate their Bluetooth MAC address. Users of our system must necessarily take the

step of installing this application from their Facebook account.

Facebook Data Supplier – This is a web application that uses the Facebook API to

retrieve the necessary data about the profiles that are using Displaybook. The data

supplier will receive a set of MAC addresses (currently detected in the place) and will

get all the Facebook data associated, keeping in mind the permissions that users have

set.

Visualization application – This application supports two types of Flash-based

visualizations of the Facebook profile data. The first visualization, represented in Fig.

2, displays the list of present profiles. Each profile is represented by an icon that may

include the name and the photo, unless the user has denied any of this information.

The second visualization, represented in Fig. 3, displays an aggregate view of the

information from the multiple users detected in the place. This information may

include gender, birthday, location, relationship status, hometown, education and high

school education and is presented without being associated with any particular profile.

When data is similar for users, the tag gets more relevance, with a superior size

compared to others.

408 INForum 2010 Abel Soares, Pedro Santos, Rui José

Fig. 2. – Profile visualization application.

Fig. 3. – Aggregate visualization application.

Displaybook - Bringing online identity to situated displays INForum 2010 – 409

Instant Places – Instant Places is a Bluetooth based sensing platform and provides

information about open Bluetooth presence sessions. A session symbolizes a presence

of a Bluetooth enabled device in the place. This information is obtained from routers

running Bluetooth scanning software.

When the system is running, the visualization application queries Instant Places and

obtains a list of the Bluetooth devices that are currently present near the display. The

application will then query the Facebook data supplier for data associated with those

Macs. The Data Supplier will find correspondent Facebook Profiles IDs and their

permissions settings in our database and use Facebook Platform API’s to access data
about the users. After that, the Data Supplier will filter all data according to each user

permission setting and respond back with the data to the Visualization Application in

XML format.

3.3 Setting privacy policies with Displaybook

When a user first goes to the Displaybook application, he or she must go through a set

of dialogs for setting privacy preferences. The first dialog is meant to give

Displaybook permission to access the public profile data. This is a common procedure

when someone uses a Facebook application and is absolutely necessary for the system

to be able to present parts of the profile.

Fig. 4. – Request for permission dialog.

Immediately after, the user will be asked to give offline access and permission to

some of his or her profile information. This will make possible for Displaybook to

410 INForum 2010 Abel Soares, Pedro Santos, Rui José

retrieve Facebook Profiles information on behalf of the user. It also indicates the

profiles categories that the system may ask for, such as Birthday and Education,

Hometown and Location, and Relationship Status. This is a generic permission from

Facebook. Users will later be asked within the application to refine exactly which

information they want to display.

Fig. 5. – Extended Permissions Dialog.

In the next step, people are asked to submit their mobile device Mac address. This

will later be used to enable the displays to recognize the presence of the user.

Fig. 6. – MAC address association.

Now that Displaybook already has access to the Facebook information, the

permissions dialog can be used to configure exactly which profile data users have

interest in showing on the displays. The answers to this dialog were an important part

of our study.

Displaybook - Bringing online identity to situated displays INForum 2010 – 411

Fig. 7. – Permissions Manager.

4 Evaluation

4.1 Deployment

We have used two public displays in our department as the basis for the deployment.

This is a place closely linked with a particular community, the Department staff and

students. Many of them share Facebook connections, and most people could easily be

informed about the system and invited to join in.

The content generated is a simple web-based application. The respective URL is

given to the display software, which will show that content whenever requested.

Bluetooth sensing is in place to support the presence recognition and also to support

explicit interaction using a simple command language for the Bluetooth Names.

The announcement of the applications was made by sending an e-mail to the local e-

mail lists and through Facebook itself. The announcement included an indication of

where to install the Facebook application, the privacy policy and usage information,

especially how to create the connection between Bluetooth Mac addresses and the

identity profile.

4.2 Results

There were nine users using Displaybook during the one week long evaluation period.

They were all part of the Department community, including academic staff,

researchers and administrative staff. Eight of them have used the privacy manager to

change their data permission settings. The data collected on how they set their privacy

settings can be summarized as follows:

412 INForum 2010 Abel Soares, Pedro Santos, Rui José

- Name: No one has changed permissions for name. It was always available,

for all users, through the time the experience occurred.

- Profile photo: Three persons have removed permissions to show the photo.

Two of them have done so when first confronted with the privacy dialog, and

one after having seen her photo on the display.

- Education: Two persons have removed permissions to show education data.

One initially, one after a while.

- Birthday: Three persons have denied presentation of their birthday.

- Relationship Status: Five persons have blocked permissions to show their

relationship status.

- Location: Everyone has allowed presentation of their location (Home Town)

Users who have blocked the availability of the profile photo on the public displays,

have also expressed that they don’t really feel comfortable about having their identity

displayed in public spaces. One user has reported having an unpleasant experience

when people recognize him and approached him to talk about it. This kind of

confrontation does not exist in a virtual presence and clearly shows the type of

conflict that may occur between what people feel and construct about their virtual

existence, and what happens when that same virtual identity suddenly gains a situated

existence in physical space. This particular example, and also some of answers in the

interviews, have shown that names and photos were seen as particularly sensitive

information when presented in this context. This reveals a clear contradiction between

what Facebook regards as public data in an online environment (name and photo) and

what people would be more willing to show on a public display.

4.3 Lessons Learned

One of the lessons from this work has been to feel as developers the extent of what it

means to say that Facebook is an evolving reality. If considering that this work has

been conducted within a three months period, we still had to face changes in the

underlying API, in the application naming policies, in the concept of “fan page” (now
a Facebook page liked by people), and most importantly multiples changes in the

privacy policies and controls. More than presenting these problems as complaints, we

expected to highlight how important it might be for Facebook developers to reduce

their exposition to changes in the Facebook API or even in the application and

privacy policies.

The way we had to present the privacy settings has revealed a clear mismatch

between Facebook assumptions on the use of profile information and our own use of

that information. Facebook assumes that either information is shared or is not shared,

which is probably a reasonable assumption within the normal Facebook setting.

However, within the setting of our study, it was clear from the beginning that the way

in which information was presented and even the circumstances surrounding its

Displaybook - Bringing online identity to situated displays INForum 2010 – 413

presentation would be important elements in how people perceive that their privacy is

being affected.

5 Conclusions

The use of Facebook for creating user-generated content on public displays clearly

holds a lot of potential. However, control by users is crucial in such approach, and

this work has clearly shown how Facebook privacy policies are not aligned with this

particular usage of Facebook data. When bringing Facebook Profiles into public

displays, privacy concerns enter a new dimension that is not necessarily the

dimension exposed in web environments, where typically social platforms exist. The

identification of users is a concern in public spaces, something that is normally not a

major issue in SNS. As future work, we intend to study how privacy policies for self-

exposure in public displays can be expressed more effectively by users, and also how

users can take more advantage of these features as a mechanism for situated

interaction.

References

[1] N. Ellison, C. Steinfield, e C. Lampe, “The benefits of Facebook "friends:" Social capital
and college students' use of online social network sites.,” Journal of Computer-Mediated

Communication, vol. 4, 2007.

[2] V. Kostakos, “An empirical study of spatial and transpatial social networks using
Bluetooth and Facebook,” 0910.4292, Out. 2009.

[3] S. Konomi, S. Inoue, T. Kobayashi, M. Tsuchida, e M. Kitsuregawa, “Supporting
Colocated Interactions Using RFID and Social Network Displays,” IEEE Pervasive

Computing, vol. 5, 2006, pp. 48-56.

[4] A.T. Campbell, S.B. Eisenman, K. Fodor, N.D. Lane, H. Lu, E. Miluzzo, M. Musolesi,

R.A. Peterson, e X. Zheng, “CenceMe: Injecting Sensing Presence into Social Network

Applications using Mobile Phones (Demo Abstract).”

[5] V. Kostakos e E. O’Neill, “Capturing and visualising Bluetooth encounters.,” CHI 2008,

workshop on Social Data Analysis, Florence, Italy.: 2008.

[6] A. Beach, M. Gartrell, S. Akkala, J. Elston, J. Kelley, K. Nishimoto, B. Ray, S. Razgulin,

K. Sundaresan, B. Surendar, M. Terada, e R. Han, “WhozThat? Evolving an ecosystem
for context-aware mobile social networks,” Network, IEEE, vol. 22, Jul. 2008, pp. 55, 50.

[7] Matthias Böhmer e Jörg Müller, “Users' Opinions on Public Displays that Aim to Increase
Social Cohesion,” Proceedings of The 6th International Conference on Intelligent

Environments. Kuala Lumpur 2010, Malaysia; to appear.

414 INForum 2010 Abel Soares, Pedro Santos, Rui José

Novos Serviços Tuŕısticos para Mobile
Advertising

Leonel Dias1,2 e António Coelho1,2

1 DEI/FEUP, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
2 INESC Porto, Campus da FEUP, R. Dr. Roberto Frias, 4200-465 Porto, Portugal

ei05041@fe.up.pt,acoelho@fe.up.pt

Resumo Actualmente, a computação móvel disponibiliza novas capaci-
dades que potenciam o desenvolvimento de novos serviços. Geralmente
as fontes de informação são heterogéneas, dispersas e associadas a lo-
calizações geográficas. Para além da localização e contextualização com
o perfil do utilizador, os sistemas de computação móvel estão a sofrer
evoluções, para suportar funções ligadas à publicidade e marketing de
bens e serviços. Assim, neste trabalho apresenta-se uma solução genérica
para a disponibilização de novos serviços de publicidade e marketing,
para o sector do turismo que tomem partido do contexto espacial do uti-
lizador – Mobile Advertising. A implementação prática da metodologia
sugerida, é focalizada na Região de Turismo do Douro.
Palavras-chave: Computação móvel, Mobile Advertising, Informação
geográfica e Serviços baseados na localização

1 Introdução

A contribuição do Turismo para o Produto Interno Bruto (PIB) nacional está si-
tuado nos 14.4% e a World Travel Tourism Council (WTTC) prevê que em 2020
seja 16.9% [1]. O Turismo é também responsável por 18.8% da empregabilidade
nacional. O plano tecnológico nacional português [2] contempla várias estratégias
na utilização das novas tecnologias para criar valor acrescentado na indústria do
turismo. É necessário que as entidades tuŕısticas pautem as suas actividades por
parâmetros estratégicos, tais como, Marketing mais agressivo e directo; Inovação
na comercialização dos seus produtos; Intensificação dos contactos personaliza-
dos para promoção de serviços; E aposta nas novas tecnologias para promover a
aproximação dos diversos interlocutores.

Destas poĺıticas nasce a importância para o desenvolvimento de serviços e
plataforma inovadoras, que permitam ao sector do Turismo crescer e potenciar
as suas mais-valias. O Mobile Advertising é o resultado dos prinćıpios propos-
tos pelos conceitos de Publicidade, Marketing e GeoMarketing, sendo como o
próprio nome indica uma forma de fazer ou transmitir publicidade através de
aparelhos móveis. A principal potencialidade do Mobile Advertising é a capaci-
dade de promoção de campanhas com acesso directo ao utilizador ou conjunto
de utilizadores em apenas alguns instantes. [3]

Este trabalho aborda a concepção de uma plataforma inovadora para Mobile

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 415–426

Advertising, que utiliza as tecnologias actuais para aproximar as pessoas das
melhores regiões de turismo. Para demonstração da exequibilidade dos conceitos
e mecanismos propostos é apresentado um caso prático de aplicação à Região de
Turismo do Douro.

2 Trabalho relacionado

Nos trabalhos apresentados em [4], [5], [6] e [7], são descritas várias soluções para
o desenvolvimento de soluções fornecedoras de serviços baseados na localização.
São apresentadas várias alternativas não intrusivas permitindo ao utilizador a
subscrição e recuperação da informação espećıfica que lhe interessa, de acordo
com as suas preferências e a sua localização actual. Tal como nestes trabalhos,
o artigo [8] explora algumas ideias de como criar uma plataforma que modele,
observe, avalie e explore uma boa noção do contexto presente.

Em [9], desenvolve-se um novo mecanismo para selecção de informação geor-
referenciada. A solução apresentada garante que a informação seleccionada tem
em conta a orientação, sentido, ângulo e campo de visão do utilizador. Esta
abordagem permite realizar interrogações do género: ”Quais são os restaurantes
que estão nesta direcção?”. Recentemente foi também apresentado um outro
trabalho, que conta com a utilização de elementos multimédia na pesquisa in-
teractiva de pontos de interesse baseados na localização e orientação do utili-
zador [10]. Para tal, os dispositivos móveis são equipados com câmaras digitais
e sensores de posição e direcção, servindo de complemento para a apresentação
de pontos de interesse sobre um mapa. Esta abordagem ajuda a estabelecer a
correspondência entre os ı́cones representativos sobre o mapa e os objectos reais
do espaço f́ısico que rodeia o utilizador.

No Geotumba, um motor de pesquisa geográfica para dispositivos móveis, os
autores descrevem os principais desafios na concepção de interfaces para estes
serviços em dispositivos móveis, para além de que criam métodos para definição,
recuperação e visualização de informação de contexto geográfico [11]. Para es-
tudar as mais-valias de interfaces de pesquisa que utilizam chaves em contextos
móveis, um estudo experimental apresenta os resultados da pesquisa sobre ma-
pas e da pesquisa sobre texto [12]. Os resultados mostram que a escolha depende
de três factores: preferências pessoais, necessidade de informação e contexto da
situação. O estudo conclui que uma solução h́ıbrida é a melhor escolha para
desenvolvimento de interfaces de pesquisa sobre informação georreferenciada.

Quando se pretende a visualização de informação sobre mapas, existem al-
guns problemas que podem ocorrer devido a: congestionamento de elementos
num espaço limitado; detalhes de visualização que dependem da resolução do
ecrã; e elementos que se tornam impercept́ıveis a partir de uma determinada di-
mensão. Este tema é bastante relevante, quando se tratam de aplicações que se
destinam a equipamentos móveis, cuja capacidade de memória, processamento
e resolução é limitada. Assim em [13], [14], esta temática é explorada e são pro-
postas algumas soluções ao ńıvel de visualização, sendo dada especial atenção à
utilização de mecanismos de filtragem baseados em funções de grau de interesse e

416 INForum 2010 Leonel Dias, António Coelho

à definição de múltiplas representações que resolvem a densidade de informação
e o grau de interesse do utilizador. Mas a visualização dos mapas não pode es-
tar sempre dependente da ligação à internet, por isso em [15], apresenta-se uma
técnica para armazenamento dos tiles de mapas, em memória secundária dos
dispositivos móveis, que rompem com os métodos tradicionais de caching.

3 Plataforma para Mobile Advertising

O Mobile Advertising proporciona oportunidades para novos serviços. Tendo em
conta as limitações das soluções existentes actualmente, desenvolveu-se uma nova
plataforma para a divulgação de serviços ligados ao turismo regional.

Assim sendo, cada turista dispõe de uma aplicação móvel, que lhe permite
explorar e conhecer uma determinada região, possibilitando também às orga-
nizações a divulgação dos seus serviços, limitando a interferência nas actividades
dos utilizadores. O funcionamento principal da plataforma foi optimizado para
ser simples e eficaz. Como está definido na figura 1, cada organização local pos-
sui pontos de interesses, aos quais podem estar associados eventos de várias
competências. Estes eventos são publicitados através de um portal de gestão,
onde existem as funcionalidades necessárias para a realização desses objectivos.
Paralelamente, cada turista da região pode utilizar a aplicação móvel que lhe per-
mite aceder ao menu de navegação, onde pode visualizar um mapa interactivo
da região. Neste são identificados todos os pontos de interesse, de acordo com o
perfil definido por cada utilizador, sendo visualizada toda a informação relevante
relativa às suas caracteŕısticas. Para além disso, beneficia de facilidades que lhe
permitem visualizar itinerários, efectuar reservas antecipadas ou comentar esses
locais através das tecnologias associadas às redes sociais actuais.

A cada reserva do utilizador fica associado um código, que deverá ser for-
necido à organização à qual diz respeito a reserva efectuada. A validação deste
código permite às organizações comprovar as reservas dos eventos lançados. Além
disso, cada serviço que seja potenciado por uma pré-reserva, permite aos utili-
zadores acumular pontos de participação, que posteriormente podem ser conver-
tidos em prémios e aos quais está associada uma determinada quantidade de
pontos acumulados. Existe ainda uma outra forma para garantir a acumulação
de pontos, que é realizada através do sistema de navegação, que assinala no
mapa locais georreferenciados onde existe um QR Code dispońıvel para ser des-
codificado e que garante que, após a sua conversão, é acumulado novamente
um determinado número de pontos. A atribuição dos pontos não é homogénea,
sendo que o seu valor unitário depende da poĺıtica da administração, que terá
em conta vários factores, destacando-se sobretudo o potencial de negócio e a in-
fluência da organização. A selecção de uma boa poĺıtica que garanta excelentes
benef́ıcios económicos para as organizações, pode assegurar sustentabilidade fi-
nanceira ao portal. Por exemplo, se uma organização local recebe mensalmente
250 reservas através da plataforma, a administração local pode celebrar com essa
organização, um contracto que lhes permita aceder a 1% dos valores monetários

Novos Serviços Tuŕısticos para Mobile Advertising INForum 2010 – 417

rentabilizados. A utilidade dos códigos está associado à validação das reservas e
atribuição de prémios, que permite garantir a fidelização dos turistas na região.

Figura 1. Funcionalidades principais

Existe também uma outra forma para as organizações publicitarem as suas
actividades, que funciona através de notificações que são recebidas sempre que
o utilizador se encontra suficientemente próximo de eventos patrocinados. Es-
tas notificações estarão sempre de acordo com o perfil do utilizador e podem
ser recebidas em qualquer circunstância desde de que o utilizador tenha permi-
tido tal funcionalidade. Esta abordagem pode ser combinada com o mecanismo
de conversão dos QR Codes, proporcionando às organizações a publicitação de
vários pontos de interesse que permitem aos utilizadores acumularem pontos e
onde, posteriormente nas redondezas, estão associados alertas de proximidade
que lançam notificações de eventos próximos.

Para além destes mecanismos vocacionados para a implementação de Mobile
Advertising em regiões tuŕısticas, o utilizador tem ao dispor várias funcionali-
dades que lhe servem de guia tuŕıstico, garantindo que não instala somente uma
aplicação para procura de serviços ou eventos promocionais.

A utilização de aplicações móveis, com acesso a dados remotos via internet,
torna-se extremamente dispendiosa, sendo que a sua praticabilidade em certas

418 INForum 2010 Leonel Dias, António Coelho

zonas do páıs ainda não é posśıvel a 100%, uma vez que nas localidades mais
remotas o seu acesso, utilizando dispositivos móveis é muito limitado. Por estas
razões, a aplicação móvel beneficiará de dois modos de execução: online e offline.
No módulo offline, isto é, sem acesso à internet, apenas são exeqúıveis as fun-
cionalidades cuja existência de acesso à rede não é obrigatória. Neste módulo, a
visualização de mapas é posśıvel, sendo que a indicação dos pontos de interesse
é efectuada de acordo com os dados mais recentes e que se encontram armaze-
nados localmente no dispositivo. Para além disso, o utilizador pode continuar
a receber notificações, sendo que estas dependem sempre dos dados armazena-
dos localmente e que podem não estar actualizados. A partir deste ponto, não é
posśıvel continuar a utilização sem ser no modo online. Neste segundo modo, o
utilizador pode-se autenticar no sistema, permitindo aceder ao seu perfil definido
no portal Web da região. Para além disso, a autenticação permite o acesso aos
serviços ligados ao Mobile Advertising, designadamente às reservas e aos pontos
de participação.

3.1 Sistema Modular

Para implementação do conceito anteriormente descrito, decidiu-se estruturar a
plataforma em 3 componentes principais. Como se pode observar na figura 2,
existe um Portal Público, um Portal de Gestão e uma Aplicação Móvel. Cada um
destes módulos possui funcionalidades próprias, sendo que o Portal de Gestão
pode ser manipulado pela Administração do sistema e pelas várias Organizações
locais existentes na região, enquanto que, o Portal Público e a Aplicação Móvel
apenas terão como actor principal, os potenciais turistas.

Figura 2. Módulos e respectiva interacção

Novos Serviços Tuŕısticos para Mobile Advertising INForum 2010 – 419

O Portal de Gestão não é de acesso público, sendo facultado somente às
organizações locais e à administração da plataforma. Neste pacote constam as
funcionalidades para gestão de conteúdos presentes no Portal Público, adminis-
tração das contas dos utilizadores, configuração dos pontos de interesse e eventos
associados, bem como todas as funcionalidades ligadas à opção de reservas.

O Portal Público é de acesso geral, sendo o núcleo da plataforma, pois permite
várias facilidades tais como o acesso à informação alfanumérica e multimédia,
sempre que posśıvel georreferenciada (exemplo, noticias e publicidade de even-
tos ou serviços), e a manipulação de aplicações geográficas que permitem ao
utilizador interagir com os conteúdos georreferenciados e a possibilidade para
programação de viagens ou passeios na região tuŕıstica.

A Aplicação Móvel pode ser analisada como a extensão do portal público que
permite à plataforma ficar mais próxima do utilizador, devido à sua caracteŕıstica
móvel e à sua capacidade de contextualização geoespacial. Esta componente
implementa todos os mecanismos para Mobile Advertising, bem como outras
valências que criam valor acrescentado no uso global da plataforma. É composto
pelos seguintes módulos:

– Exploração – Conjunto de funcionalidades que permitem navegar sobre uma
região, através das facilidades geográficas de visualização e localização de
pontos próximos à localização do utilizador;

– Publicidade – Serviços que operam sobre os eventos submetidos pelas or-
ganizações e que são oferecidos aos utilizadores, consoante o seu perfil e o
contexto das suas acções. É também responsável pelos serviços que permitem
a acumulação de pontos;

– Reservas – Permite efectuar reservas antecipadas, para obtenção de descon-
tos e pontos de participação. Implementa também os mecanismos necessários
à gestão das reservas, nomeadamente a visualização dos códigos comprova-
tivos, que permitem fazer a respectiva validação;

– Redes Sociais – Implementa as funcionalidades responsáveis pela auten-
ticação utilizando as contas das redes sociais e de inserção de comentários,
relativos a pontos de interesse previamente seleccionados pelo utilizador,
garantindo que estes são colocados em tempo real e associados à sua loca-
lização.

3.2 Arquitectura

A arquitectura da plataforma é composta pelos componentes que permitem ga-
rantir a implementação dos serviços ligados ao Mobile Advertising. Para além
disso é necessária a introdução de outros componentes que facilitem o desenvolvi-
mento e integração das funcionalidades complementares aos objectivos primários
do sistema global.

Assim sendo, esta plataforma integra um servidor que possui uma base de
dados espacial contendo informação alfanumérica e geográfica. Esta base de da-
dos está acesśıvel pelas diferentes componentes, através de um Web Service que
permite a manipulação e o acesso à informação áı existente.

420 INForum 2010 Leonel Dias, António Coelho

Figura 3. Arquitectura da plataforma

Este servidor disponibiliza as interfaces necessárias para a implementação do
portal de gestão e do portal público acesśıveis via Internet através dos brow-
sers instalados nos diferentes sistemas operativos. Ambos os portais apresentam
mapas interactivos para apresentação e manipulação da informação georreferen-
ciada, por isso é necessária a existência de um servidor de mapas. Após alguns
testes efectuados, foi decidida que a melhor abordagem seria a utilização de um
servidor de mapas externo, pois permite poupar tempo de desenvolvimento assim
como reduzir custos, uma vez que na sua maioria são de acesso gratuito. Outra
vantagem associada aos servidores de mapas externos é que estes normalmente
incluem API’s poderosas e que se encontram em constante actualização, permi-
tindo óptimas performances e excelente usabilidade. A tecnologia de servidor de
mapas seleccionada para a implementação desta metodologia foi o Google Maps
API V3. No entanto, caso uma determinada implementação exija a utilização
de outro servidor de mapas externo, por exemplo por motivos de protocolos es-
tabelecidos, a sua substituição não será cŕıtica, uma vez que cada componente
é desenvolvido, de forma o mais abstracta posśıvel, relativamente à tecnologia
utilizada pelas outros componentes.

Para aumentar as potencialidades da aplicação, foi decidido integrar algumas
funcionalidades oferecidas pela redes sociais. Assim sendo, todos os mecanismos
desta área, utilizam o Facebook e respectiva API, uma vez que se trata de
uma das mais importantes redes sociais. Nesta arquitectura há ainda lugar para
a componente móvel, essencial para a implementação dos conceitos ligados ao

Novos Serviços Tuŕısticos para Mobile Advertising INForum 2010 – 421

Mobile Advertising e Location-Based Services. Este modelo pode ser aplicado a
qualquer sistema operativo móvel, mas neste trabalho a implementação foi de-
senvolvido para Android, de forma a beneficiar das facilidades oferecidas por este
sistema, nomeadamente para os mecanismos ligados à visualização geográfica e
geo-localização. O dispositivo móvel dispõe de uma base de dados SQLite, que
é instalada de raiz com o sistema Android e que será utilizada para armazenar
toda a informação que é necessária manter localmente. A localização do dispo-
sitivo é efectuada através do GPS, sendo por isso independente do acesso à rede
de internet.

4 Caso de estudo - MOBIDouro

Para implementação da plataforma, considerou-se que a região do Douro seria
uma boa oportunidade para ser o primeiro caso de estudo da solução desen-
volvida. Para implementação desta solução apenas se descrevem os mecanismos
ligados à aplicação móvel e ao desenvolvimento do sistema, uma vez que relati-
vamente ao portal Web, este está a ser desenvolvido no âmbito de outro projecto
de investigação.

4.1 Aplicação Móvel

Figura 4. Exemplos de interface

A aplicação móvel possui um conjunto de funcionalidades relacionadas com
a opção de exploração geográfica, onde o utilizador tem acesso a um mapa
dinâmico contextualizado com a posição actual do utilizador. Sobre este mapa

422 INForum 2010 Leonel Dias, António Coelho

são indicados os pontos de interesse que se adequam ao perfil definido pelo uti-
lizador e para cada ponto assinalado é posśıvel visualizar com detalhe, tando a
informação alfanumérica, como todos os eventos associados a este. Nos eventos
em que seja posśıvel fazer uma reserva, é fornecido ao utilizador um formulário
que lhe permite efectuar essa operação. Sempre que a aplicação se encontra em
execução, podem aparecer alertas de proximidade no visor do dispositivo móvel,
que informam o utilizador de eventos muito próximos (distância inferior a 250
metros) e cujas caracteŕısticas também se adequam ao seu perfil (figura 4).

Para acesso ilimitado a todas as funcionalidades é necessário que o utiliza-
dor se encontre registado no portal público. A autenticação pode ser efectuada
através da conta de acesso criada nesse portal ou através da conta de Facebook
associada ao utilizador e registada na parte pública. O utilizador autenticado
tem acesso às principais informações da sua conta. Através deste item o uti-
lizador pode configurar o seu perfil, para que os dados manipulados estejam
contextualizados com as suas preferências. Para além disso, através deste menu
é posśıvel aceder à lista das reservas efectuadas pelo utilizador e todos os dados
referentes a estas (figura 5).

Na aplicação móvel desenvolvida, existe ainda uma ferramenta que permite
a captura de imagens e posterior conversão do QR Code, para a respectiva acu-
mulação de pontos. Nesta aplicação há ainda espaço para as funcionalidades
ligadas às redes sociais, nomeadamente a implementação de mecanismos que
permitem inserir comentários sobre pontos de interesse que estejam próximos
da posição inicial do utilizador. Estes comentários são publicados no ”Mural”da
página do Facebook respeitante ao utilizador.

Figura 5. Exemplos de interface (2)

Novos Serviços Tuŕısticos para Mobile Advertising INForum 2010 – 423

4.2 Desenvolvimento do sistema

A aplicação móvel foi desenvolvida para Android, sendo a base de dados local
SQLite. Sempre que necessita aceder ou manipular informação externa acede a
WEB Services desenvolvidos em .Net. A comunicação é efectuada através da
biblioteca KSOAP2 que permite consumir em Java, Web Services .Net. As in-
terfaces da aplicação móvel foram criadas de acordo com as especificações para
desenvolvimento de aplicações para Android, sendo a linguagem base XML.

A localização e actualização da posição geográfica de cada dispositivo é efec-
tuada através do GPS do próprio aparelho, através da classe LocationListener,
designadamente os métodos onLocationChanged(Location loc), onProviderDisa-
bled(String provider), onProviderEnabled(String provider) e onStatusChanged(
String provider, int status, Bundle extras). No modo online, a visualização dos
mapas é efectuada através da biblioteca externa do Google Maps, sendo para
tal necessário estender a classe MapActivity e os métodos que possui. No modo
offline, o mapa é desenhado através das facilidades oferecidas pela biblioteca
Nutiteq, em que os diferentes tiles encontram-se armazenados localmente no
dispositivo. Estes tiles são oferecidos pela OpenStreetMap e posteriormente é
efectuado um pré-processamento, para delimitação das zonas e ńıveis de visua-
lização. A posição actual do dispositivo móvel é desenhada sobre o mapa, através
das facilidades oferecidas pela interface MyLocationOverlay. Os pontos de inter-
esse são desenhados através da classe abstracta ItemizedOverlay que implementa
um array de OverlayItem, possibilitando assim a criação de vários markers. Para
implementação dos mecanismos de alerta foi necessário utilizar métodos ofere-
cidos pela classe LocationManager, principalmente o addProximityAlert(double
latitude, double longitude , float radius, long expiration, PendingIntent intent).
Este método é responsável por lançar a actividade, que faz surgir as notificações
de pontos próximos. As notificações são efectuadas através de alertas visuais e
sonoros.

O perfil do utilizador é definido através de filtros que operam sobre as di-
ferentes categorias e do raio de alcance entre eventos próximos. Estes filtros
para além de estarem associados à conta do utilizador, são também armazena-
dos localmente e sempre que a aplicação é iniciada são carregados sem que seja
necessária autenticação. Através da aplicação móvel cada utilizador pode confi-
gurar o seu perfil para que a toda informação recebida esteja de acordo com as
suas preferências. Assim sendo, para o caso do Douro foram definidas 4 categorias
principais de filtragem, respectivamente: Turismo, Vinhos, Paisagem, Saberes e
Sabores. Cada uma destas categorias representa um conjunto de pontos de inter-
esse de caracteŕısticas similares e eventos associados. Existem ainda uma quinta
categoria independente do caso de aplicação, que permite ao utilizador definir
se quer explorar a região através de QR Codes. O utilizador para cada categoria
pode definir qual a percentagem de resultados que pretender obter, sendo a or-
dem definida pela proximidade da posição espacial. Ou seja, se for definido 50%
na categoria de Paisagem, o utilizador tem acesso a metade das subcategorias de
informação que se encontram dispońıveis nesta categoria (as mais relevantes), e
que esta englobada no raio de alcance definido no mesmo formulário. As funciona-

424 INForum 2010 Leonel Dias, António Coelho

lidades ligadas às redes sociais foram implementadas com a utilização dos meca-
nismos oferecidos pela biblioteca fbconnect-android, nomeadamente para acesso
à conta do utilizador e respectiva informação mais relevante. A publicação de
comentários acerca dos pontos de interesse georreferenciados também é posśıvel
através dos métodos desta biblioteca. Para a conversão dos QR Codes foi uti-
lizada a API KAYWA QR-Code. Cada reserva do utilizador possui um código
único e unipessoal, sendo constitúıdo por 6 elementos alfanuméricos.

5 Conclusões e Trabalho Futuro

Após o trabalho efectuado, considera-se que a plataforma desenvolvida atinge os
propósitos da criação de Novos Serviços para Mobile Advertising. Desenvolveu-se
uma solução genérica, adaptável a qualquer região tuŕıstica e que permite criar
serviços de valor acrescentado. Estes serviços pouco intrusivos, são fornecidos de
acordo com a localização do utilizador e tendo em conta o seu perfil de utilização.

Para que a metodologia funcione é necessário que na região exista uma estru-
tura organizacional semelhante à proposta, ou seja, que estejam bem definidos
quais os pontos de interesse que pertencem a uma determinada organização. Para
além disso, devem ser especificados quais os privilégios de cada organização e
quais as competências e poĺıticas da administração da plataforma, através da ce-
lebração de vários contractos. A aplicação só terá interesse para os utilizadores,
caso exista uma boa cobertura documental e georreferenciada da região, logo
será necessário estabelecimento de protocolos com entidades que possuem essas
informações.

Relativamente ao trabalho futuro, a curto prazo, há a salientar o facto de
que algumas das funcionalidades implementadas se encontrarem ainda numa fase
de teste, sendo por isso necessário desenvolver padrões de testes que contemple
a avaliação da solução a ńıvel de performance, sustentabilidade de carga e in-
teracção com os utilizadores. É também necessário, criar mecanismos de opti-
mização no que diz respeito à actualização da informação relativa a pontos de
interesse que sejam fornecidos por entidades externas, para servirem de com-
plemento aos dados existentes. A médio prazo, os objectivos passarão pela im-
plementação de mecanismos relacionados com a realidade aumentada, podendo
substituir a tecnologia QR Code ou conceber novos serviços que criem mais
valor acrescentado. Para ser melhorada a acessibilidade da aplicação móvel, a
longo prazo podem ser implementadas funcionalidades para reconhecimento e
śıntese de voz, permitindo por exemplo, a invisuais mais igualdade de acesso.
A utilização da recente tecnologia Google Goggles também pode vir a ser uma
mais-valia, na criação de novos serviços para Mobile Advertising.

Novos Serviços Tuŕısticos para Mobile Advertising INForum 2010 – 425

Referências

1.World Travel & Tourism Council, The Economic Impact of Trave & Tourism
Portugal 2010, Dispońıvel em http://www.wttc.org/download.php?file=http:

//www.wttc.org/bin/pdf/original_pdf_file/portugal.pdf
2.Ministério da Economia e da Inovação, Plano Estratégico Nacional do Turismo 2006-

2015, Dispońıvel em http://www.portugal.gov.pt/pt/Documentos/Governo/MEI/

PENT.pdf
3.Mobile Marketing Association, Mobile Advertising Guidelines, Dispońıvel em www.

mmaglobal.com/mobileadvertising.pdf
4.Afonso da Fonte Gomes Vaz, Fornecimento de Serviços Push Direccionados e Ba-

seados em Localização, tese de mestrado em Engenharia de Redes de Comunicações,
Universidade Técnica de Lisboa, 2009.

5.André Filipe Ferreira Cardoso, Publicidade móvel adaptada ao utilizador, tese de
mestrado em Engenharia Informática - ramo Computação Móvel, Universidade Fer-
nando Pessoa, 2008.

6.Hugo Miguel Meireles Teixeira, Aplicação Móvel com Localização Geográfica, tese
de mestrado em Engenharia de Redes de Comunicações, Universidade Técnica de
Lisboa, 2009.

7.Timo Ojala. Case studies on context-aware mobile multimedia services. Journal on
Digital Information Management 8(1):3-14. 2010.

8.Hinze, A., Malik, P., and Malik, R. Interaction design for a mobile context-aware
system using discrete event modelling. In Proceedings of the 29th Australasian Com-
puter Science Conference - Volume 48 (Hobart, Australia, January 16 - 19, 2006). V.
Estivill-Castro and G. Dobbie, Eds. ACM International Conference Proceeding Se-
ries, vol. 171. Australian Computer Society, Darlinghurst, Australia, 257-266. 2006.

9.Mark Amundson, M. Compass Assisted GPS for LBS Applications, Honeywell,
http://www.honeywell.com/magneticsensors, 2006.

10.P. Pombinho, A. P. Afonso, M. B. Carmo, Contextos e Visualização Adaptativa
em Ambientes Móveis. 1o INForum - Simpósio de Informática, Setembro, 2009.

11.S. Freitas, M. Silva e A.P. Afonso, Geotumba móvel: motor de busca geográfico
para dispositivos móveis, Encontro Nacional de Visualização Cient́ıfica (ENVC 05),
Setembro, 2005.

12.Pelosi, G. and Psaila, G. 2010. SMaC: spatial map caching technique for mobile
devices. Em: Proceedings of the 2010 ACM Symposium on Applied Computing,
SAC ’10, 2010.

13.A. Vaz, P. Pombinho, A. P. Afonso, M. B. Carmo, MoViSys - A Visualization Sys-
tem for Mobile Devices. Em: Springer-Verlag (Ed.), Visual 2008 - 10th International
Conference on Visual Information Systems, LNCS 5188, p. 167-178, Setembro, 2008.

14.P. Pombinho, M.B. Carmo e A.P. Afonso, Visualização de informação georeferen-
ciada em dispositivos móveis, V Encontro Português de Computação Gráfica (EPCG
07), Outubro 2007.

15.K. Church, J. Neumann, M. Cherubini, N. Oliver, The ”Map Trap”?: an evaluation
of map versus text-based interfaces for location-based mobile search services. Em
WWW ’10: Proceedings of the 19th international conference on World wide web,
ACM, p. 261–270, 2010.

16.Hinze, A. and Junmanee, S. “Travel recommendations in a mobile tourist informa-
tion system.” Kaschek, R., Mayr, H. C. and Liddle, S. (eds), Proc Fourth Interna-
tional Conference on Information Systems Technology and its Applications (ISTA
2005), Palmerston North, New Zealand, 86-100. Gesellschaft für Informatik, Bonn.
2005.

426 INForum 2010 Leonel Dias, António Coelho

Um Sistema Publicador/subscritor com
Subscrições Geograficamente Distribúıdas para

RSSFs ?

Ricardo Mascarenhas e Hugo Miranda

Universidade de Lisboa
Faculdade de Ciências

LaSIGE
{rmascarenhas@lasige.di.fc.ul.pt,hmiranda@di.fc.ul.pt}

Resumo As redes de sensores sem fios (RSSFs) são compostas por um
grande número de pequenos dispositivos com restrições a ńıvel energético,
capacidade de processamento e de memória que monitorizam o ambiente
em que estão inseridas. As fortes restrições a que estão sujeitas obrigam
à utilização de paradigmas de comunicação espećıficos, que tenham em
consideração uma utilização racional dos recursos.

Este artigo apresenta um sistema Publicador/Subscritor que tem em
conta o interesse dos nós em determinados tipos de informação e suprime
o envio de informação sem relevância. Para além disso, o sistema adapta-
se às restrições de energia e de memória dos dispositivos.

1 Introdução

Com a evolução da tecnologia e consequente diminuição do tamanho dos dispos-
itivos, as redes de sensores sem fios (RSSFs) tornaram-se extremamente apelati-
vas. As RSSFs não necessitam de uma infra-estrutura de suporte à comunicação,
e são tipicamente compostas por dispositivos de pequena dimensão com baixo
poder computacional, memória e energia limitada. Os sensores estão equipa-
dos com tecnologia que lhes permite obter informação sobre o ambiente em
que estão inseridos (por exemplo: temperatura, humidade, pressão, movimento)
e estão tipicamente dispersos pela área de observação onde recolhem dados e,
após algum processamento, os enviam para um ou mais nós sink, que se encar-
regam de fazer chegar a informação ao utilizador final. A utilização deste tipo
de redes é apropriada para um vasto número de aplicações, como por exemplo,
monitorização de habitats, agricultura de precisão, monitorização de edif́ıcios e
aplicações militares [1, 7, 18].

Os sensores estão equipados com uma interface de rede sem fios que lhes
permite enviar informação directamente para os nós que se encontrem dentro
do seu raio de transmissão. A entrega de mensagens a nós mais distantes é

? This work has been partially supported by FCT project REDICO
(PTDC/EIA/71752/2006) through POSI and FEDER.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 427–438

conseguida por retransmissões sucessivas, realizadas por diferentes dispositivos.
A descoberta de uma sequência de nós entre a origem e o destino da mensagem é
realizada por protocolos de encaminhamento para redes não infra-estruturadas.

Tipicamente, os nós sensores são programados em tempo de produção para
utilizar a sua limitada capacidade de processamento na avaliação da relevância
da informação obtida, ou seja, se a sua retransmissão justifica o consumo de
energia necessário para a entrega ao sink mais próximo. Com o aumento do
número de sensores, aumenta também o volume e diversidade de informação
recolhida. Adicionalmente, abre-se caminho à especialização dos nós sink, que
poderão seleccionar, de forma independente dos restantes, os tipos de informação
que consideram relevantes. Neste cenário os sensores passam a ter que identificar
correctamente o(s) sink(s) a quem a informação deve ser entregue. Impõe-se por
isso a definição de novos modelos de comunicação, que contemplem adequada-
mente casos em que nenhum nó sink esteja interessado em algumas das amostras,
ou esteja interessado apenas quando um conjunto de factores seja satisfeito. A
incapacidade de incorporar condições como as anteriores no modelo de comu-
nicação pode levar ao envio desnecessário de um elevado número de mensagens,
que implicam um gasto energético não negligenciável e consequente diminuição
de longevidade da rede [9].

Os sistemas Publicador/Subscritor [10] (Pub/Sub) fornecem as funcionali-
dades necessárias para o modelo dinâmico de RSSFs apresentado acima. Num
sistema Pub/Sub os publicadores produzem publicações, unidades de informação
não endereçadas que são entregues ao sistema. Os subscritores, por sua vez, ex-
pressam perante o sistema o seu interesse em publicações com determinadas
caracteŕısticas. Cabe ao sistema Pub/Sub a responsabilidade de entregar as
publicações aos subscritores que nelas estejam interessados. Este modelo de
comunicação molda-se perfeitamente às necessidades das RSSFs descritas em
cima pois a notificação da produção de informação de interesse contribui para a
redução do número de mensagens desnecessárias.

As concretizações descentralizadas de sistemas Pub/Sub para redes sem fios
poderão ser posicionadas entre dois extremos. Um consiste na inundação das sub-
scrições, onde todos os nós retransmitem as subscrições escutadas. Deste modo,
as subscrições chegam a todos nós da rede permitindo que os publicadores pos-
sam determinar localmente quais os subscritores a quem a publicação deverá
ser entregue. Este extremo terá maior eficiência num cenário onde importa opti-
mizar o custo da entrega de publicações, ou seja, quando se espera que o número
de publicações exceda o número de subscrições. Redes de monitorização de longa
duração, com uma filiação aproximadamente constante ao longo do tempo são
um bom exemplo deste tipo de aplicação. O outro consiste na inundação das
publicações, delegando nos nós a responsabilidade de transmitir e verificar se
a publicação satisfaz a sua subscrição. Este extremo será prefeŕıvel para redes
onde se espera um número muito reduzido de publicações, por exemplo aquelas
cujo objectivo é a notificação de um único evento, como um fogo florestal. Con-
tudo, nenhum dos extremos tem uma concretização adequada para RSSFs. Uma
vez que cada transmissão/recepção efectuada tem um custo energético não neg-

428 INForum 2010 Ricardo Mascarenhas, Hugo Miranda

ligenciável [9], importa encontrar soluções que reduzam o número de operações
de transmissão a um mı́nimo. Do mesmo modo, a inundação de subscrições não
é escalável por poder vir a consumir uma larga porção da escassa memória dos
sensores.

Neste artigo é proposta e avaliada uma solução de compromisso, em que a
informação relativa às subscrições é parcialmente replicada pelos dispositivos
que compõem a rede. As subscrições são distribúıdas de modo a que um qual-
quer publicador as possa obter, independentemente da sua localização, com um
baixo custo. As publicações são enviadas utilizando uma versão de um proto-
colo de encaminhamento convencional para redes não infra-estruturadas adap-
tado aos objectivos do trabalho. O remanescente do artigo está organizado da
forma descrita em seguida. A Sec. 2 apresenta em mais detalhe o modelo Publi-
cador/Subscritor e alguns dos trabalhos realizados no âmbito das redes sem fios.
O sistema proposto é apresentado na Sec. 3 e avaliado na Sec. 4. Finalmente, a
Sec. 5 conclui o artigo e discute o trabalho futuro.

2 Trabalho relacionado

Uma das caracteŕısticas distintivas dos diferentes sistemas de Pub/Sub existentes
é a expressividade com que um subscritor consegue indicar os seus interesses.
No modelo baseado em tópicos (por exemplo, [20,22]), quer as publicações, quer
as subscrições são identificadas por um assunto. Os subscritores são notificados
sempre que o assunto da informação publicada satisfaça o assunto especificado
nas subscrições. Este modelo tem como principal desvantagem a fraca expressivi-
dade que oferece aos subscritores contudo, é facilmente projectado num modelo
de difusão selectiva (multicast), com cada tópico a corresponder a um endereço
distinto.

O modelo baseado em conteúdos oferece uma maior expressividade já que
permite a utilização de operadores sobre os atributos das subscrições e não ape-
nas sobre o tópico. Neste modelo assume-se que um subscritor está interessado
numa publicação se e só se todas as restrições declaradas na subscrição são sat-
isfeitas. Este modelo é indicado para RSSF em que os nós sink podem refinar os
seus interesses de acordo com as suas necessidades. Por exemplo, uma aplicação
para detecção de incêndios estaria exclusivamente interessada em publicações
registando temperatura superior a 60◦ e humidade inferior a 70%. Alguns sis-
temas que usam este modelo estão descritos em [3,6, 8, 15,17].

Existem diversas estratégias de concretização de sistemas Pub/Sub [10].
Alguns sistemas centralizam a correspondência entre as publicações e os sub-
scritores em nós bem conhecidos, denominados mediadores (brokers). Apesar de
simplificarem consideravelmente a complexidade do sistema, a forte dependência
num conjunto limitado de dispositivos, e os recursos computacionais requeridos
tornam os brokers inadequados para os cenários de aplicação das RSSF.

Os sistemas descentralizados não recorrem a brokers, distribuindo a respon-
sabilidade pelos participantes pelo que são o mais adequado para RSSFs. A
descentralização do sistema Pub/Sub é uma mais valia mas apresenta um con-

Um Sistema Publicador/subscritor ... INForum 2010 – 429

junto de desafios acrescidos que resulta do aumento da complexidade resultante
da distribuição. No caso das RSSFs estamos interessados em soluções que re-
queiram simultaneamente baixa utilização da memória e a transmissão de um
número limitado de mensagens por todos os participantes.

O SPINE [4] é um sistema de Pub/Sub para redes parcialmente infra-estrutu-
radas (mesh). O sistema aproveita o facto de a rede dispor de alguns dispositivos
sem restrições de energia e com uma localização fixa, os quais designa de routers,
utilizando-os para armazenar as subscrições. O SPINE assume que os routers
estão dispostos em matriz. As subscrições são disseminadas pelos routers que se
encontrem na mesma linha que o subscritor e as publicações pelos routers que se
encontram na mesma coluna. Sempre que os routers recebem uma publicação,
verificam se há subscritores interessados na sua linha e encaminham-na para o
subscritor. Apesar da sua simplicidade, a aplicação deste sistema a RSSFs não
é trivial já que obrigaria a que os nós sensores tivessem o conhecimento da sua
localização geográfica.

O objectivo do Data Centric Storage (DCS) [19] é distribuir e localizar facil-
mente informação numa rede não infra-estruturada. Os dados são identificados
por uma chave e a esta é associado um par de coordenadas geográficas através de
uma função determinista. Os participantes responsáveis por salvaguardar cada
item de dados são aqueles que formam um ćırculo em torno da coordenada ge-
ográfica determinada para o item. Uma aplicação posśıvel do DCS é atribuir uma
chave a cada tópico de um sistema Pub/Sub, nomeando assim os dispositivos
mais próximos da localização como mediadores [2]. Contudo, este modelo não
é adequado para sistemas Pub/Sub baseados em conteúdos. Adicionalmente, o
DCS requer que todos os nós tenham conhecimento das suas coordenadas geo-
gráficas e dos limites da área de rede, o que diminui a aplicabilidade do sistema.

3 Sistema Pub/Sub

Para colmatar as limitações impostas pelos dispositivos que compõem uma RSSFs,
propomos um sistema Pub/Sub descentralizado baseado em conteúdos. A nossa
aproximação assenta numa replicação parcial das subscrições mas com as réplicas
distribúıdas geograficamente. Enquanto a replicação parcial diminui a quanti-
dade de memória utilizada em cada dispositivo, a distribuição geográfica das
réplicas contribui para um baixo consumo energético, uma vez que o conjunto
integral das subscrições pode ser obtido dos vizinhos de qualquer nó da rede.
No nosso sistema, cabe aos publicadores recolher as subscrições e entregar as
publicações aos subscritores, utilizando encaminhamento ponto-a-ponto.

A Fig. 1 ilustra a arquitectura do sistema proposto. A interacção entre a
aplicação e o sistema de Pub/Sub é efectuada através das primitivas Subscrever
e Publicar. A primitiva Notificação dá a conhecer à aplicação as publicações
que satisfazem a subscrição realizada. O ńıvel Pub/Sub utiliza os serviços de
dois módulos: i) um serviço de replicação parcial com distribuição geográfica
para redes não infra-estruturadas denominado PCACHE [14], encarregue da
replicação e recolecção das subscrições; e ii) o protocolo de encaminhamento

430 INForum 2010 Ricardo Mascarenhas, Hugo Miranda

Aplicação

Pub/Sub

AODV
Tabela de

encaminhamento PCACHEdados

Subscrever
Publicar

Disseminação
Pesquisa

Envio
ponto-a-ponto

Notificação

Figura 1. Arquitectura do sistema

AODV [16] através do qual são disseminadas as publicações. Cada um destes
módulos disponibiliza ao módulo de Pub/Sub acesso para leitura de uma estru-
tura de dados. A tabela de encaminhamento do AODV é utilizada pelo módulo
de Pub/Sub para identificar troços comuns nas rotas para os subscritores. A
PCACHE mantém na zona de dados a informação que coube ao dispositivo ar-
mazenar durante a execução do algoritmo de replicação. No contexto deste tra-
balho a zona de dados mantém por isso um subconjunto das subscrições efectu-
adas. Esta é acedida pelo módulo de Pub/Sub para identificação da lista parcial
de subscrições que satisfazem uma publicação.

3.1 Distribuição geográfica da informação

A PCACHE [14] é um módulo de código intermédio para redes sem fios não
estruturadas que replica os dados de tal forma que as réplicas estejam suficien-
temente distantes para prevenir o excesso de redundância, mas simultaneamente
permanecem suficientemente perto de forma a que a informação possa ser obtida
por qualquer nó com um número de mensagens reduzido. Esta secção descreve
de forma muito abreviada a PCACHE, salientando os aspectos mais relevantes
para este trabalho. Informação adicional poderá ser encontrada em [11,12,14].

A PCACHE não faz qualquer interpretação sobre os tipos de dados armazena-
dos, assumindo na sua versão mais simples que estes são constitúıdos por um par
<chave,valor>, sendo a chave utilizada para a identificação de duplicados e como
critério de pesquisa. É assumido que os dispositivos disponibilizam memória para
que a PCACHE possa operar embora não seja necessário que todos os dispos-
itivos disponibilizem a mesma quantidade de memória, facto que possibilita a
utilização de diferentes tipos de sensores na mesma rede. O funcionamento da
PCACHE não se baseia em informação de localização como o GPS, requerendo
apenas que os dispositivos tenham a capacidade de obter a força de sinal (RSSI
– Received Signal Strength Indication) das mensagens recebidas.

3.2 Subscrições

As subscrições são disseminadas utilizando o mecanismo base da PCACHE, as-
segurando por isso a distribuição geográfica das réplicas. A informação associada
a cada subscrição e salvaguardada na PCACHE é constitúıda por um filtro de
pesquisa e pelo endereço do subscritor. Quando comparado com uma publicação,

Um Sistema Publicador/subscritor ... INForum 2010 – 431

Figura 2. Recolha de subscrições

o filtro de pesquisa permite identificar se a publicação satisfaz ou não os critérios
de subscrição de acordo com o modelo baseado em conteúdos.

Na PCACHE a disseminação de dados é realizada por difusão, utilizando o
algoritmo PAMPA [13]. A decisão de armazenar um determinado item de dados
é local a cada nó mas condicionado pelo conteúdo das mensagens transmitidas
pelos vizinhos e pela memória dispońıvel.

3.3 Publicações

A operação de disseminação é decomposta em duas fases: identificação das sub-
scrições relevantes e entrega das publicações. Ambas são geridas pelo publicador.

Recolha de Subscrições A recolha de subscrições tem como objectivo reunir no
publicador os endereços dos subscritores a quem será destinada a publicação.
Para tal, é utilizada a operação de pesquisa da PCACHE, passando o publi-
cador a própria publicação como critério de pesquisa. Os mecanismos de difusão
e pesquisa da PCACHE são ortogonais ao tipo de dados utilizado. Por essa razão,
a operação de verificação de correspondência, entre os dados guardados em cada
nó pela PCACHE e a publicação, é delegada pela PCACHE na instância local
do módulo de Pub/Sub. Contudo, cabe à PCACHE o envio das respostas, que
respeita o algoritmo de consulta original. Este algoritmo assegura um consumo
mı́nimo de energia, por exemplo por agregar as respostas de diferentes partici-
pantes nos nós intermédios e removendo duplicados. O algoritmo de recolha está
representado na Fig. 2. Na figura, a recolha é iniciada pelo nó S e propagada
pelos nós assinalados com H. Ao receber a primeira cópia da mensagem, cada
nó verifica a sua zona de dados local e caso disponha de subscrições que sat-
isfaçam a publicação envia a informação dispońıvel para o nó H, o qual procede
à agregação dos dados e os envia por sua vez para o nó anterior.

Envio das publicações A PCACHE fornece um serviço de pesquisa em melhor
esforço. Em particular, em nenhum instante é posśıvel assegurar ao participante
que realiza a operação de recolha de subscrições que i) todos os itens de dados
que satisfazem a pesquisa foram retornados; ii) que não serão recebidas mais re-
spostas. Contudo, conhecendo o algoritmo de pesquisa da PCACHE, é posśıvel
determinar um peŕıodo ao fim do qual todas as respostas já deverão ter sido

432 INForum 2010 Ricardo Mascarenhas, Hugo Miranda

entregues e que é proporcional ao número de saltos realizado pela pesquisa. Du-
rante o tempo de espera, o publicador concentra as respostas recebidas numa
fila, removendo eventuais duplicados que resultarão de duplicação de registos
em nós distintos da rede. Expirado o temporizador no publicador, este tem em
principio toda a informação sobre eventuais subscritores, isto é, o endereço dos
nós interessados na publicação. As publicações podem agora ser enviadas em
mensagens ponto-a-ponto, recorrendo ao protocolo de encaminhamento para re-
des não infra-estruturadas AODV [16], depois de aplicada uma optimização que
reduz o número de mensagens necessárias para a entrega das publicações.

O AODV é um protocolo de encaminhamento reactivo, ou seja, que procura
rotas para cada destino apenas quando necessário. A tabela de encaminhamento
mantida em cada nó tem uma entrada por destinatário onde, para além de
outra informação de controlo, como a actualidade da rota, consta o endereço do
próximo nó da rota para o destinatário. O módulo de Pub/Sub utiliza a tabela
de encaminhamento do AODV para agregar os destinos de acordo com o próximo
nó da rota para o destino. Para cada nó seguinte é enviada uma única cópia da
publicação, juntamente com a lista de destinatários a quem a publicação deverá
ser entregue. De notar que a mensagem é endereçada ao nó seguinte e não a
um dos destinatários pelo que é recebida pelo módulo de Pub/Sub deste nó.
Cada vez que um nó recebe a publicação contendo vários destinatários consulta
a sua tabela de encaminhamento e repete o processo, enviando tantas mensagens
quantos nós seguintes nas rotas para os destinatários. A aplicação da optimização
termina quando, no publicador, ou num qualquer nó intermédio, o nó seguinte
não é partilhado por mais nenhum destinatário, sendo então a entrega delegada
no AODV, através de uma mensagem endereçada ao destinatário.

As respostas entregues tardiamente pela PCACHE não beneficiam do agru-
pamento. A optimização também não é aplicada aos destinatários para os quais
não exista uma entrada na tabela de rotas do publicador. Nestes casos, é criada
uma mensagem endereçada ao destinatário e o envio é delegado no AODV. Na
presença de um elevado número de operações de descoberta de rota num curto
intervalo de tempo, pode surgir instabilidade na rede, um cenário vulgarmente
denominado por Broadcast Storm [21]. Para reduzir o risco da sua ocorrência, as
mensagens com destino a nós que irão provocar operações de pedido de rota são
entregues ao módulo AODV a um ritmo cadenciado, permitindo a estabilização
da rede entre cada uma das operações.

4 Avaliação

O desempenho da solução proposta é comparado com uma versão melhorada
da inundação de publicações por utilizar o algoritmo de difusão PAMPA. As
aproximações por inundação de publicações têm custo nulo na difusão das sub-
scrições mas um custo que se espera mais elevado por publicação. Importa por
isso perceber o ponto a partir do qual o equiĺıbrio da nossa solução apresenta um
custo inferior ao da inundação, sabendo que a solução apresentada terá um custo
superior (em número de transmissões) à inundação de subscrições. No entanto,

Um Sistema Publicador/subscritor ... INForum 2010 – 433

importa referir que a inundação de subscrições troca a replicação parcial pela
replicação total das subscrições, o que representa um aumento do consumo de
memória que pode não ser comportável face aos limitados recursos dos disposi-
tivos.

A avaliação é realizada utilizando um protótipo do sistema Pub/Sub es-
tudado desenvolvido para a v. 2.32 do simulador de redes ns-2 1. O mesmo
protótipo é utilizado para avaliar o desempenho da inundação de publicações,
através da contabilização do número médio de retransmissões realizadas pelo
algoritmo PAMPA para a disseminação das subscrições. O protótipo utiliza a
concretização do AODV que acompanha o simulador, tendo sido apenas desacti-
vado o temporizador de invalidação de rotas da tabela de encaminhamento por
não apresentar qualquer vantagem para cenários sem movimento. Para não prej-
udicar a avaliação da qualidade de distribuição em condições ideais, o protótipo
assume que os dispositivos têm memória suficiente para guardar todas as sub-
scrições que a PCACHE determina, sabendo-se que serão sempre, para cada
dispositivo, uma pequena fracção do total [14].

O cenário de simulação é composto por 100 nós uniformemente dispostos
por regiões com 8 dimensões distintas, definindo desta forma redes com difer-
entes densidades. Cada participante dispõe de uma interface de rede sem fios
IEEE 802.11b a 11Mb/s, com um raio de transmissão fixo de 250 metros. Desta
forma, as diferentes dimensões da rede simulada apresentam também compri-
mentos de rotas distintos. Os resultados apresentados resultam da execução de
20 simulações para cada área de simulação. Cada simulação combina diferentes
disposições dos nós na área de simulação, diferentes escolhas dos atributos nas
subscrições e nas publicações, e diferentes momentos de subscrição e publicação.

Cada simulação tem a duração de 87120 segundos e é decomposta em 2
fases. Nos primeiros 660 segundos, 50 nós realizam outras tantas subscrições.
O momento de cada subscrição é seleccionado aleatoriamente, reservando-se os
últimos 60s para a terminação das operações de subscrição. A partir dos 660s,
são efectuadas 1440 publicações a uma média de uma publicação por minuto.
Uma vez mais não são iniciadas publicações nos últimos 60s, assegurando desta
forma o tempo necessário para a entrega das publicações a todos os subscritores.

Para simular um modelo baseado em conteúdos, cada publicação é represen-
tada por um tuplo de 4 atributos da forma < x1, x2, x3, x4 >, xi ∈ [1, 9]. Os
valores de cada atributo são independentes, gerados aleatoriamente com uma
distribuição uniforme. As subscrições por sua vez impõem restrições aos 4 atrib-
utos, na forma < [y1, y1 + 3], [y2, y2 + 3], [y3, y3 + 3], [y4, y4 + 3] >, yi ∈ [1, 6],
com yi a ser determinado aleatoriamente de acordo com uma distribuição zipf.
Esta distribuição foi escolhida por ter sido demonstrado que representa por ex-
emplo, ı́ndices de popularidade de śıtios web [5] ou frequências de utilização
de palavras, cenários que se aproximam das aplicações antecipadas para os sis-
temas Pub/Sub. A combinação da distribuição uniforme das publicações com a
distribuição zipf das subscrições é ilustrada na Fig. 3, onde para cada uma das

1 http://www.isi.edu/nsnam/ns/

434 INForum 2010 Ricardo Mascarenhas, Hugo Miranda

0

10

20

30

40

50

60

Publicações

%
 S

ub
sc

riç
õe

s
In

te
re

ss
ad

as

Figura 3. Interesse das subscrições face às publicações produzidas

 10000

 20000

 30000

 40000

 50000

 60000

 70000

1500x500 1000x1000 2000x500 2500x500 2000x1000 1500x1500 2500x1000 2000x1500

tr

an
sm

is
sõ

es

Área de Simulação

Pub/Sub
PCACHE

AODV
PAMPA

Figura 4. Número total de transmissões

 400

 450

 500

 550

 600

 650

 700

 750

 800

1500x500 1000x1000 2000x500 2500x500 2000x1000 1500x1500 2500x1000 2000x1500

m

en
sa

ge
ns

 a
gr

up
ad

as

Área de Simulação

Figura 5. Reutilização das rotas

6561 (94) publicações posśıveis é apresentada a proporção de 10000 subscrições
que satisfaz.

A Fig. 4 mostra o número de mensagens enviadas em função da área de
simulação. Para o sistema Pub/Sub, é ainda representada a contribuição dos
diferentes protocolos utilizados para o número total de transmissões. A figura
mostra que o número total de transmissões das duas soluções avaliadas evolui
em sentidos opostos com a densidade. As transmissões PAMPA tendem a au-
mentar com a diminuição da densidade, o que se deve ao facto de o PAMPA ter
de adaptar a proporção de nós que retransmitem as mensagens à densidade da
rede [13]. O PAMPA também é utilizado no sistema Pub/Sub, nomeadamente,
nas operações de disseminação e recolha de subscrições. Contudo, uma vez que
a recolha de subscrições consiste numa difusão limitada a alguns saltos, o au-
mento do número de retransmissões com a densidade é atenuado pelos ganhos
ao ńıvel do AODV. Enquanto a solução de inundação de publicações apresenta
um custo (em número de mensagens) fixo por publicação para cada densidade,
o sistema proposto apresenta um custo que reduz com o aumento do número
de publicações, uma vez que o número de operações de descoberta de rotas é
progressivamente menor. Este facto justifica o maior número de mensagens do
sistema proposto em comparação com a inundação de publicações nas densi-
dades mais elevadas. A redução do número de mensagens observada nos testes
realizados nas duas menores densidades é atribúıdo a partições de rede pelo que
os resultados não podem ser considerados.

Um Sistema Publicador/subscritor ... INForum 2010 – 435

60%

65%

70%

75%

80%

85%

90%

95%

100%

1500x500 1000x1000 2000x500 2500x500 2000x1000 1500x1500 2500x1000 2000x1500

T
ax

a
de

 E
nt

re
ga

Área de Simulação

Pub/Sub
Pampa

Figura 6. Taxa de entrega

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1500x500 1000x1000 2000x500 2500x500 2000x1000 1500x1500 2500x1000 2000x1500

A
tr

as
o

(s
)

Área de Simulação

Sistema pub/sub
PAMPA

Figura 7. Latência

A redução do número de transmissões AODV é explicada pela Fig. 5, que
contabiliza o número de cópias de publicações agrupadas pelo publicador. Como
é ilustrado na figura, a diminuição da densidade da rede é acompanhada de
um aumento do número de mensagens agrupadas. Com o aumento da distância
entre os nós, o número de nós que o AODV pode seleccionar para a construção
de rotas diminui. Por esta razão o número de rotas posśıveis também diminui,
aumentando a probabilidade das mensagens partilharem o mesmo nó seguinte,
o que resulta num aumento do número de mensagens agrupadas.

A Fig. 6 apresenta a taxa de entrega de publicações e subscrições. A figura
mostra que na ausência de partições a taxa de entrega se mantém acima dos 90%.
É percept́ıvel o padrão referente ao decréscimo da taxa de entrega das publicações
à medida que a taxa de entrega do PAMPA também decai. A quebra progressiva
da taxa de entrega com a diminuição da densidade é atribúıda ao isolamento de
alguns dispositivos que são por isso incapazes de anunciar as suas subscrições, o
que resulta num conhecimento insuficiente dos subscritores e por consequência
na descida da taxa de entrega do sistema Pub/Sub.

O processo de recolha de subscrições levado a cabo pelo sistema Pub/Sub
introduz naturalmente algum atraso que não é posśıvel colmatar. Os resulta-
dos apresentados para a latência da disseminação na Fig. 7, confirmam estas
expectativas. Os valores para o sistema Pub/Sub medem o tempo médio decor-
rido entre a produção da publicação e a sua entrega a cada subscritor. No caso
do PAMPA, mede-se o tempo entre a produção da publicação e a sua entrega
ao último nó da rede. O gráfico sugere a existência de uma tendência de con-
vergência entre as duas aproximações avaliadas. No caso do sistema Pub/Sub, a
diminuição é atribúıda à reutilização de rotas, dado que cada transmissão sofre
intencionalmente um atraso para assegurar o envio cadenciado de mensagens que
evite perturbações na rede. No caso do PAMPA, o crescimento resulta do au-
mento do número de transmissões e do algoritmo executado pelo protocolo, uma
vez que cada dispositivo aplica algum atraso à sua própria retransmissão [13].

436 INForum 2010 Ricardo Mascarenhas, Hugo Miranda

5 Conclusões e Trabalho Futuro

Este artigo apresenta um sistema Pub/Sub completamente descentralizado que
se adapta às restrições e caracteŕısticas das RSSFs. A solução apresentada tem
como objectivo ser conservadora no uso de recursos, em particular, nos recursos
energéticos e na memória usada para armazenamento das subscrições.

A distribuição geográfica das subscrições é efectuada pelos subscritores através
da plataforma de código intermédio PCACHE, que apresenta duas vantagens:
para além de requerer um número reduzido de transmissões, faz uma utilização
racional da escassa memória dispońıvel nos sensores. Os publicadores indepen-
dentemente da sua localização reúnem informação sobre as subscrições, e enviam
as publicações aos respectivos subscritores.

A redução do consumo energético é alcançado através da redução do número
de mensagens, conseguindo ainda assim uma taxa de entrega relativamente alta.
A latência do sistema sugere que este não é adequado para aplicações com req-
uisitos temporais.

Para trabalho futuro, planeamos variar alguns parâmetros e desenvolver out-
ras optimizações, nomeadamente, estratégias para diminuição da latência do
sistema. O estudo do impacto de outros protocolos de encaminhamento e da ex-
ploração de outras sinergias com o AODV fazem também parte dos planos para
futuros melhoramentos.

Referências

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Computer Networks 38(4), 393 – 422 (2002)

2. Albano, M., Chessa, S.: Publish/subscribe in wireless sensor networks based on
data centric storage. In: CAMS ’09: Proceedings of the 1st International Workshop
on Context-Aware Middleware and Services. pp. 37–42 (2009)

3. Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom, R., Sturman,
D.: An efficient multicast protocol for content-based publish-subscribe systems.
In: Distributed Computing Systems, 1999. Proceedings. 19th IEEE International
Conference on. pp. 262–272 (1999)

4. Briones, J.A., Koldehofe, B., Rothermel, K.: SPINE: Publish/Subscribe for Wire-
less Mesh Networks through Self-Managed Intersecting Paths. In: Proceedings of
the 8th International Conference on Innovative Internet Community Systems (I2CS
2008). Schoelcher, Martinique (2008)

5. Cao, L.B.P.: Web caching and zipf-like distributions: Evidence and implications.
In: In INFOCOM. pp. 126–134 (1999)

6. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area
event notification service. ACM Trans. Comput. Syst. 19(3), 332–383 (2001)

7. Cerpa, A., Elson, J., Estrin, D., Girod, L., Hamilton, M., Zhao, J.: Habitat monitor-
ing: application driver for wireless communications technology. SIGCOMM Com-
put. Commun. Rev. 31(2 supplement), 20–41 (2001)

8. Cugola, G., Di Nitto, E., Fuggetta, A.: Exploiting an event-based infrastructure
to develop complex distributed systems. In: ICSE ’98: Proceedings of the 20th
international conference on Software engineering. pp. 261–270 (1998)

Um Sistema Publicador/subscritor ... INForum 2010 – 437

9. Feeney, L., Nilsson, M.: Investigating the energy consumption of a wireless network
interface in an ad hoc networking environment. Proc. of the 20th Conf. of the
IEEE Computer and Communications Societies (INFOCOM 2001). Proceedings.
pp. 1548–1557 (2001)

10. Garbinato, B., Miranda, H., Rodrigues, L.: Middleware for Network Eccentric and
Mobile Applications. Springer (2009)

11. Leggio, S., Miranda, H., Raatikainen, K., Rodrigues, L.: Sipcache: A distributed
sip location service for mobile ad-hoc networks. In: Mobile and Ubiquitous Systems
- Workshops, 2006. 3rd Annual International Conference on (2006)

12. Miranda, H.: Gossip-Based Data Distribution in Mobile Ad Hoc Networks. Ph.D.
thesis, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa - Portugal (2007)

13. Miranda, H., Leggio, S., Rodrigues, L., Raatikainen, K.: A power-aware broadcast-
ing algorithm. Personal, Indoor and Mobile Radio Communications, 2006 IEEE
17th International Symposium. Proceedings. (2006)

14. Miranda, H., Leggio, S., Rodrigues, L., Raatikainen, K.: An algorithm for dissem-
ination and retrieval of information in wireless ad hoc networks. In: Kermarrec,
A.M., Bougé, L., Priol, T. (eds.) Proceedings of the 13th International Euro-Par
Conference, Euro-Par 2007. Lecture Notes in Computer Science, vol. 4641, pp.
891–900. Springer (2007)

15. Pereira, J., Fabret, F., Llirbat, F., Preotiuc-Pietro, R., Ross, K.A., Shasha, D.:
Publish/subscribe on the web at extreme speed. In: VLDB. pp. 627–630 (2000)

16. Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. Mobile
Computing Systems and Applications, IEEE Workshop on 0, 90 (1999)

17. Pietzuch, P.R., Bacon, J.M.: Hermes: A distributed event-based middleware archi-
tecture. Distributed Computing Systems Workshops, International Conference on
(2002)

18. Pottie, G.J., Kaiser, W.J.: Wireless integrated network sensors. Commun. ACM
43(5), 51–58 (2000)

19. Ratnasamy, S., Karp, B., Shenker, S., Estrin, D., Govindan, R., Yin, L., Yu, F.:
Data-centric storage in sensornets with ght, a geographic hash table. Mob. Netw.
Appl. 8(4), 427–442 (2003)

20. Rowstron, A., Kermarrec, A.M., Castro, M., Druschel, P.: Scribe: The design of a
large-scale event notification infrastructure. In: Lecture Notes in Computer Science.
pp. 30–43. Springer (2001)

21. Tseng, Y., Ni, S., Chen, Y., Sheu, J.: The broadcast storm problem in a mobile ad
hoc network. Wirel. Netw. 8(2/3), 153–167 (2002)

22. Zhuang, S., Zhao, B., Joseph, A., Katz, R., Kubiatowicz, J.: Bayeux: an architec-
ture for scalable and fault-tolerant wide-area data dissemination. In: NOSSDAV
’01: Proceedings of the 11th international workshop on Network and operating
systems support for digital audio and video. pp. 11–20 (2001)

438 INForum 2010 Ricardo Mascarenhas, Hugo Miranda

Bluetooth Hotspots for Smart Spaces Interaction

Miguel M. Almeida, Helena Rodrigues, and Rui José

Departamento de Sistemas de Informação

Universidade do Minho

Abstract. We may find in the market many smart space applications and projects

which are using Bluetooth services as mechanism for user-interaction. However,

their ad-hoc implementation come as a limitation to their deployment in a global

interactive model. This survey focuses on the requirements of such applications,

systematizing their interaction models and presents the main key design of a mid-

dleware component for Bluetooth interaction-based pervasive applications, run-

ning on Linux routers.

1 Introduction

Bluetooth is present in most of the actual handheld devices. Being easy to use, a short-
range and low cost technology, many applications are using it to interact with users.
Despite many needs of these projects being similar, each one implements its own Blue-
tooth interface, deployed only for that purpose. So, why not have a shared component,
capable of serving multiple applications simultaneously? This could empower and en-
courage the development of new applications based on the same situated interactions,
freeing the developer from Bluetooth technical details and enabling a more sustainable
development of the desired applications. The objective of this study is to justify the need
of such component - a software running on Linux-enabled routers, offering Bluetooth
services to applications. In this paper we survey a set of Bluetooth interaction-based
projects leading to a set of reference scenarios, which we use as a starting point for the
discussion of the main key design issues of a Bluetooth Hotspot, a middleware compo-
nent for Bluetooth interaction-based pervasive applications.

2 Related Work

Our analysis of the related work is based on the study of representative systems based
on most common Bluetooth services: device and service discovery, Bluetooth OBEX
and RFCOMM connection. On the whole set, we mainly identify three different ways

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 439–442

to share information between the system and its users: 1) using the device name, 2)
sending or receiving a file, or 3) establishing a permanent connection (e.g. socket) to
share more complex data.

The simplest form of interacting with an application is using Bluetooth’s device
name following a predefined syntax. With this method, the user does not need to install
a specific application, promoting a cross-platform method. The BluetunA project [1]
proposes a system for people to share their music interests using the Bluetooth name
on their devices. Users on public spaces may suggest music and artists to be played just
changing their device names to specific tags. Bluetooth device scanning based systems
also include car traffic monitoring. For example, in [2], Bluetooth scanners, geograph-
ically distributed, collect device’s addresses and names, which are then analysed for
statistical purposes.

One of the most common Bluetooth interactions are based on the Bluetooth OBEX
profile for sending and receiving files. The interaction is two-away, from the user to the
system (e.g. to display a PowerPointTMpresentation on a public display) and from the
system to the user (e.g. for Bluetooth marketing purposes). The BlueMall system [3] is
an example of a Bluetooth-based advertisement system for marketing purposes: users
receive marketing information as they enter a specific place.

Other works use the RFCOMM protocol for application specific communications.
LectComm, an open-source software, is an application for smart classrooms. Students,
equipped with LectComm client applications send their answers to questions and quizzes
to the LectComm server application, running on lecturer’s computers. Nintendo’s Wi-
imote communication is also based on this type of connections, allowing applications
to recognize user’s gestures [4] as a way of interaction.

3 Discussion

We propose to build the Bluetooth Hotspot as a middleware component for the develop-
ment of Bluetooth interaction-based applications. This component should provide the
most common Bluetooth services and serve the representative scenarios surveyed in the
last section. We now briefly discuss the key design issues of such a component.

The first design issue concerns the integration models with applications which presents
two main requirements: (1) how to configure and request the Hotspot services and (2)
how to exchange information (Bluetooth sights and files) with applications.

The second key design issue concerns the global state management of the system.
This issue is raised because (1) Hotspots are shared between different applications,
and thus configuration conflicts may appear, and (2) some scenarios require multiple

2

440 INForum 2010 Miguel M. Almeida, Helena Rodrigues, and Rui José

Hotspots to cover all the user space in the context of the same application, which may
raise global state inconsistency problems.

Finally, considering the existence of additionally Bluetooth services and future application-
dependent requirements (for example, Wiimote gesture recognition), the Hotspot archi-
tecture should be modular, providing the easy integration of third-party extensions.

4 System Architecture

Our global architecture comprises a central server capable of configuring and man-
aging a set of Hotspots components and the Hotspot itself. The central server is the
main point for integrating applications with the Hotspot and for global state managing.
The main function of this server is to receive interaction requirements from applica-
tions and provide to the Hotspot a set of rules, which model the Hotspot behaviour.
This rules describe parameters for scanning intervals, OBEX delivery and OBEX re-
ceiver instructions and instructions concerning data exchanging with applications. The
Hotspot architecture is depicted in figure 1. It comprises five essential components:

1) the Bluetooth Modules, responsible for managing basic Bluetooth functions like
device discovering, scanning, and receiving and sending files using OBEX. These mod-
ules are initiated by the Scheduler module. 2) the Internal Managers are responsi-
ble for managing the Bluetooth radio interfaces (dongle manager) and the interactions
between the Bluetooth component and the applications (rules manager and resources
manager). The rules manager is responsible for receiving applications configuration
rules (possibly from a configuration web site). The resources manager is responsible
for the communication between the Bluetooth component and the applications. 3) the
Events Channel implements a decoupled communication model between system com-
ponents. 4) the Scheduler interprets the rules and triggers the correct action for each
new event that enters the events channel. 5) a set of third-party Extensions, installed by
the Hotspot administrator, allowing to extend the system with specific functionality.

5 Conclusions and Future Work

We have presented a short survey on representative Bluetooth-interaction based appli-
cations, which are based on the most common Bluetooth services: device and service
discovery, Bluetooth OBEX and RFCOMM connection. We support on this study the
specification, design and implementation of a Bluetooth Hotspot software component
and the corresponding integration models with applications and present our work in
progress.

3

Bluetooth Hotspots for Smart Spaces Interaction INForum 2010 – 441

scanner

wiimote module

rules manager

resources manager

PAN module

obex receiver

dongle manager

...

interpreter
&

scheduler

obex delivery
e
v
e
n
t
s

c
h
a
n
n
e
l

bluetooth "modules"

"managers"

third-party "extensions"

print module

Fig. 1. Proposed component architecture for the Hotspot software.

We have developed a few Hotspot prototypes, which meet partially our architecture.
They implement some basic modules such as the scanning, OBEX receiver and OBEX
delivery modules. Those Hotspot prototypes are being currently integrated, deployed
and shared in the context of different systems.

We are now finishing the implementation of the remaining architecture modules and
proceeding to the evaluation of the different deployed systems. We expect to learn from
those deployments the necessary lessons in order to validate our main key design issues
of global state management, application integration and system modularity. Finally, we
expect to evaluate the Hotspot software component in the context of the broader re-
search area of system support for ubiquitous computing.

Given the open nature of the Hotspot component and the natural evolution of Blue-
tooth interactions, we aim to initiate a process for building the software as an open-
source software. We expect to encourage the development of new third-party extensions
as well as promote the utilization of Bluetooth as an interaction device in smart spaces.

References

1. Arianna Bassoli Martin Wisniowski Stephan Baumann, Björn Jung. Bluetuna: let your neigh-

bour know what music you like. ACM, 2007.
2. Stan Young. Bluetooth traffic monitoring technology. Center for Advanced Transportation

Technology, University of Maryland, September 2008.
3. José-María Sánchez, Juan-Carlos Cano, Carlos T. Calafate, and Pietro Manzoni. Bluemall: A

bluetooth-based advertisement system for commercial areas. ACM, 2008.
4. Zachary Fitz-Walter, Samuel Jones, and Dian Tjondronegoro. Detecting gesture force peaks

for intuitive interaction. ACM, 5th Australasian Conference on Interactive Entertainment,

2008.

4

442 INForum 2010 Miguel M. Almeida, Helena Rodrigues, and Rui José

Indoor Positioning Using a Mobile Phone with an

Integrated Accelerometer and Digital Compass

Paulo Pombinho, Ana Paula Afonso, Maria Beatriz Carmo

DI-FCUL, Campo Grande, Edifício C6, 1149-016, Lisboa, Portugal

ppombinho@lasige.di.fc.ul.pt, {bc, apa}@di.fc.ul.pt

Abstract. Although location based applications have been gaining popularity,

most positioning devices do not work when in an indoor environment,

hindering the development of indoor location based applications. In this paper

we propose a technique, based on the detection of footsteps, and the direction in

which they were taken by the user, to be able to calculate the position of the

user inside a building. We use information about the buildings floor plan to

create a graph that can be used to improve the accuracy of the system.

Keywords: Mobile Devices; Indoor Positioning; Step Detection Algorithm.

1 Introduction

Global positioning devices (GPS) are becoming progressively more common in new

mobile devices and, for this reason, the real time information about the location of

users has become widely used in an extensive range of location based applications.

Despite being reliable and precise while in the open, GPS devices need to be able to

view a large portion of the sky to correctly calculate the device’s position. This

renders the GPS useless while indoors. Furthermore, alternative positioning systems

like the ones that use GSM or mobile phone tracking do not have enough accuracy to

be able to correctly identify a position inside a building.

There are some works that explore indoor positioning mechanisms. Most of these

can be divided in three types: the use of infrastructures installed on the buildings,

explicitly for indoor positioning; the use of existing Wi-Fi networks; and the use of

sensors installed in the mobile device or the user himself.

There are several diverse approaches that use transmitters of some kind, installed

on the buildings, and corresponding receivers, carried by the user. Some systems use

infrared transmitters [1], RFID tags [2], VHF radio [3], or Bluetooth beacons[4].

Several systems have explored the use of Wi-Fi wireless network access points,

and operate by identifying and processing the signal strength information of multiple

base stations to triangulate the position of the user (see for instance [5]).

Regarding infrastructure free positioning, Kourogi et al. [6] use sensors placed on

the waist of the user, to detect walking stance and velocity. Some approaches use shoe

mounted sensors to detect the displacement made by the foot in each footstep and

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 443–446

consequently the displacement made by the user [7]. Finally, Glanzer et al. [8] present

a pedestrian navigation system that uses a set of diverse sensors to estimate changes

in position and attitude, and obtain the final position of the user.

Despite providing solutions for the problem, the works presented are either based

on the existence of an infrastructure in each building, or the need of external sensors

placed, for example, on the user’s shoes or waist. These sensors are a potential

limitation to the natural movement of the user or the practicability of the system.

Furthermore, some of the systems require expensive equipments and others, although

using cheap beacons, need to install a large number of these to obtain good accuracy.

Since we aim to develop mixed environment (indoor and outdoor) adaptive

visualization applications, our goal is to develop an approach that does not need

external sensors, beyond those integrated in the mobile device, and that can be used in

buildings with no infrastructure installed. Furthermore, since the user is holding the

mobile device in his hand, we want an approach that does not hinder the users hand

movements, allowing him to retain the freedom of movement they usually have.

In this paper, we present an algorithm that allows the position of users inside a

building to be inferred from the movement done by the user. To achieve this goal we

use a mobile device with an integrated accelerometer to detect when the users takes a

footstep, and a digital compass to determine the direction of the footstep. From this

information and the knowledge of the buildings floor plan we can calculate with an

acceptable accuracy the indoor location of the user. In the next section we will

describe the algorithms and techniques used.

2 Indoor Positioning

We use a 3-axis accelerometer integrated in the mobile phone to capture, in real time,

the accelerations that the device is being subjected to.

When in a standing / resting stance, the only acceleration that is present in the

mobile device is gravity. If we consider the mobile device to be perpendicular to the

floor plane, the X and Z axis would be measuring no acceleration, and the vertical Y-

axis would be measuring the gravity, with a value of approximately -9.8 m.s-2. Since

the users can freely use and move the mobile device, we have no prior knowledge of

which accelerometer axis is, at a given point, measuring the vertical acceleration. For

this reason, despite potentially adding some noise, we have chosen to analyze the

resulting acceleration vector norm, instead of analyzing each axis separately.

When walking, the user will, not only, apply a forward acceleration but also, with a

greater magnitude, alternatively apply a vertical upward acceleration followed by a

vertical downward one. We have defined four parameters that are used to detect a

footstep: a peak amplitude λp that represents the minimum positive shift in

acceleration caused by a footstep, a trough amplitude λt that represents the minimum

negative shift in acceleration, a minimum time interval Δtmin that needs to go by

before completing the footstep pattern and a maximum time interval Δtmax that cannot

be exceeded for the footstep pattern to be detected. All of these parameters can be

changed inside the application in real time.

444 INForum 2010 Paulo Pombinho, Ana Paula Afonso, Maria Beatriz Carmo

The step detection algorithm works by constantly checking if the current

acceleration is greater than λp. When that happens, the application starts to check if

the footstep pattern is happening. If a sudden shift in acceleration occurs in less that

Δtmin, we assume that it was caused by another movement and the step is discarded. If

the pattern occurs in more time than Δtmin but less than Δtmax, and it reaches λt creating

a pattern similar to the one shown previously, a step is recorded along with the current

orientation, which is obtained from the digital compass. If after Δtmax we still have not

detected the footstep pattern, the step is discarded.

To correctly identify the location of the user inside a building, we use the last

known position given by the GPS as the initial position, the information about the

steps recorded, the information about the orientation in which they were taken, and

the average step length. With this information we can calculate the trajectory of the

user and his position. However, to minimize errors caused by steps that are not

detected (false negatives), or steps incorrectly detected (false positives), we make

corrections to the position of the user through the use of the building floor plan.

Fig. 1. Definition of the floor plan graph.

We have opted to divide the floor plan in rectangular areas of different sizes, where

transition areas (for example, doors) have the smallest size, and areas with no

transitions (for example, corridors with no doors) have the bigger areas. Each of these

areas corresponds to a node in the graph. Figure 1 shows, on the left, the floor plan

with the considered areas in red. In the center figure the graph that was defined is

shown, with a node for each area. Finally, in the right figure an example of the path

detection and correction is shown. The path the user has taken is drawn in blue over

the floor plan and the corrections displayed in a red thick line.

The use of graphs allows us to calculate with each step, the position of the user

inside a certain node area. If at any time, the calculated position is outside the current

node area, the system will verify if there is a valid transition to another node in the

specified direction. If there is, the system calculates the location in the new node area.

If there is no valid transition, the system searches for the nearest position where the

detected movement would be valid and corrects the user position.

3 Conclusions and Future Work

In this paper, we propose an indoor positioning method that does not need previously

installed infrastructures in a building. Furthermore, this approach does not need

Indoor Positioning Using a Mobile Phone ... INForum 2010 – 445

external sensors, avoiding the restriction of the user’s natural movements when using

a mobile device and walking indoors.

In the near future, we need to perform extensive user experiments. These

experiments will, not only, allow us to precisely assess how accurate the obtained

position of the users is, but also, most importantly, obtain valuable data about the

differences in the step patterns originated from a diverse set of users. This knowledge

can give us the insight on what the best default step detection parameter values are,

and also help us in implementing an automatic calibration of these values. A

particularly important parameter, which can cause a high accumulated error, and

should thus be automatically adjusted, is the step size, since it varies not only between

different users, but also depends on the speed and way the user is moving. Since our

aim is to use this algorithm in mixed environment visualization applications, one

solution is to use information from the GPS when the user is outdoors.

We also intend to test more complex buildings plans, and the detection of footsteps

when going up and down a set of stairs, and the use of escalators and elevators.

Acknowledgments. The work presented here is based on research funded by the FCT

- Fundação para a Ciência e Tecnologia through the PTDC/EIA/69765/2006 project

and the SFRH/BD/46546/2008 scholarship.

4 References

1. Hiyama, A., Yamashita, J., Kuzuoka, H., Hirota, K., Hirose, M.: Position Tracking Using

Infra-Red Signals for Museum Guiding System. In: Proceedings of the Ubiquitous

Computing Systems, 2nd International Symposium. pp. 49-61, (2005)

2. Ghiani, G., Paternó, F., Santoro, C., Spano L. D.: A Location-Aware Guide Based on Active

RFID’s in Multi-Device Environments. In: Computer-Aided Design of User Interfaces VI,

Springer London, pp. 59-70. (2009)

3. Ikeda, T., Inoue, Y., Sashima, A., Yamamoto, K., Yamashita, T., Kurumatani, K.: ComPass

System: An Low Power Wireless Sensor Network System and its Application to Indoor

Positioning. In: Proceedings of the CSTST 2008, pp. 656-662. (2008)

4. Bruns, E., Brombach, B., Zeidler, T., Bimber, O.: Enabling Mobile Phones to Support

Large-Scale Museum Guidance. In: IEEE Multimedia, April 2007, pp. 16-25. (2007)

5. Ekahau Wi-Fi Tracking Systems, http://www.ekahau.com

6. Kourogi, M., Ishikawa, T., Kameda, Y., Ishikawa, J., Aoki, K., Kurata, T.: Pedestrian Dead

Reckoning and its Applications. In: Proceedings of “Let’s Go Out” Workshop in

conjunction with ISMAR’09. (2009)

7. Jiménez, A. R., Seco, F., Prieto, J. C., Guevara J.: Indoor Pedestrian Navigation using an

INS/EKF framework for Yaw Drift Reduction and a Foot-Mounted IMU. In: Proceedings of

the WPNC’10. (2010)

8. Glanzer, G., Bernoulli, T., Wiessflecker, T., Walder, U.: Semi-autonomous Indoor

Positioning Using MEMS-based Inertial Measurement Units and Building Information. In:

Proceedings of the WPNC’09. (2009)

446 INForum 2010 Paulo Pombinho, Ana Paula Afonso, Maria Beatriz Carmo

Engenharia Conduzida por Modelos

447

UbiLang: Towards a Domain Specific Modeling
Language for Specification of Ubiquitous Games

Ricardo Guerreiro, André Rosa, Vasco Sousa, Vasco Amaral, Nuno Correia

Computer Science Department, Faculdade de Ciências e Tecnologia – Universidade Nova de
Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal

{rmg15404, adr13041}@fct.unl.pt, vasco.sousa@gmail.com {vasco.amaral, nmc}@di.fct.unl.pt

Abstract. As new ubiquitous projects emerge, it is often required the integration of
ubiquitous devices in development frameworks. This commonly leads to
developing new frameworks, usually created in General Purpose Languages
(GPL). Although this solves immediate problems, it also leads to a decrease of
productivity and efficiency, due time spent while adapting code. This results, in
most cases, on a development process starting from scratch when most of the times
the concepts were already used in previous projects. This project proposes tackling
this problem by implementing a Domain-Specific Modeling Language called
UbiLang. By carefully taking into account concepts of the domain problem,
UbiLang has the main goal of enabling ubiquitous games developers to speed-up
their problem specification during the design phase. Allowing then early error
detection by validating the system model on a higher abstraction level than code
and by improving application development time contribute to faster application
prototyping.

Keywords: Domain Specific Modeling Language, Ubiquitous Game Devices,
Ubiquitous Gaming, Meta-Modeling, Language Engineering.

1 Introduction
The culture of gaming has a long tradition since ancient board games, such as the

Mesopotamian’s “Royal Game of Ur”[1]. Currently, games are a real worldwide
phenomenon recognized as an important research topics[2] and almost every day new
devices are released into market with the purpose of improving gaming experience.
Permitting the five human senses to participate in the experience, these improvements
have the goal of providing new perspectives of time, space and interaction within the
game itself. This technological development can be observed in the evolution of
ubiquitous hardware like gloves, head-mounted displays and others, which are often
tested in games[2].

As defined in [3], a Ubiquitous Device is – “an electronic device capable of using its
internet, wireless and other networking capabilities that are so embedded in the
environment that the devices can be used virtually used anywhere and anytime. This
concept embraces a broad range of possibilities, which include communications (cell
phones),ubiquitous computing (notebook computers), delivery of images (displays) and
products for identifying or managing people and things (objects using wireless IC tags,
like RFID tags)”.

Another fact its that the time to market is of a crucial essence in the Ubicomp domain
area, due its quick evolution pace. As new Ubiquitous Projects emerge, it is often
required the creation of a new types of components (forming new Ubiquitous Devices).

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 449–460

This leads to the necessity of development of new suitable frameworks (that support the
project’s development) normally programmed in a General Purpose Languages (GPL),
such as C++, C# or Java. Although these approaches tend to solve immediate problems,
they also lead to a decrease of productivity, due to the low-level code re-use of solutions
that are very similar. This compels, in most cases, to development from scratch, as
already analyzed in [4].

At the same time, the domain expert hardware/game developer would benefit from a
language with a higher level of abstraction that would allow the specification of models
using domain terminology instead of a language from the solution domain (e.g., C++ or
Java). The last situation of using code, potentially leads to semantic gap problems (i.e.,
the way we think about the problem in terms of games, has to be twisted, in an error
prone fashion, to the way it is expressed in computational terms).

A Domain-Specific Modeling Language (DSML) is according to [5]: a language
“used to make specifications that manual programmers would treat as source code and
if formed correctly it should apply terms and concepts of a particular problem domain”.
We propose a DSML to solve the referred problems, by allowing the development of
applications with Top-down (Designers to Programmers) or Bottom-up (Programmers to
Designers) paradigm views.

To accomplish this we will, in section 2, engage in a domain analysis of the Ubicomp
topic by exploring reusable aspects of the hardware components and correspondent
behaviors. After that, a design of the DSML will be made, which is expected to provide
the domain expert with faster means for lowering error prone model specification in
section 2 and 3. This will be achieved by dividing the gained knowledge into two levels:

I. Structural Level: where all the hardware components and the most used
virtual objects properties/aspects are gathered;

II. Behavior Level: where the most used application behavior transitions and
states are gathered;

Finally, in section 4, a solution will be provided using a real life case-study of a
wearable interface developed by the Multimedia Group at FCT-UNL dubbed as Gauntlet
[6] and an application example for the Gauntlet, named Noon [6, 7]. We will then
validate our statements of productivity increase and usability through an empirical study,
using domain experts as subjects. In section 5 we conclude our work.

2 Domain Background
Ubiquitous Projects belong to the Ubiquitous Computing (Ubicomp, for short)

domain area and, depending on the context, to the larger Multimedia base domain area.
This allows in addition the Ubicomp are to be fused with another domain area, the
Augmented Reality (AR), due to the latter using the same technology developed in
Ubicomp to expand reality with computer interaction. These domain areas, similar as
they are, can have the same development background. So the next sub-sections will
introduce the most relevant development methods for these domain areas and conclude
by presenting the domain analysis made with the Ubiquitous Projects.

2.1 Augmented Reality

As stated in [8]: “AR is a variation of Virtual Environment (VE), or more commonly
known as Virtual Reality (VR)”. A VR differs from an AR, as the first merges the user
perspective with the artificial world, therefore hiding the real world. The AR approach

450 INForum 2010 Ricardo Guerreiro et al

uses computer generated elements to complement reality in real-time. To achieve results
like this, an AR project can use Ubicomp technology (such as a PC with a camera and a
specific pattern, for example) and build applications able to generate these VEs. These
applications are then called AR applications and are commonly developed using AR
frameworks, which have the ability to manage the particular Ubiquitous Devices used in
the application. Other developments methods can consist on Visual Programming
Languages (VPL) and GPLs. These three concepts are going to be further discussed.

Augmented Reality Frameworks, can go from software libraries like ARToolkit [9] to
concepts of collaborating distributed services like the Distributed Wearable Augmented
Reality Framework (Dwarf for short) case [10, 11]. Still, frameworks like ARToolkit,
due to the fact of being “software libraries”[12], when compared with Domain-Specific
Modeling (DSM) or VPLs, can miss the major advantages of the fast application
prototyping inherit in these latter approaches. It is, for example, also surpassed by the
Dwarf framework services, however as a gain, its modules have already been validated
and tested and therefore can be reused/applied in a possible future Domain Specific
Modeling (DSM) Generator approach. In Dwarf’s architecture, because of its concepts
of collaborating distributed “services” that can be developed in a wide range of
programming languages (e.g. Java, C++, Python), give the framework the power of
platform/programming language independency. These services consist in collections of
interdependent modules of code that have a set of requirements called “Needs” and
capacities called “Abilities”. Each of the modules is then connected with other modules
within a network, forming groups that are then controlled by a special “service” named
Service Manager. This “cluster” concept is similar to an element abstraction in a DSML,
yet it lacks the domain specification possible by such elements as it does not reuse the
code as a DSM Generator would do, thus keeping the same issues when compared with
GPL approaches.

Visual Programming Languages (VPLs), are programming languages that let
programmers create new applications by graphically manipulating program modules. A
VPL, to achieve that purpose, uses visual expressions, spatial arrangements of text
and/or graphic symbols, rather than specifying them in a textual manner. So a VPL
oriented environment results in a language with an inherent visual expression for which
there is no obvious textual equivalent [13]. They are also associated with specific
applications or frameworks, with some examples like: Max/MSP/Jitter [14], Pure Data
[15], and others [4].

Media Processing Frameworks is a type of development where the programming is
still being made in a textual manner using GPLs for that purpose. ARToolkit, for
example, can also be classified as a Media Processing framework or software library that
uses GPL. Some widely used examples are Processing [16] and openFrameworks [17].
Both present a simplified interface to powerful libraries for media, hardware and
communication interaction.

These solutions, despite solving the prompted issues (multimedia object manipulation,

for example), do not address all Ubicomp problems (as the majority of the Ubiquitous
Projects do not take a framework approach to solve their problem, but instead use GPL
programming). This divergence comes as the Ubicomp domain area and the AR domain

UbiLang INForum 2010 – 451

area can be fused, there are some components/requirements or actions in Ubiquitous
Projects that are not commonly taken into the AR domain scope. Also, in Ubiquitous
Projects, there exists a tendency to develop new types of devices, from different off-the-
shelf components with the main objective of innovating how players interact within a
particular game. AR Projects instead, normally take already developed devices and just
enhance the user’s perception of reality. In the VPLs case, being similar to a Graphic
DSMLs as they are, the biggest discrepancy comes from the capability of a DSML to be
built specifically to a particular domain. Finally, GPLs and Media Processing
Frameworks case still have reusability issues from one application to another together
with possible code errors or/and inconsistencies between both programmers and
application designers visions for the final application. Still this analysis demonstrated the
most common components and functionalities currently available, providing an idea of
the ones that were most used or required by the AR community in general.

2.2 Survey of Projects

Presently there is a wide plethora of Ubiquitous Projects and some of them were
analyzed in surveys like [2, 6]. With the objective of widening the domain scope to
demonstrate the usability of the proposed DSML in a wide range of Ubiquitous Projects, a
selection parameter was required to analyze these projects. The analysis began by
searching for similarities between projects. This lead to two major comparison
parameters: (1) the hardware components used to build the particular Ubiquitous Project
and (2) the way these components were used or the behavior they add in the program
workflow. With the first comparison parameter it was possible to restrict the analyzed
projects to a much smaller number. The second parameter came when even, repeating
some hardware components, the behaviors each of them had (in their respective projects)
was different from one application to another. This gave not only different and new
behavioral analysis (which was useful to be generalized) but decreased even further the
number of projects to be analyzed. With these criteria in mind, we have proceeded to a
discussion and analysis found in [18] of the various selected projects that were found to
incorporate the widest array of components and behaviours: 6th Sense [19], Blinkenlights
[20], Brainball [21], InStory [22], Pirates! [23], Uncle Roy All Around You [24],
Epidemic Menace [25], Noon [6] and Headbanger Hero[26] .

The analysis then gave an wide range of the commonly used components in the
domain area. They were then added to the lowest levels of the Structural Level and soon
it was clear that, in order to offer some type of organization at modeling time, the
components were needed to be divided in several categories, as seen in Fig. 1. This
allowed programmers/hardware developers to rapidly and easily construct devices and
therefore a concept of a “Virtual Device” was added to the language.

Within each of the categories, shown in Fig. 1, it was put the identified elements of
the analysis. For example, in the “Visual” category it was needed a “Monitor”, “Camera”
and “Visual Effects” elements, which enabled the definition of a generalized input, output
hardware component and also a property that gave effects to all visual components, (being
also possible to define individually “Visual Effects” element within each defined
“Monitor” and “Camera” element), the other categories were also filled with identified
domain elements abstractions and more details can be found in [18].

452 INForum 2010 Ricardo Guerreiro et al

Figure 1. Virtual Device Compartments

Additionally to the components used in the projects, their contexts were also
analyzed, resulting in some relevant concepts. One of these, was that the need (in the
majority of the cases) to interact with virtual objects which permitted, for example,
interaction with physical hardware components/objects external to the application itself
(audio, video, textual, video file, or even a model generated by an outside application).
With this notion, the Structural Level was completed by creating a new element called
“Object” which stood at the same hierarchical level of the Virtual Device. To this
“Object” element was given the possibility to define virtual representations, which could
be referenced to a specific type of external multimedia or model representation files.
Furthermore, it could have its own physical properties, in case of a NPC or human
avatar, or even virtual values attributes like health, for example. The relation with the
Virtual Device would then be made via its physical representations properties, as for
example RFID Tags, real world coordinates or association with specific Virtual Devices.

From the projects, another identified requirement/concept was the need for (at
modeling/application designing time), provide users with the opportunity to instantly
work on the application’s workflow without concerns and therefore rapidly express (in a
language much closer to their own) a prototype of the application’s behavior/context. So
with this concept and the analysis already done, the Behavior Level began to be
developed following a template of a finite state machine model, for all the identified
actions [18].

2.3 Model Driven Development

In a Model Driven Development (MDD) approach, specifically in DSM, a model, for
short, serves as a mean of visually representing abstractions of system concepts and
features [5]. This model can be used for designing purposes (when the problem domain
requirements are too complex to be expressed with code), to reverse engineer systems
(by creating model-based visual documentation, which helps understand the capabilities
of a system after it was already designed and built) and other functionalities. A
metamodel is a DSML specification, which describes an abstraction level higher than the
model, at the point that it abstracts the concepts used in the model or abstract syntax
below. The metamodel has the purpose of describing and expressing concepts of a
language, their properties, constructions and rules (like relationship, correctness or
hierarchy rules between concepts) [4, 5, 27].

UbiLang INForum 2010 – 453

Domain Specific Modeling, has two aims: (1) raise the level of abstraction further than
the current programming languages by specifying the solution using problem domain
concepts; (2) generate final applications in a chosen programming language or other
form of high-level specification [5].

The first objective specifies a Domain Specific Modeling Language, or DSML, which
is a kind of typically declarative language that gives an expressive power to a particular
problem domain, simplifying the development of generalized applications in these
specialized domains using high-level abstractions of the domain concepts for that
purpose. The definition process of a DSML, as stated in [5], consists of five main phases:
(1) Domain Analysis where the problem domain necessities and/or requirements are
identified and analyzed based on a number of different applications/systems that belong to
the same domain for similar features or concepts; (2) Language Design where the domain
analysis features gathered from the previous phase are formalized in the design of the
DSML metamodel, (3) Language Implementation represents the definition of the visual
representations of the DSML features; (4) Language Testing validates a DSML to
multiple example cases and (5) Language Maintenance when the domain area evolves,
leading to new requirements that will be used to update the language.

In the second objective the generation process can, normally, be supported by an
application framework or API using a domain specific generator or a high level of
abstraction. The idea behind a DSM generator comes from the notion that in DSM,
application modelers do not expect the full code of the framework to be implemented but
only the “code” they modeled in the DSM Editor instead [5, 28, 29].

DSM solutions are meant to be used when applications features or domain
requirements have similarities. In these situations, application programmers tend to focus
in their applications unique features development rather than reimplementing similar
functionalities [5]. In addition, when comparing with other general purpose modeling
languages, like UML [30] (Unified Modeling Language), the DSM process takes a large
advantage as it can join all the diagrams needed in the UML development process, for
instance, into a single metamodel. By the time the models are being implemented, in the
UML process, they are made in a independent way from the designed models themselves.
This can lead developers astray with questions of not properly specified aspects that are
(possibly) not true in the application/system domain or were just simply ignored. Also it
is virtually impossible to generate full application’s code as the generality of the modeling
language does not know anything of the application domain origins or its problems. In
this way, in the DSM process, the metamodel, prevents semantic errors in illegal designs
that do not follow the model architectural rules defined previously. Subsequently, the
code generated from it does not contain logic errors, syntax or careless mistakes as it was
specified by a DSM Generator (that was developed by an experience domain expert
developer) [4, 5, 29, 31].

3 UbiLang
Taking the five domain phases described in the previous section, this chapter presents

the work done in the development of UbiLang.

Domain Analysis, where the elements, classes and concepts were identified as
requirements to be available in the DSML, this was done in Chapter 2 with the analysis in
the various domain areas and projects. One these concepts, was the need of providing at
modeling time, the two programming paradigm views (Bottom-Up (programmers to
application designers) and Top-Bottom (vice-versa)). This came of the necessity to not

454 INForum 2010 Ricardo Guerreiro et al

constrain the creativity in the development process and allowing designers to work on the
application behavior first and component configuration second (Top-Bottom view). Also
the programmers could configure (if desired) each of their application components
(hardware or virtual) and leave the application behavior formalization for afterwards
(Bottom-Up). With this notion in mind, it was defined the two levels already explained,
within the DSML: Structural Level and Behavior Level.

Design, the domain experts, independently from the development approach, categorized
their applications between several categories (visual, audio, keypad, etc.) and behavior
flows. With analysis done in Chapter 2 (previous phase) came too many
elements/concepts, so a filter was added that abstracted several elements/actions into one.
An example, already described, was the elements in the visual category, the other
categories went through the same process and more details can be found in [18]. This type
of definition was adopted in UbiLang, because it allowed an easier device’s expression
and greater creativity for programmers and designers alike, taking it to full extent levels
without concerns about programming new hardware components/behavior flow with
error-prone development.

Also the analysis acknowledged the most relevant properties required for each of the
identified elements/connections (for configuration purposes). For example, in the specific
comparison connections cases, it was identified the most common used comparison
parameters. These parameters went from different source-target types to comparison
conditions, as for example positional parameters between components and objects GPS
position. Furthermore it was added the possibility, (for all connections types), to be
delayed a certain amount of time desired by the modeler and displaying this information
in each of the textual label’s connections alongside its name[18].

The next Fig. 2 presents a general “metamodel” created from the previous explained
phases, with the concerns for the modeler creativity, for each game it was added the
possibility to organize it using several “Virtual Device Manager”, “Object Manager” and
“Behavior” elements. This gave the possibility to, for example, organize devices through
teams (human and NPCs), virtual objects through specifications (avatars and virtual
objects) and behaviors through specific actions (repeat actions and one time actions).
The “LAN” element stood at the same level as the Virtual Device as it represented the
network itself as well the Virtual Devices (they still required the “LAN Capability”
element [18]) connected to it.

Figure 2. General UbiLang metamodel.

Implementation, the language was implemented using the workbench Eclipse with the
aid of the Graphical Modeling Framework/Ecore Modeling Framework (GMF/EMF)[32]
and its plug-ins. This workbench offered one of the best possibilities to customize
elements interface layouts and other graphical interface improvements, when compared
with another tools [29].

As seen in Fig. 4 to 5, the workbench offered the possibility of designing basic
elements by displaying visual information in form of icons in addition to the textual

UbiLang INForum 2010 – 455

labels. As well it offered a way to encapsulate information, in the form of compartments,
this is helpful when the models tend to get bigger and more complex, as in the case of
Fig.5. Also, for aiding the user, when building their model there was various assistants,
like a customizable side palette toolbar that had all the elements, which the user could
create its models. When hovering the canvas, or the inside of a compartment, a popup bar
displayed the possible elements that could be inserted. In the Behavior model by clicking
and hovering on the border of the icons/compartments, two arrows displayed (an arrow
going out and another going in), and clicking in either one would displayed all the
possible connections to/from the clicked element to an existent/new element. Also, in the
Behavior model compartments, the state elements were grouped in 4 categories: General
Actions (general application behavior as new threads, initialize a behavior or another
specific behavior), General Object Actions (change configurations of an object, positions,
etc), General LAN Actions (general networking actions as send files to all the groups in
the network) and General Virtual Device Actions (change devices configurations). These
compartments, for an easier use, when double-clicked on the border opened a new canvas
that allowed an easier model design and when closed displayed the edited elements of the
second canvas, in the inner compartment, with the opposite still possible. Finally, when
right-clicking on each of the elements placed on the canvas (icons, connections or
compartments) and displaying (if not already) the built-in Eclipse’s “Properties View”
plug-in, it was possible to change the properties identified of the domain analysis and
associated with each of the elements[18].

This visual proposal [18] was found to be the most conformable to the objective of
combining both programming view paradigms and also offer an easy and understandable
way of designing ubiquitous game applications, thus allowing the creative process to not
be hindered with programming issues.

4 Validation
Continuing the DSM process the next phase, validation, was done by modeling an

application called Noon. Developed by Tiago Martins, the Noon’s context introduced a
long-story mystery were the player took the role of a detective [6, 7], using a device
called Gauntlet, seen in Fig. 3, and another called Tome. This was one of the case-studies
chosen to validate the language.

Figure 3. Gauntlet, extracted from [6].

Components, The choice of hardware technologies relied in a selection procedure based
primarily on wearability factors (how the hardware influences motion responses,
muscular shifting, the temperature it causes and the total weight it brings to the user) and
secondly by how the sensors reacted to different types of environment. The final
ubiquitous devices technology composition for the Noon framework was for the:

456 INForum 2010 Ricardo Guerreiro et al

• Gauntlet - with a possible representation seen in UbiLang on Fig. 4 with an
accelerometer, a digital compass (or magnetometer, which combined with the
accelerometer can provide a more absolute measure of the user’s tri-axial arm
movement), a RFID Antenna and Module (combined can read and interpret RFID
Tags), a Bluetooth module (used for communications with the Tome, a force
resistance (or pressure) sensor, a rumble motor and a LED, for user feedback and a
battery (for portability).

• Tome – this object can be any platform of Ubiquitous Computing technology (a
notebook, a PDA, a smart-phone, etc.). The only mandatory requirement is a monitor,
a set of speakers and a Bluetooth module for receiving Gauntlet’s communications.

• Object Tags – Each of the in-game objects has a RFID Tag associated with it which
the Gauntlet reacts upon.

Virtual Objects, within the game there were a total of six objects (associated with the
physical tags mentioned above) that react with different time periods within the game
depending on the direction where the Gauntlet is pointing: a snow globe, a cup, a picture,
a schoolbook, a hammer and a table clock.

Behavior, the Noon application behavior starts for waiting any of the user input. If the
user puts the Gauntlet in a vertical position, the accelerometer and digital compass detect
this movement and display a visual feedback by turning on the Gauntlet’s LED. The user
can also make a horizontal movement, to which the application reacts by giving a clock
ticking sound and permitting to change the “game time”. The user, then uses the
Gauntlet’s ability of reading RFID tags (which are attached to physical objects), by means
of the RFID Antenna. This allows “triggering memories” from a game character called
Mrs. Novak, and display them on the Tome. In some of these objects, if it is detected a
specific motion pattern, for example “shaking the snow globe” or “pouring the cup”, the
player is shown “deeper memories”. In the process, a more “intense memory” triggers a
Poltergeist, which the player must capture by listening to the sounds it makes, in order to
continue the investigation and solve the mystery[7]. Noon is also an endless game so
when all the memories have been read, the game restarts. Fig. 5 represents a proposal for
a portion of the applications behavior (capture of the poltergeist) in UbiLang.

Figure 4 – A possible interpretation of the Gauntlet in UbiLang.

UbiLang INForum 2010 – 457

Very Easy
3

33%

Easy
5

56%

Normal
1

11%

Difficult
0

0%

Very Difficult
0

0%

Very Easy

Easy

Normal

Difficult

Very Difficult

Figure 5. A partial view of an interpretation of the Noon Behavior

After sucessfully modeling a use-case the second part of the validation process was
letting the domain experts test the language themselves. By collecting a group of 9 users,
as advised in [33-35] and giving instructions to install the plugin, it was asked to them
to complete a different exercise that had a different context from Noon, which they
started in a provided tutorial and continued to answer a questionnaire. Some of the
responses were:

Other question “Do you feel UbiLang is a value-added compared to the previous
application designing system?” the users fully agreed that it was a value-added to a
coding development system alternative or adaptation of VPL’s or Media Processing
Frameworks. The follow-up question “Explain why?”, provided such answers like: “It
might allow people with no imperative programming experience to experiment with
behaviors and produce programs for Ubicomp interfaces” and “Using a visual
representation allows a better understanding of the application and it is easier (less
errors) and faster to build it. Furthermore by using models we gain various advantages,
instant verification, possibility to simulate, automatically generate code and so on”.

5 Conclusions and Future Work
By means of case-studies and user assertions, we demonstrated that we reached our

objectives and, in addition, the ubiquitous models maintenance time is also greatly

Figure 6 – “How easy it was to learn the UbiLang concepts?”

458 INForum 2010 Ricardo Guerreiro et al

shortened by the simple act of adding/removing a missing/existent component or action.
The language is but a first step on the development as it is ready to be taken to a DSM
Generator phase by assigning modules of validated code to the language elements and
quickly pass from a designed model to executable code and therefore running
application. Once we have a complete DSL, we can also explore model verification
techniques to detect inconsistencies in the implementation already at design time. In
what concerns the language editor, it would be interesting to enhance it so it would
support new visualization modes and provide a better usability for the users. The main
objective of developing this language was to provide an easier and faster way to increase
efficiency in the creation of Ubiquitous games. By quickly making each of the diagrams
types, it is easier for the end-user to validate if a desired application is feasible. This
allows managing what are the required components and configurations at an appropriate
level of abstraction in a domain expert using terminology of the domain instead of just
computational terms.

References
1 Harold James Ruthven Murray: ‘A History of Board-Games Other Than Chess’
(Gardners Books, 1969. 1969)
2 Tiago Martins, Nuno Correia, Christa Sommerer, Laurent Mignonneau: ‘Ubiquitous
Gaming Interaction: Engaging Play Anywhere’, in Heidelberg, S.B. (Ed.): ‘The Art and
Science of Interface and Interaction Design’ (Vol.14, pag. - 115-130; Springer Berlin /
Heidelberg, 2008)
3 http://www.hitachi.com/rd/sdl/glossary/u/ubiquitous_device.html, accessed 10th of
July 2010
4 André Rosa: ‘Designing a DSL solution for the domain of Augmented Reality
Software’. Masters in Computer Sciences, Faculdade de Ciências e Tecnologia -
Universidade Nova de Lisboa, 2008/2009
5 Steven Kelly, Juha-Pekka Tolvanen: ‘Domain-Specific Modeling: Enabling Full
Code Generation’ (John Wiley & Sons, Inc, 2008)
6 Tiago Martins, Teresa Romão, Christa Sommerer, Laurent Mignonneau, Nuno
Correia: ‘Towards an Interface for Untethered Ubiquitous Gaming’. Proc. 2008
International Conference on Advances in Computer Entertainement Technology,
Yokohama, Japan
7 http://tiagomartins.wordpress.com/projects/noon-a-secret-told-by-objects/, accessed
10th of July 2010
8 Ronald T. Azuma: ‘A Survey of Augmented Reality’, Presence: Teleoperators and
Virtual Environments, 4 August 1997, 6, pp. 355-385
9 https://launchpad.net/artoolkit/
10

, accessed 10th of July 2010
http://ar.in.tum.de/Chair/ProjectDwarf, accessed 10th of July 2010

11 Prof. Bernd Bruegge Ph.D., Prof. Gudrun Klinker, Ph.D.: ‘DWARF - Distributed
Wearable Augmented Reality Framework’. Proc. Chair for Applied Software
Engineering, Technische Universitat Munchen
12 Martin Bauer, Bernd Bruegge, Gudrun Klinker, Asa MacWilliams, Thomas Reicher,
Stefan Riß, Christian Sandor, Martin Wagner: ‘Design of a Component–Based
Augmented Reality Framework’. Proc. Augmented Reality, 2001. Proceedings. IEEE
and ACM International Symposium on, New York, USA 2001
13 Wesley M. Johnston, J. R. Paul Hanna and Richard J. Millar: ‘Advances in dataflow
programming languages’. Proc. ACM Computing Surveys (CSUR), New York, NY,
USA March 2004

UbiLang INForum 2010 – 459

14 http://www.cycling74.com/products/max5, accessed 10th of July 2010
15 http://puredata.info/, accessed 10th of July 2010
16 http://processing.org/, accessed 10th of July 2010
17 http://www.openframeworks.cc/, accessed 10th of July 2010
18 Ricardo Guerreiro: ‘A DSML for Specification of Ubiquitous Games’. Masters in
Computer Science, Faculdade de Ciênicas e Tecnologia, Universidade Nova de Lisboa,
2009
19 http://www.pranavmistry.com/projects/sixthsense/index.htm, accessed 10th of July
2010
20 http://www.blinkenlights.net/, accessed 10th of July 2010
21 Sara Ilstedt Hjelm: ‘Research + Design: the making of Brainball’. Proc. Interactions
2003 pp. Pages
22 Nuno Correia, Hélder Correia, Luís Alves, Luís Romero, Carmen Morgado, Luís
Soares, José C. Cunha, Teresa Romão, A. Eduardo Dias, Joaquim A. Jorge: ‘InStory: A
System for Mobile Access, Storytelling and Gaming Activities in Physical Spaces’. Proc.
ACM SIGCHI - International Conference on Advances in Computer Entertainement
Technology, Universidade Politécnica de Valência, Valência, Spain 2005
23 Staffan Bjork, Jennica Falk, Rebecca Hanson, Peter Ljungstrand: ‘Pirates! Using the
Physical World as a Game Board’. Proc. Interact 2001, Tokyo, Japan 2001
24 Steve Benford, Martin Flintman, Adam Drozd, Rob Anastasi, Duncan Rowland, Nick
Tandavanitj, Matt Adams, Ju Row-Far, Amanda Oldroyd, Jon Sutton: ‘Uncle Roy All
Around You: Implicating the City in a Location-Based Performance’. Proc. International
Conference on Advances in Computer Entertainement Technology (ACE) 2004,
Singapore
25 Irma Lindt, Jan Ohlenburg, Uta Pankoke-Babatz, Wolfgang Prinz, Sabiha Ghellal:
‘Combining Multiple Gaming Interfaces in Epidemic Menace’. Proc. Conferences on
Human Factors in Computing Systems 2006, Montréal, Québec, Canada
26 http://www.headbanghero.com/, accessed 10th of July 2010
27 Vasco Sousa: ‘Model Driven Development Implementation of a Control Systems
User Interfaces Specification Tool’. Masters in Computer Sciences, Faculdade de
Ciências e Tecnologia - Universidade Nova de Lisboa, 2008/09
28 Arie Van Deursen, Paul Klint, Joost Viser: ‘Domain-Specific Language: A
Annotated Bibliography’: ‘ACM SIGPLAN NOTICES’ (Vol. 35, Issue 6, pag. 26-36;
ACM, New York, USA, 2000)
29 Vasco Sousa, Vasco Amaral and Patrícia Conde: ‘Towards a full implementation of a
robust solution of a Domain Specific Visual Query Language for HEP Physics analysis’.
Proc. Computing in High Energy and Nuclear Physics (CHEP) 2007
30 http://www.uml.org/
31 Krzysztof Czarnecki: ‘Overview of Generative Software Development’. Proc.
Unconventional Programming Paradigms (UPP) 2004, Mont Saint Michel, France

, accessed 10th of July 2010

32 EMF: http://www.eclipse.org/modeling/emf/; GMF:
http://www.eclipse.org/modeling/gmf/, accessed 10th of July 2010
33 Jakob Nielsen and Thomas K. Landauer: ‘A mathematical model of the finding of
usability problems’. Proc. ACM INTERCHI'93 Conference, Amsterdam, Netherlands,
April 1993
34 Pedro Gabriel: ‘Software Languages Engineering: Experimental Evaluation’,
Faculdade de Ciênicas e Tecnologia, Universidade Nova de Lisboa, 2009
35 http://www.useit.com/alertbox/20000319.html, accessed 10th of July 2010

460 INForum 2010 Ricardo Guerreiro et al

Web-Application Modeling
With the CMS-ML Language?

João de Sousa Saraiva, Alberto Rodrigues da Silva

INESC-ID / Instituto Superior Técnico
Rua Alves Redol, 9, 1000-029 Lisboa, Portugal,

joao.saraiva@inesc-id.pt, alberto.silva@acm.org

Abstract. The Model-Driven Engineering paradigm has become in-
creasingly popular due to its advocation of using models as first-class
citizens in the software development process, while artifacts such as doc-
umentation and source-code can be produced from those models by using
automated transformations. On the other hand, we are currently witness-
ing the rise in popularity of a particular kind of web-application, Content
Management Systems (CMS). This paper overviews the CMS Modeling
Language (CMS-ML), a graphical language for the high-level modeling
of CMS-based web-applications. CMS-ML is oriented towards enabling
non-technical stakeholders to rapidly model a web-site supported by a
CMS system. The language also allows for its extension, in order to sup-
port the modeling of more complex web-applications.

Resumo O paradigma da Engenharia Conduzida por Modelos tem-se
popularizado devido à sua utilização de modelos como cidadãos de pri-
meira classe no processo de desenvolvimento de software, enquanto arte-
factos como documentação e código-fonte podem ser produzidos a partir
desses modelos através de transformações automatizadas. Por outro lado,
estamos actualmente a assistir à ascensão de um determinado tipo de
aplicação-web, os Sistemas de Gestão de Conteúdos (CMS). Este artigo
apresenta o CMS Modeling Language (CMS-ML), uma linguagem gráfica
para a modelação a alto ńıvel de aplicações-web baseadas em CMS. Esta
linguagem tem como objectivo permitir que os interessados não-técnicos
possam rapidamente modelar um web-site suportado por um sistema
CMS. A linguagem também permite a sua extensão, de modo a suportar
a modelação de aplicações-web de maior complexidade.

? This work was supported by FCT (PhD Scholarship SFRH/BD/28604/2006 and
INESC-ID multiannual funding) through the PIDDAC Program funds.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 461–472

1 Introduction

The global expansion of the Internet has led to the appearance of multiple web-
oriented Content Management Systems (CMS) [1,2] platforms. CMS systems are
web-applications oriented towards the dynamic management of web-sites and
their contents, providing concepts such as User, Role, Language, WebCompo-
nent, Dynamic WebPage and Visual Theme [3,4]. These systems typically present
aspects such as extensibility and modularity, independence between content and
presentation, support for several types of contents, support for access manage-
ment and user control, dynamic management of layout and visual appearance,
or support for workflow definition and execution.

Development of web-applications supported by CMS platforms is usually
done via traditional development processes, in which source-code is the primary
artifact, and design models and documentation are considered only as support
artifacts. As is already well-known in the Software Engineering community, such
processes are typically time-consuming and error-prone, because they rely heav-
ily on programmers and their execution of repetitive tasks. Also, the source-code
and the design models are often out of sync, because changes to source-code are
not automatically propagated to the models.

On the other hand, Model-Driven Engineering (MDE) [5] development pro-
cesses consider models as the primary artifact, and other artifacts (such as
source-code or documentation) are produced automatically from those models
via automatic model transformations. Besides leaving most of the repetitive tasks
to those transformations, these processes present additional advantages, such as:
(1) relieving developers from issues like underlying platform complexity or in-
ability of programming languages to express domain concepts; or (2) targeting
multiple deployment platforms without requiring several different code-bases.

In this paper we present the CMS Modeling Language (CMS-ML), a graph-
ical modeling language oriented towards the high-level modeling of CMS-based
web-sites and web-applications. CMS-ML has a number of aspects that dis-
tinguish it from other web-engineering-oriented modeling languages and ap-
proaches, namely: (1) it is CMS-independent, and so it does not address imple-
mentation details; (2) it allows language users to extend it (albeit in a controlled
manner) with new concepts; and (3) it is meant to allow regular stakeholders
(e.g., users not aware of software development problems) to easily understand
and change the model. This language was developed within the context of our re-
search regarding the usage of multiple modeling languages to address the various
stakeholder perspectives of a web-application’s development [6].

The remainder of this paper is structured as follows. Section 2 provides a brief
overview of our approach for the development of CMS-based web-applications,
in the context of which CMS-ML was created. Section 3 presents the CMS-ML
modeling language, as well as the underlying metamodeling rationale. Section 4
presents a discussion of CMS-ML and our approach, and compares it with some
related work. Finally, Section 5 presents the conclusions for our research so far
as well and points out some future work.

462 INForum 2010 João de Sousa Saraiva, Alberto Rodrigues da Silva

2 Context

The CMS-ML modeling language was created in the context of our proposed
model-driven approach for the development of CMS-based web-applications [6],
which is illustrated in Figure 1. Instead of defining a single CMS-oriented model-
ing language, our approach defines two languages: (1) CMS-IL (CMS Intermedi-
ate Language), a common low-level language for CMS platforms; and (2) CMS-ML,
which provides a set of elements that are used to quickly model a typical web-
application.

Fig. 1: The proposed MDE-oriented approach.

The Business Designer (a generic term to identify non-technical stakehold-
ers) creates a CMS-ML Model that represents the intended web-application,
according to some predetermined business requirements. After applying an auto-
matic transformation from that CMS-ML Model (and obtaining a corresponding
CMS-IL Model), the System Designer determines whether that CMS-IL Model
is satisfactory, namely by identifying any particular requirements that could not
be addressed by CMS-ML alone; if any such requirements exist, the obtained
CMS-IL Model must be modified/refined by the System Designer to address
them. After this refinement, the CMS-IL Model should be an accurate (and
correct) representation of what the intended web-application should be. This
CMS-IL Model is then deployed onto a target CMS in one of two ways, depend-
ing on the CMS: (1) importation to a CMS Model Interpreter component, or
(2) generation of low-level artifacts and subsequent installation. The first alter-
native is preferable, as it only requires that a CMS Administrator (with adminis-
trative privileges) upload the CMS-IL Model into a CMS Model Interpreter, but
it will not be feasible in CMS platforms that do not have that component avail-
able. In such cases, the second alternative (not illustrated, for simplicity reasons)
requires the intervention of a software developer – to perform the compilation of
the generated artifacts – and of a CMS Administrator, in order to both deploy
the compiled artifacts and make any necessary configuration changes.

This paper will not describe the approach further, as it has been described
in [6], and the main objective of this paper is to present the CMS-ML language
in greater detail.

Web-Application Modeling With the CMS-ML Language INForum 2010 – 463

3 The CMS-ML Modeling Language

The CMS Modeling Language (CMS-ML) is a graphical modeling language for
the high-level specification of CMS-based web-sites and web-applications. Its
main objective is to allow regular non-technical stakeholders to look at a web-
site’s model, understand it, and make changes to it.

CMS-ML modeling is focused on two different (and complementary) types of
model, (1) Web-Site Templates and (2) Toolkits. A Web-Site Template (or just
Template) is a model that reflects the intended web-site’s structure and behavior;
this Template is modeled using CMS elements – such as Role, DynamicWebPage,
WebComponent – that are provided by CMS-ML. On the other hand, a Toolkit
allows the addition of new modeling elements to the set of CMS elements that
are available for modeling a Web-Site Template, in a controlled and reusable
manner (due to text size constraints, we will not be going into detail regarding
the metamodeling rationale behind this language extension capability).

3.1 Roles

Because of the multiple web-site and web-application concerns that CMS-ML
addresses, the modeling effort for creating Web-Site Templates will be divided
among different kinds of roles, according to the “separation of responsibilities”
principle. CMS-ML considers the following modeling roles, depicted in Figure 2:
(1) the Toolkit Architect, who specifies Toolkits; (2) the Web-Site Template Cre-
ator (usually just called “Template Creator”), who models a Web-Site Template;
(3) the Web-Designer, who defines visual themes and graphics for the Tem-
plate; and (4) the CMS Administrator, who instantiates the elements defined in
the Template. Of these roles, the most relevant are the Toolkit Architect and
the Web-Site Template Creator. The remainder of this section will present an
overview of their modeling tasks.

Fig. 2: The modeling roles and artifacts considered by CMS-ML.

464 INForum 2010 João de Sousa Saraiva, Alberto Rodrigues da Silva

3.2 Web-Site Template Modeling

CMS-ML provides a set of generic modeling elements (generically called “CMS
elements”) that Web-Site Template Creators can use to define their Templates
for CMS-based web-sites. A Template is defined according to a set of views
(illustrated in Figure 3): (1) the Structure view, which specifies the web-site’s
structural components; (2) the Navigation view, specifying the possible naviga-
tion flows between the structural components of the web-site; (3) the Roles view,
which deals with the set of responsibilities that the web-site expects its users
to assume; (4) the Permissions view, specifying which Roles have access to the
web-site’s structural components; (5) the Users view, which specifies particu-
lar CMS users that are considered fundamental to the modeled web-site; (6) the
Languages view, which deals with internationalization and the languages that the
web-site should have available; (7) the Contents view, which specifies contents
(e.g., pieces of text) that should be available on the web-site; and (8) the Visual
Themes view, which specifies graphical parameters about how users should view
the web-site. The “bootstrapping views” are separated from the other views
because they are not necessary for the modeling of a web-site. Instead, the boot-
strapping views should only be defined when Template Creators have a priori
content that should be available in any web-site following the modeled Template.

Fig. 3: The views involved in the definition of a Web-Site Template.

The Structure view is the most important, as it conveys the web-site’s page
structure by using a set of CMS-oriented concepts: (1) WebSite, which repre-
sents the web-site itself and serves both as a container for Dynamic WebPages
and as the element that will import Toolkits (explained further down this text);
(2) Dynamic WebPage, representing the dynamically-generated pages (in the
sense that their contents can be changed through the CMS interface) that users
will access; (3) Container, which is modeled within a specific area of a Dynamic
WebPage and holds a set of WebComponents; and (4) WebComponent, repre-
senting the “units of functionality” (e.g., Blog, Forum) with which the user will
interact. The Structure view is further divided into two smaller views, the Macro
Structure view and the Micro Structure view. The former specifies a “bird’s eye”
view of the web-site, modeling only the existence of Dynamic WebPages and the
relationships between them, while the latter is where each Dynamic WebPage’s

Web-Application Modeling With the CMS-ML Language INForum 2010 – 465

structure is specified (i.e., what WebComponents are in the Dynamic WebPage,
their location, and their order relative to each other). Figure 4 presents the ab-
stract syntax for the Structure view, where the previously-mentioned concepts
can be observed.

Fig. 4: The abstract syntax for the Web-Site Template’s Structure view.

On the other hand, Figure 5 depicts two examples of the Structure view’s
concrete syntax: Figure 5a illustrates the Macro-Structure view, namely a simple
Web-Site containing only two Dynamic WebPages, while Figure 5b shows the
definition of a Dynamic WebPage (including Containers and WebComponents)
in the Micro-Structure view. The concrete syntax of CMS-ML was defined with
the purpose of being easy to understand and to draw manually, without requiring
that specialized modeling tools be used in order to create CMS-ML models.

The behavior aspect is only specified in Toolkits (described next) because
(1) behavior is usually defined by the WebComponents available in the CMS
(e.g., an HTML WebComponent will behave differently than a Forum Web-
Component), and (2) even CMS administrators are typically unable to change
the web-site’s behavior itself, and can only change some parameters regarding
specific behavior of the CMS.

466 INForum 2010 João de Sousa Saraiva, Alberto Rodrigues da Silva

(a) Macro-Structure view:
Web-Site and Dynamic
WebPages.

(b) Micro-Structure view: Dynamic WebPage
with Containers and WebComponents.

Fig. 5: The concrete syntax for the Web-Site Template’s Structure view.

Due to text size constraints, the abstract and concrete syntaxes of CMS-ML
will not be presented in greater detail in this paper, although they will be made
available in the very near future at our research group’s web-site1.

3.3 Toolkit Modeling

A Toolkit can be regarded as a “task-oriented extension of CMS elements”, as
it enables the addition of new CMS-related concepts (namely Roles and We-
bComponents) oriented towards supporting a particular set of tasks and the
corresponding domain model. Like a Web-Site Template, a Toolkit is defined
according to a set of views (shown in Figure 6): (1) the Tasks view, which deals
with the user tasks that the Toolkit should support; (2) the Roles view, spec-
ifying the Roles that are to perform those tasks; (3) the Domain view, which
specifies the domain model that is subjacent to the Toolkit’s tasks; (4) the States
view, dealing with the lifecycle of the entities that the tasks are to manipulate;
(5) the WebComponents view, specifying the WebComponents that will support
the tasks; (6) the Task Interface view, which establishes mappings between Roles,
Tasks and WebComponents, and determines which Roles can do what actions
with each of the Toolkit’s WebComponents; and (7) the Side-Effects view, which
establishes side-effects that the modeled Tasks and WebComponents will have.

The Tasks, Roles and WebComponents views are the most important in a
Toolkit. The Tasks view allows the Architect to define user tasks as orchestra-
tions of Steps which may involve user interaction (similarly to UML’s Activity
diagrams). The Roles view (not directly related to CMS Roles) models the differ-
ent kinds of behavior – Roles – that the web-application should expect. Finally,
the WebComponents view is where the Toolkit’s UI (WebComponents and Sup-
port Pages) is specified using WebElements, by creating complex UI structures
from simpler ones; in turn, WebElements are further divided into Simple WebEle-
ments (e.g., button, image), WebContainers (e.g., DIVs, pop-ups) and HTML
1 http://isg.inesc-id.pt

Web-Application Modeling With the CMS-ML Language INForum 2010 – 467

Fig. 6: The views involved in the definition of a Toolkit.

Elements (for cases in which Simple WebElements are not sufficiently adequate).
This variety of web interface elements allows the modeling of relatively complex
web interfaces using CMS-ML.

3.4 Importing Toolkits

Toolkits can be used in Web-Site Templates or even in other Toolkits, by means
of the “Toolkit Import” modeling element, a relationship between a Toolkit (the
“imported” element) and either a Web-Site Template or a Toolkit (the “im-
porter”). This relationship is transitive, which means that importing a Toolkit
T1 will automatically import all Toolkits that have been imported by T1. Also, it
is possible to import more than one Toolkit into a Web-Site Template or Toolkit,
enabling the composition of Toolkit functionalities in a simple manner.

When importing a Toolkit into a Template, the elements defined in the
Toolkit’s Roles and WebComponents views become available as new Template
modeling elements. When importing a Toolkit into another Toolkit, the elements
in the imported Toolkit’s Tasks, Domain and States views (but not the Roles or
WebComponents views) can be used or specialized by the importer.

It is very important to highlight that Web-Site Templates and Toolkits are
located in different conceptual levels. While Web-Site Templates are meant to
create abstractions of concrete web-sites (i.e., models of those web-sites) by us-
ing CMS-oriented elements, Toolkits use generic modeling elements (e.g., En-
tity, Task) to create new CMS-oriented modeling elements (namely Roles and
WebComponents). Because instances of Toolkit Role and WebComponent are
also automatically considered as specializations of the Web-Site Template’s Role
and WebComponent concepts (much like Generic WebComponent and Standard
WebComponent are specializations of WebComponent, as the reader can see in
Figure 4), Template Creators can then use those Toolkit Roles and WebCompo-
nents to create Web-Site Templates exactly in the same manner as when using
the pre-defined Template modeling elements.

Figure 7 depicts the metamodel levels that are considered by CMS-ML: the
“Toolkit”, “Web-Site Template” and “Web-Site Instance” models are created
(and changed) by designers, while the “Task Modeling”, “Domain Modeling”
and “CMS” models are fixed and cannot be changed by designers. In level ML3,
Toolkit designers can create instances of generic modeling elements (from Task

468 INForum 2010 João de Sousa Saraiva, Alberto Rodrigues da Silva

Modeling and Domain Modeling, located in ML4) in order to define new elements
(Roles and WebComponents) that specialize CMS modeling elements. In level
ML2, Template Creators can then use the CMS modeling elements, as well as
other modeling elements created in Toolkits, to define a Web-Site Template. In
level ML1, the Web-Site Template will be used to create an instance model for
a particular CMS installation; this instance model, in turn, will be representing
concrete entities that are located in ML0 (the “reality” level, so to speak). Note
that the metamodel layers from ML2 to ML0 are actually very similar to what
can be found in the OMG’s specification of UML [7], because their purpose is
nearly the same.

Fig. 7: The metamodel levels considered by CMS-ML.

The rationale for this metamodel level design is to: (1) address language ex-
tension in a simple, yet elegant, manner; (2) reduce the accidental complexity [8]
that is usually derived from using “type–instance”-like modeling patterns in the
same modeling level; and (3) obey the “strict metamodeling” doctrine [9], which
states that it should be possible to fully understand any metamodel level as
being instantiated from only the metamodel level immediately above it (a con-
sequence of this is that there should be no “instance-of” relationships crossing
more than one metamodel-level boundaries).

4 Discussion and Related Work

Besides the CMS-ML presentation done in Section 3, the language does pose
some aspects that deserve further discussion. In this section we present and

Web-Application Modeling With the CMS-ML Language INForum 2010 – 469

discuss those aspects, while relating them to some external work that we consider
relevant for our research, namely the Web Modeling Language (WebML) [10,11]
and UML-based Web Engineering (UWE) [12,13].

One of the first aspects to discuss is the reason why CMS-ML was defined
without using any particular meta-metamodel, as opposed to using a mechanism
such as a UML Profile [7] (in the same manner that UWE was defined). This is
made even more relevant by the fact that, to our knowledge, UML’s modeling
elements do not present any semantics that contradict the semantics of CMS-ML.
However, it would be problematic to represent the Toolkit aspect as a UML
Profile, in such a way that elements defined in a Toolkit could then be used
to define the Web-Site Template (another UML Profile). This problem is due
to the fact that UML (and UML-oriented tools) does not explicitly consider
metamodeling as an important issue [14], which in turn usually leads to a much
greater degree of accidental complexity [8] (i.e., making modeling languages more
complex than necessary). It should also be noted that other web-engineering
modeling languages do not consider their extension – in the sense of adding new
modeling elements – as an important concern (although WebML does define
some generic Data-Units, which must be later implemented in source-code, to
cover cases in which it is not expressive enough).

At first sight, the Web-Site Template may appear to be adequate for modeling
page-centric CMS web-sites (e.g., WebComfort [15], DotNetNuke [16]), but not
content-centric CMS web-sites (such as Joomla [17] or Drupal [18]). However,
this Template ultimately reflects how users will see the web-site, instead of
reflecting the concepts that the CMS itself is using. Considering that even web-
sites using content-centric CMS systems have a certain structure perceived by
their users, we believe that CMS-ML can adequately model web-sites based on
content-centric CMS systems.

Another aspect to discuss is how CMS-ML deals with the possible semantic
gap between the Toolkit’s WebComponents (i.e., UI) and Domain views. While
UWE sometimes requires that its Content Model be “tweaked” to particular
details of other Models (namely the Presentation Model) [19], WebML defines
the Derivation Model to define a layer that establishes mappings between the
Data Model and other WebML Models (namely the Hypertext Model). CMS-ML
Toolkits also do not require the Domain view to be oriented towards the needs
of other views, because the WebComponents view contains a set of modeling
elements that allow Architects to specify what parts of the Domain view are to
be displayed or used, by using a “binding context” mechanism inspired by our
previous work in XIS2 [20].

It is also important to discuss the language’s expressiveness and its ade-
quacy to model real-world web-applications. CMS-ML is not very expressive
when compared to other languages such as WebML or UWE. However, this level
of expressiveness is intentional: because CMS-ML is a part of a larger approach
– involving a set of languages – the rationale was to reduce the number of mod-
eling elements in this language, in order to make it easier to learn. Nevertheless,
unaddressed requirements cannot be just “ignored”: that is why CMS-ML de-

470 INForum 2010 João de Sousa Saraiva, Alberto Rodrigues da Silva

fines the concepts of Unaddressed CMS Requirement and Unaddressed Toolkit
Requirement, which are just textual segments (similar to UML comments or
constraints) that can be associated with any CMS-ML modeling element. These
concepts bring added value to the model (and are not just decorative), because
they will be translated to “reminders” in the corresponding CMS-IL models.

The final aspect to highlight is the fact that we believe accidental complex-
ity [8] in CMS-ML has been reduced to a minimum. This is mainly due to the
fact that the CMS and Toolkit modeling elements do not include the means to
establish “instance-of” relationships between elements; this kind of relationship
would become necessary to create models using the “type–instance” modeling
pattern, which in turn is usually a source of accidental complexity.

5 Conclusions and Future Work

In this paper we have introduced CMS-ML, a graphical language for the high-
level modeling of CMS-based web-applications, aimed at allowing non-technical
users to easily understand and change a web-site’s model. To achieve its goal,
CMS-ML defines a set of CMS-oriented views and can be extended with new
concepts. This language is a part of a larger approach for the development of
this kind of applications, which explains its lack of expressiveness to deal with
concrete implementation details, such as algorithm specification.

Regarding future work for CMS-ML, there are still some open issues, of which
we highlight here the ones that we consider most important for the time being.

One of those issues is expressiveness. The CMS-ML language is the result of
a tradeoff between language complexity, expressiveness, and how often a given
pattern can be found in existing web-applications. However, we acknowledge
that this tradeoff will always have a certain amount of subjectivity to it. We
consider it necessary to try and minimize this subjectivity factor, in order to
make the language more practical, adequate and useful for real-world scenarios.
Furthermore, the fact that CMS-ML is independent of any particular CMS makes
it unable to use CMS-specific concepts (e.g., Workflow), a problem that we wish
to address in the future (likely by using an approach similar to what we did with
the Toolkit—Web-Site Template metamodels).

The other issue, closely related to the expressiveness issue, is the validation of
CMS-ML. To minimize the subjectivity factor and validate the language in case-
studies, we intend to use it for modeling sites and applications with a reasonable
degree of complexity. Although we are already validating the language in some
academic case-studies, we will also use it in some more complex real-world sce-
narios, such as WebC-Docs [21], a document management system that we have
developed in the context of our research regarding CMS-based web-applications.

References

1. Boiko, B.: Content Management Bible. John Wiley & Sons, Hoboken, New Jersey,
U.S.A. (December 2001)

Web-Application Modeling With the CMS-ML Language INForum 2010 – 471

2. The CMS Matrix. Retrieved May 31, 2010 from http://www.cmsmatrix.org

3. Carmo, J.L.V.d.: Web Content Management Systems: Experiences and Evaluations
with the WebComfort Framework. Master’s thesis, Instituto Superior Técnico,
Portugal (December 2006)

4. Saraiva, J.d.S., Silva, A.R.d.: The WebComfort Framework: An Extensible Plat-
form for the Development of Web Applications. In IEEE Computer Society, ed.:
Proceedings of the 34th EUROMICRO Conference on Software Engineering and
Advanced Applications (EUROMICRO 2008). (September 2008) 19–26

5. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. Computer
39(2) (February 2006) 25–31

6. Saraiva, J.d.S., Silva, A.R.d.: CMS-based Web-Application Development Using
Model-Driven Languages. In IEEE Computer Society, ed.: Proceedings of the
Fourth International Conference on Software Engineering Advances (ICSEA 2009).
(September 2009) 21–26

7. OMG: Object Management Group – Unified Modeling Language: Superstructure
– Specification Version 2.0 (August 2005) Retrieved May 31, 2010 from http:

//www.omg.org/spec/UML/2.0/Superstructure/PDF/.
8. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. Soft-

ware and Systems Modeling 7(3) (July 2008) 345–359
9. Kühne, T.: Contrasting Classification with Generalisation. In Kirchberg, M., Link,

S., eds.: Proceedings of the Sixth Asia-Pacific Conference on Conceptual Modelling
(APCCM 2009). Volume 96 of CRPIT., Australian Computer Society (January
2009) 71–78

10. WebML.org. Retrieved May 31, 2010 from http://www.webml.org

11. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Design-
ing Data-Intensive Web Applications. Morgan Kaufmann (2003)

12. UWE – UML-based Web Engineering. Retrieved May 31, 2010 from http://uwe.

pst.ifi.lmu.de

13. Kroiß, C., Koch, N.: UWE Metamodel and Profile: User Guide and Ref-
erence. Technical Report 0802, Ludwig-Maximilians-Universität (February
2008) Retrieved May 31, 2010 from http://uwe.pst.ifi.lmu.de/download/

UWE-Metamodel-Reference.pdf.
14. Saraiva, J.d.S., Silva, A.R.d.: Evaluation of MDE Tools from a Metamodeling

Perspective. Journal of Database Management 19(4) (October/December 2008)
21–46

15. SIQuant: WebComfort.org. Retrieved May 31, 2010 from http://www.

webcomfort.org

16. DotNetNuke. Retrieved May 31, 2010 from http://www.dotnetnuke.com

17. Joomla CMS. Retrieved May 31, 2010 from http://www.joomla.org

18. Drupal CMS. Retrieved May 31, 2010 from http://drupal.org

19. UWE – Tutorial. Retrieved December 9, 2009 from http://uwe.pst.ifi.lmu.de/

teachingTutorial.html

20. Silva, A.R.d., Saraiva, J.d.S., Silva, R., Martins, C.: XIS – UML Profile for eX-
treme Modeling Interactive Systems. In: Fourth International Workshop on Model-
based Methodologies for Pervasive and Embedded Software (MOMPES 2007), Los
Alamitos, CA, USA, IEEE Computer Society (March 2007) 55–66

21. SIQuant: WebComfort.org – WebC-Docs. Retrieved May 31, 2010 from http:

//www.webcomfort.org/WebCDocs

472 INForum 2010 João de Sousa Saraiva, Alberto Rodrigues da Silva

Enterprise Governance and DEMO

Guiding enterprise design and operation by addressing
DEMO’s competence, authority and responsibility notions

Miguel Henriques, José Tribolet, and Jan Hoogervorst

Department of Information Systems, Instituto Superior Técnico (IST-UTL), Lisboa
miguel.henriques@ist.utl.pt,jose.tribolet@inesc.pt,jan.hoogervorst@sogeti.nl

Abstract. The lack of an organizational competence that embodies the ca-
pacity to restrict the enterprise undesirable design freedom and guide the
subsequent operation, from a holistic point of view, leads to incoherence and
inconsistency among the enterprise elements. The research brings forward the
importance of this organizational competence labeled enterprise governance
(EG) in defining DEMO’s ontological models and using their subsequent au-
thority, responsibility and competence notions to guide the enterprise dy-
namics. Based on these results, the article provides a reference method for
the EG to define a set of normative outputs, derived from these three notions
addressed in the enterprise ontologic models, comprising a set of principles
to address enterprise integration and a set of rules to deal with on-going
organizational changes while addressing security issues.

Key words: Enterprise Governance, Enterprise Design, Enterprise Archi-
tecture, Enterprise Ontology, Enterprise Engineering

1 Introduction

In a world of growing business dynamics, high rates of technological and organiza-
tional changes, enterprises need to be continuously (re)designed and (re)engineered in
order to achieve strategic and operational success. Our research will be built around
the enterprise development theory within the enterprise engineering discipline.

In this context, we address one core problem: the lack of coherence and consis-
tency among the various enterprise elements resulting from the enterprise incapacity
to effectively build the enterprise strategy into design and manage the subsequent
changes at the operational plane from a holistic point of view [11, 1]. It is estimated
that between 70% and 90% of strategic initiatives tend to fail [10, 3]. Researchers ar-
gue that such failures in most cases result from inadequate strategy implementation
in the sense that if the enterprise aspects are not addressed in design by thinking
about the enterprise as an organic whole the enterprise will not be able to operate
as a unified system and the strategy implementation will tend to fail [1].

We argue that there are two interrelated main reasons behind this problem. First,
the enterprise does not have the ability to apply in practice the design theory from
the enterprise engineering discipline and thus, it is unable to master the enterprise
complexity and to develop an integrated enterprise system [3]. Second, absence of
an organizational competence that should guide globally the enterprise development
process and subsequent changes in order to ensure the correct use of this theory [7].

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 473–476

2 An organismic governance approach

The systemic approach to problems focuses on systems taken as a whole, instead of
their parts taken individually [1, 11]. Within this view an enterprise is perceived as
a goal-seeking system, intentionally designed by a set of interacting human beings
behaving according to assigned authority and corresponding responsibility against a
common background of social norms and values. Mastering the enterprise complexity
and guide the design1 in a holistic manner is essential during the implementation of
the strategy to achieve integration among enterprise components [13]. However, this
notion of guidance is often associated with a ’mechanistic’ perspective (top-down,
management and control oriented). Within this perspective, there is no adequate
competence and attention for addressing the enterprise design (we refer to [9, 11]).

Enterprise strategy and design subjects transcend the capabilities of the corporate
governance and IT governance disciplines and can only be addressed within the
overall scope of EG (we refer to [6]). The EG consists in an integrated whole of
knowledge, skills and technology, whereby employees are viewed as the crucial core
for continuously exercising guiding authority over enterprise strategy and architecture
development, and the subsequent design, implementation and operation.

Architecture notion has been associated to a descriptive approach perceived as
a “blueprint” of the system construction and a prescriptive approach concerning
design guidance [5, 8, 12]. A prescriptive approach of the concept must be exercised
comprising “consistent and coherent set of design principles” defined by the EG in
order to guide the design by restricting its undesirable freedom [3].

3 Ontology - DEMO methodology

The models resulting from the design process approach the system construction at
different levels of abstraction. At the “highest level” there is the ontological model
and at the “lowest level” there is the implementation model [3]. The core meaning of
system ontology in our thesis context is a model for describing and understanding the
construction and operation fully independent of the way the system is implemented
which is coherent, comprehensive, consistent and concise (we refer the reader to [2]).

Fig. 1: The construction axiom[2]

Compe
tence

“The ability of a subject to perform a particular type
of P-act as well as the corresponding C-acts.”

Autho
rity

“The condition of being allowed to act.” It can be as-
signed through authorization and delegation.

Respon
sibility

“The quality of a subject to be committed to the co-
ordination facts he or she has performed, as well as to
coordination acts that are addressed to him or her.”

Fig. 2: Authority, responsibility and competence[2]

The scientific root of DEMO is the Ψ -theory, we outline its four essential axioms
according to [2].The construction axiom indicates that an enterprise consists of actors
performing productions acts (P-acts) to bring about the enterprise mission and coor-
dination acts (C-acts) to enter into and to comply with commitments. The operation
axiom says that for every type of C-act there is an action rule to guide enterprise
actors.The transaction axiom argues that P-acts and C-acts occur in generic re-
current patterns performed by two actors called transactions.The abstraction axiom
distinguishes three human abilities to perform C-acts: forma, informa and performa.
1 Design is percieved as the production process of conceptual models of a system [3].

474 INForum 2010 Miguel Henriques, José Tribolet, Jan Hoogervorst

4 Proposed model and underlying reference method

The conceptual model that relates the notions of EA, ontological models and EG
is outlined in figure 3. The EG uses the ontological models to master in a holistic
manner the enterprise complexity and devise a set of outputs that will guide the
enterprise design as well as the enterprise execution plan (operation). Governance
outputs can be divided in (1) principles devised from all the enterprise design do-
mains (traceable with the enterprise areas of concern) that will restrict the design
process (EA notion), and (2) outputs retrieved from DEMO models based on the
notions of competence, authority and responsibility, which will guide the detailed
design and the enterprise operation. Principles purpose is to deal with the article
main concern (the lack of integration among the enterprise elements at design level),
while rules will ensure that the enterprise operation conforms the enterprise design.

Fig. 3: Enterprise Governance, Enterprise Ontology and Enterprise Architecture

Based on DEMO’s theory and governance themes discussed above, as well as
researches in the field of responsibility and security modeling [4], we infer a reference
method to govern the enterprise dynamics with DEMO depicted in table 1.

Method stage Observations
(1) identify the enterprise
actor roles

The task of identifying actor roles is already provided by DEMO: they can be re-
trieved from the enterprise construction (interaction or interstriction) models.

(2) identify the areas of
responsibility

For one specific transaction, the Process Model defines all the C-acts that an actor
role is allowed to perform. Hence, the responsibility areas are rigorously defined in
DEMO’s Process Models

(3) identify the compe-
tence domains and define
a set of competence prin-
ciples for each actor role

Competence domains can be perceived as attributes that will guide the evaluation
process to check if a person has the adequate competence to exercise its job. Compe-
tence principle purposes to restrict the detailed design freedom regarding the actors
production acts.

(4) define all the author-
ity rules for each actor
role (who has the right
to exercise authorization
and delegation and in
which conditions)

For this purpose should be defined (1) the acts that each actor need to do, (2) who
is allowed to access what information and the information that must be audited for
each actor role. The illustration of these three requirements can be further trans-
formed in eligible authorization rules. Consequently, if the acts and information
required do not exist, the actors are not allowed to do and see anything else than
what is specified. In this fashion, DEMO enforces a role-based access control.

(5) define the ac-
tion/coordination rules
for each type of C-/P-act

operational rules consist of two categories: the coordination rules for guiding the co-
ordination activities (responsibility) and the production rules for guiding production
activities (competence).

(6) identify responsibil-
ities pre-conditions and
post-conditions needed to
discharge a responsibility

Since the c-acts are represented as action rules, then we can assume that there is
a set of pre-conditions that must hold before an action rule can start. After an
instance of discharging a responsibility there are statements about the environment
and the agent that are true, these are the post-conditions (formal statements).

(7) create a list of excep-
tion conditions

Exception conditions list express all the exceptions that need to be handled when
occurs a deviation regarding the enterprise norms. In this fashion, when an exception
is detected the adequate mechanisms and actors will be properly alerted

Table 1: Proposed reference method

Enterprise Governance and DEMO INForum 2010 – 475

The reference model and method are being validated in the Portuguese Justice
System, in particular at DIAP. The benefits of these artifacts are being demonstrated
as essential to identify and deal with the inconsistent and incoherent requirements
by devising principles from a global architecture framework to support the opera-
tion of all the justice procedures and actors (e.g. the lack of coordination between
internal and external entities in crime investigations), and to deal with issues such as
security, information access, traceability of the agents’ actions, among others, which
are addressed at the design level and its correct execution ensured at the operational
level in order to deal with the continuous organizational changes.

5 Conclusion

This article described the potential of bringing together the notions of enterprise
governance and enterprise ontology (within DEMO). On one hand, the EG should
be associated to an organismic perspective responsible for guiding the enterprise
strategy and enterprise development by restricting the undesirable design freedom
in the form of principles (architecture notion) and guiding the subsequent enterprise
operation in the form of operational rules. On the other hand, DEMO provides a
methodology to represent the enterprise essence in an intellectual manageable way.

Based on the research in this field of knowledge, we developed a conceptual model
and an underlying method to support the EG in defining a set of normative outputs.
This method uses the notions of competence, responsibility and authority within
DEMO to deal with the continuous changes and restrict the detailed design process
(competence principles regarding P-acts), to deal with security issues associated to
information access and responsibility transfer (authority rules), and to help identify-
ing requirements that are inconsistent and incoherent and mutually align enterprise
design and operation (production and coordination rules, exceptions list).

References

1. Russell L. Ackoff. Ackoff’s Best: His Classic Writings on Management. Wiley, 1999.
2. Jan L. G. Dietz. Enterprise Ontology: Theory and Methodology. Springer, 2006.
3. Jan L. G. Dietz. Architecture - Building strategy into design. Academic Service, 2008.
4. John Dobson Guy Dewsbury. Responsibility and dependable systems. Springer, 2007.
5. Van Haren. TOGAFTM The Open Group Architecture Framework A Management

Guide. Van Haren Publishing, 2005.
6. Jan A. P. Hoogervorst. Enterprise Governance and Enterprise Engineering (The En-

terprise Engineering Series). Springer, 1 edition, February 2009.
7. Jan A. P. Hoogervorst and Jan L. G. Dietz. Enterprise architecture in enterprise

engineering. Enterprise Modelling and Information Systems Architectures, 2008.
8. IEEE1471. Recommended practice for architectural description for software- intensive

systems. Technical report, IEEE Computer Society, 2000.
9. Michael C. Jackson. Systems Thinking. Wiley, 2003.

10. Robert S. Kaplan and David P. Norton. Strategy maps. Harvard Business School Press,
Boston, Mass., 2004.

11. Eberhardt Rechtin. Systems Architecting of Organizations: Why Eagles Can’t Swim.
CRC, 1 edition, July 1999.

12. Pedro Sousa, Artur Caetano, Andre Vasconcelos, Carla Pereira, and Jose Tribolet. En-
terprise architecture modeling with the Unified Modeling Language. Idea Group Pub-
lishing, 2006.

13. Gerald M. Weinberg. An Introduction to General Systems Thinking. Dorset House
Publishing Company, Incorporated, April 2001.

476 INForum 2010 Miguel Henriques, José Tribolet, Jan Hoogervorst

Especificação, Verificação e Teste de Sistemas
Cŕıticos

477

A (Very) Short Introduction to SPARK:
Language, Toolset, Projects, Formal Methods &

Certification

Eduardo Brito

CCTC / Departamento de Informática
Universidade do Minho

Campus de Gualtar, 4710-057 Braga, Portugal
edbrito@di.uminho.pt

Abstract. Guidelines for the development of software in safety-critical
systems usually restrict programming languages, removing features that
are unsafe and/or hard to thoroughly test and certify. There are also
recommendations and demands in newer guidelines for the use of formal
methods, as a way to achieve high assurance software. SPARK is a strict
subset of Ada that was designed to have unambiguous semantics and that
aimed at formal verification from the start. In this paper we present the
SPARK language, its toolset, examples of projects where it has been used
and argue why SPARK is relevant for academia and industry, especially
for people interested in formal verification and safety critical systems.
We also point directions for an improved use of SPARK. Concurrency
will not be addressed in this paper.
Resumo: Os parâmetros para o desenvolvimento de software em sis-
temas safety-critical normalmente restringem as linguagens de progra-
mação, removendo caracteŕısticas inseguras e/ou dif́ıceis de testar e certi-
ficar de forma rigorosa. Existem também recomendações e exigências em
novos parâmetros para o uso de métodos formais como forma de obter
software com mais garantias. Neste artigo apresentamos a linguagem
SPARK, o seu conjunto de ferramentas, exemplos de projectos onde foi
usada e argumentamos o porquê do SPARK ser relevante para a academia
e a indústria, especialmente para pessoas interessadas em verificação for-
mal e sistemas safety-critical. Apontamos também direcções para um uso
melhorado do SPARK. Neste artigo não abordaremos concorrência.

1 Introduction

Safety-critical systems are some of the most demanding systems when it comes
to certification. This certification is not only required from the software but from
the system as a whole, although in this paper we will only address features that
are directly related to software.

When developing software for these systems, one of the most used program-
ming languages is Ada[34]. Ada is a well known and respected language used
in several domains of safety-critical software development. Furthermore, Ada is

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 479–490

also a general purpose programming language, which has been kept up-to-date
with several major revisions (83, 95, 2005 and now the future 2012) which have
been standardized and thoroughly documented in the Ada Reference Manual1.

When developing safety-critical systems, the language features that are al-
lowed to be used are rather restricted. This is enforced by several guidelines
(which vary depending on the application domain) with the aim of having soft-
ware that is easier or, in some cases, possible, to certify mainly through thorough
testing within a reasonable amount of time/cost/effort. These restrictions also
depend on the integrity level (e.g. SIL, ASIL, DO-178B level) aimed by the soft-
ware component that is being developed. This integrity level has to be given not
only by the importance it has on the system but how it can affect other systems.

Some guidelines now incorporate recommendations and/or demand the use
of formal methods so that it can be mathematically justifiable that the software
behaves as intended, thus producing software that provides a higher assurance.

SPARK[6] is on the convergence of these aims. It is a strict subset of Ada that
was designed to have unambiguous semantics and that aimed at formal verifica-
tion from the start. It removes several features of the Ada language while still
retaining enough expressive power so that it can be used in realistic scenarios.

The rest of this paper is organized as follows: Sec. 2 overviews design-by-
contract and behavioral interface specification languages, two approaches that
are at the basis of SPARK; in Sec. 3 we briefly present the SPARK language
and its toolset; Sec. 4 surveys projects, both in industry and academia, where
SPARK is/was used; in Sec. 5 we point out various aspects that could enhance
SPARK and further justify the use of SPARK as a framework for rigorous soft-
ware development; Sec. 6 concludes the paper.

2 Contracts & Specification

In this section we present what is Design-by-Contract (DbC) and in what ways it
resembles and differs from Behavioral Interface Specification Languages (BISL).
It is important to describe this since the language SPARK which we will be
focusing on (as well as several others that aim at source code verification) has
its approach rooted in this.

2.1 Design by ContractTM

The term “Design by Contract” was first coined by Bertrand Meyer[26] and is
largely associated with the Eiffel[27] programming language, an Object-Oriented
programming (OOP) language, as part of the language’s philosophy and design
process. The term is also a registered trademark and some authors prefer to use
the expression Programming by Contract.

The main ideas behind DbC are: a) to document the interface of modules2

and its expected behaviour, b) to help with testing and debugging and c) to
1 Usually referred to as ARM.
2 The term modules is equivalent to package or class.

480 INForum 2010 Eduardo Brito

assign blame when a contract is breached. This is achieved by having structured
assertions such as invariants and pre- and post-conditions.

In DbC, following the tradition of Eiffel, assertions are boolean expressions,
often using subprograms3 written in the same language as the host programming
language and are intended to be checked at runtime (runtime assertion checking
(RAC)), by executing them. Writing assertions in this way is friendlier to devel-
opers but it makes formal verification impossible because contracts are also code
and not mathematical specifications describing the properties to be ensured.

In article[19] it was illustrated how Eiffel could have helped prevent the bug
in the software of Arianne V, thus avoiding one of the most expensive software
errors ever documented. What is stated is that the error that made Arianne
V go wrong could have been avoided if the pre-conditions for the subprogram
that failed had been clearly stated in the code. If the dependencies were clearly
documented in the code then the verification & validation team would have been
aware of what could (and did) generate a runtime error.

To sum it up, DbC is used to document source code and to have the program
checked while it is executing, using structured annotations that are written as
boolean expressions of the host programming language.

2.2 Behavioral Interface Specification Languages

Behavioral Interface Specification Languages was a term introduced with Larch
[15]. The Larch family of languages had the specification, in a mathematical no-
tation, written alongside the source code (Larch supported C, C++, Smalltalk
and Modula-3). This resembles DbC but it differs greatly from traditional spec-
ification languages (SL), such as Z[32] and VDM[20], where the specification is
written as a separate entity with no relation to the implementation.

Larch was focused mainly on specifying, with brevity and clarity, the in-
terface of subprograms and datatype4 invariants. Although some specifications5

were executable, executability of specifications was not an objective of the Larch
family of languages; this is the exact opposite of DbC. These specifications, along
with the source code, would give rise to proof obligations.

The way that specifications are written in BISLs and SLs are similar. In both
approaches, the specifications are written using a well-defined formal notation
that is related to a well-defined formal logic. These formal definitions do not
use expressions from the host language although they may look similar in some
cases. This is another difference regarding DbC.

It is possible to animate/execute specifications written in some SLs (depend-
ing on the available tools) but this is still different from DbC and BISL because

3 Subprograms is being used as a more generic way to refer to methods, functions,
procedures and subroutines.

4 Datatypes can also refer to classes. The term in LCL (Larch for the C language) was
used to refer to structures.

5 When talking about BISL, the terms “annotation” and “specification” are mostly
interchangeable

A (Very) Short Introduction to SPARK INForum 2010 – 481

we are animating a specification and not an implementation. Even so, we could
argue that it is possible to refine a specification into an implementation.

While writing annotations in a mathematical notation is very expressive and
particularly helpful for program verification, Larch has showed us that excessive
mathematical notation can lead to the poor adoption of a BISL. JML[22] is a
modern example of a BISL, rooted on the principles of Larch, which has taken
this into account. JML avoids excessive mathematical notation, while having a
mathematical background, and has gained several supporters in the academic
and industrial arena, especially with the success of JavaCard[33] verification
tools[3,24].

JML, as noted in[23,11], is associated with a set of tools that makes possible
to overcome the typical non-executable nature of BISLs. Also, besides being able
to do RAC, it also allows for the formal verification of Java programs, given the
right tools/frameworks.

ACSL6[9] is another interesting and modern BISL. While it has a large in-
fluence from JML, it has greater expressive power regarding the definition of
mathematical entities.

It is also worth mentioning that BISLs, contrary to the classical notion of
DbC, are not only useful for OOP but they can also be applied to other pro-
gramming paradigms. Larch, for example, had support for C and ACSL was
designed specifically for C. It is only because it is more natural to use this type
of specifications in the OOP context that it has been largely associated with it.

3 SPARK

In this section we describe the features of the SPARK programming language
and how it is supposed to work with the help of its toolset. We will focus mainly
on program verification and proof support for SPARK, with the tools that are
available from the official toolset distributed by AdaCore and Altran Praxis. This
section assumes SPARK GPL 2009 (version 8.1.x), unless it is stated otherwise7.

3.1 The Programming Language

SPARK stands for SPADE Ada Kernel8. SPADE was a previous project from
Program Verification Limited, with the same aims as SPARK, but using the
Pascal programming language. The company later became Praxis High Integrity
Systems and it is now called Altran Praxis.

SPARK is both a strict subset of the Ada language, augmented with source
code annotations, and also a toolset that supports its methodology. The SPARK
annotations can be thought of as a BISL.

6 ANSI/ISO C Specification Language.
7 There are plans to launch a SPARK GPL 2010 version with features from SPARK

Pro 9 during this summer[25].
8 The R in SPARK is only there for aesthetic purposes.

482 INForum 2010 Eduardo Brito

It is a strict/true subset of the Ada language because every valid SPARK
program is a valid Ada program; in fact, SPARK does not have a compiler and
depends on Ada compilers to generate binary code. SPARK was also cleverly en-
gineered so that the semantics of SPARK programs do not depend on decisions
made by a specific compiler implementation (e.g. whether a compiler chooses
to pass parameters of subprograms by value or by reference). Although out-
dated, SPARK also has a formal semantics[28] that is defined using operational
semantics and Z notation.

SPARK removes some features of the Ada language such as recursion, dy-
namic memory allocation, access types9, dynamic dispatching and generics. It
also imposes certain restrictions on the constructs of the language (e.g. array
dimensions are always defined by previously declared type(s) or subtype(s)10).

On top of the language restrictions, it adds annotations that allow for the
specification of data-flow, creation of abstract functions and abstract datatypes
and to the use of structured assertions (loop invariants are available but pack-
age11 invariants are not). There is also a clear distinction between procedures
(which may have side-effects) and functions (which are pure/free of side-effects
and also have to return a value). SPARK provides no way to execute annotations.

Ada has the notions of package (specification) and package body (implemen-
tation); these are the building blocks for OOP in SPARK and Ada, although we
may choose not to use the OOP features of the language. SPARK restricts OOP
features that make the code hard to verify, such as dynamic dispatching. This
issue is also addressed in[7], relatively to Ada 2005.

Package specifications can have abstract datatypes and abstract functions,
which can then be used to define an abstract state machine. When coding the im-
plementation, the abstract datatypes have to be refined into concrete datatypes,
using the own annotation, and the definitions for abstract functions are written
into proof rule files. These files are used when trying to discharge verification
conditions.

Although it is not our aim to talk about the information flow capabilities of
SPARK, it is interesting to note that in SPARK Pro 9, which has the SPARK
2005 version of the language, is also possible to validate secure and safe flow
of information between different integrity levels and information security levels
(i.e. unclassified, top secret).

All these features enable the possibility of developing software using the Cor-
rectness by Construction approach12 where a software component is designed
and developed with the aim of being formally verified.

9 Users not familiar with Ada should note that these are equivalent to pointers.
10 In Ada, the type mechanism allows for the definition of ranges. These ranges are

limited by a lower and upper bound, known as T’First and T’Last where T is the
type. It is also possible to get the range using T’Range.

11 As previously stated, packages are equivalent to modules and classes
12 This is different from the refinement approach taken by the B Method.

A (Very) Short Introduction to SPARK INForum 2010 – 483

Finally, it should be noted that SPARK has support for a subset of Raven-
scar13 dubbed RavenSPARK[30].

3.2 Toolset & Program Verification

The SPARK toolset is what enables the use of SPARK. By not having a compiler,
it must have a tool that checks the restrictions of the SPARK language; this tool
is called the Examiner. The Examiner is also the verification condition (VC)
generator (VCGen).

With the SPARK toolset we can use its proof tools to discharge the VCs.
The Simplifier is the automated theorem prover and tries to discharge the VCs
by using predicate inference and rewriting. While the tool is very successful
in discharging VCs related to safety[17], it is not as capable of discharging VCs
related to functional correctness as other modern provers[18]. The Proof Checker
is the interactive prover/proof assistant of the toolset. It is a difficult tool to use
and there is not much documentation provided and/or available.

An auxiliary tool, that ties all these tools together, is called POGS. POGS
stands for Proof ObliGation Summarizer. It generates a report with much infor-
mation, including warnings and errors related to the code but, most importantly,
it constructs the report regarding the VCs that have been proven, that remain
to be proven and those that have been shown to be false.

The SPARK Pro 9 toolset also has another tool called the ZombieScope. This
tool provides analysis related to dead paths. A dead path is a piece of code that
will never be reached; this is most likely caused by programming errors. This
tool generates dead path conditions (similar to VCs) and tries to disprove that
something is not reachable; if it fails, then it is a dead path. This information
also appears on the report generated by POGS, as expected.

The GPS (GNAT Programming Studio), which is provided by AdaCore, has
support for SPARK and it has been constantly updated so it is easier to use the
SPARK toolset inside an IDE14 that is familiar to some Ada users. GPS is not
integrated in the toolset but it is tightly coupled to it.

4 Projects & Methodologies Related to SPARK

In this section we illustrate the capabilities of SPARK by considering both
projects where the language has been used and also some methodologies and
tools that use or generate SPARK. As a preview, we will talk about Tokeneer,
Echo, SCADE and the C130J helicopter in this section.

4.1 Industrial & Academic Projects

Tokeneer[5] was an industrial project developed under a contract with the NSA,
to show that it was possible to achieve Common Criteria EAL5 in a cost effective
13 Ravenscar is a limited subset of concurrency and real-time of the Ada language.
14 Integrated Development Environment.

484 INForum 2010 Eduardo Brito

manner. The purpose of the project was to develop the“core”part of the Tokeneer
ID Station (TIS). The TIS uses biometric information to restrict/allow physical
access to secured regions.

The project was successful, exceeding EAL5 requirements in several areas,
and was allowed to be publicly released during 2009, along with all deliverables
and a tutorial called “Tokeneer Discovery”. In 9939 lines of code (LOC), there
were 2 defects; one was found by Rod Chapman, using formal analysis, and an-
other during independent testing, thus achieving 0,2 errors per kLOC. Tokeneer
has been proposed as a Grand Challenge of the Verified Software Initiative[36].

Praxis also published a short paper[12] where they described their industrial
experience with SPARK (up until 2000). In that paper it is presented SHOLIS
(a ship-borne computer system), MULTOS CA (an operating system for smart-
cards) and the Lockheed C130J (Hercules) helicopter, for which SPARK was used
to develop a large part (about 80%) of the software for the Mission Computer.

These case studies illustrate several features of the SPARK language, includ-
ing how the language eases MC/DC verification by having simpler code, how
proofs are maintained and can be used as “regression proofs” instead of “regres-
sion testing” and how SPARK can also inhabit multi-language systems. It also
shows that SPARK is not appropriate to being adopted late in the development,
especially when trying to re-engineer Ada code into SPARK.

Recently[1] SPARK has been chosen as the programming language for a
new NASA project, a lunar lander mission. SPARK will be used to develop
the software of the CubeSat project. SPARK was also used as a target for a
study on verified component-based software, based on a case study developed
in SPARK for a missile guidance system[21]. This goes hand-to-hand with the
SPARK philosophy of Correctness by Construction.

The Open-DO initiative15 is also developing a project, called Hi-Lite16, which
uses SPARK in several ways. One of the aims of the project is to create a SPARK
profile for the Ada language17. While SPARK itself can be viewed as a profile for
Ada, the aim of Hi-Lite is to provide a less restrictive SPARK, with the benefits
that SPARK has shown over time. Another aim of the project is to write a
translator from SPARK (or sparkify) to Why, so that it is possible to use Why’s
multi-prover VCGen. Why’s VCGen has support for interactive provers as well
as automated provers. This would provide an alternative toolchain for SPARK
besides the one that is maintained by Altran Praxis.

There is also ongoing research work by Paul B. Jackson[18] in translating the
VCs generated by the Examiner to SMT-Lib input. This work, that originated
from the academia, is scheduled to be included in the SPARK Pro toolset as an
experimental feature, in a future release.

15 http://www.open-do.org
16 It should be noted that this project is very large and this is just a small portion of

the aims of that project.
17 This is being called sparkify.

A (Very) Short Introduction to SPARK INForum 2010 – 485

4.2 Industrial Tools & Methodologies

The SCADE Suite is a well known software design tool that has been used,
for example, by Airbus in the development of the Airbus A340 and is being
used in several of the Airbus A380 projects. The SCADE Suite has a certified
code generator for SPARK[2]. Perfect Developer[14] is another tool for modelling
software for safety-critical systems that has a code generator for SPARK. It is
out of the scope of this paper to try and thoroughly explain these tools but, in a
very simple way, these tools are driven by model engineering in a formal setting
and have been used in large scale projects, especially SCADE.

SPARK is also being used as an essential component of the Echo approach.
This approach[37] is able to tightly couple a specification (in PVS[29]) with an
implementation. It generates SPARK annotations from the PVS specification;
this generated code is then completed to form the implementation. Afterwards,
the tool extracts properties from the implementation to check if the implemen-
tation conforms to the specification. This approach has been used to formally
verify an optimized implementation of the Advanced Encryption Standard.

5 SPARK as a Workbench for Rigorous Software
Development

After showing some of the capabilities of SPARK and the support it has from
the industry and academia, we now provide some insights on what we believe
we can do to improve SPARK by enhancing or adding new features.

5.1 Theoretical Foundations of SPARK & Further Improvements

As it has been stated previously, SPARK has already a formal semantics that is
specified with operational semantics and Z notation, but it is already outdated.

We believe that it is important to update the formal semantics of the lan-
guage, for several reasons. First and foremost, it can be argued that since the
domains where the language is used are mostly related to safety-critical and that
the language aims at formal verification, it should be formally specified and be
kept up-to-date, so that there is no distinction between the formal specification
and the implementation.

Also, the semantics is separated into two documents describing the static and
dynamic semantics of the language. An unification of the semantics could have
benefits (which is also stated in the document but was not carried out). Another
question is that the specification, to our knowledge and to what is shown in the
documents, was not thoroughly verified (although the use of Z guarantees that
at least everything is properly typed). By this we mean that there are no proofs
showing relevant properties of the language that are stated, such as expressions
being pure (i.e. free of side effects).

486 INForum 2010 Eduardo Brito

Yet importantly, there is only the operational semantics. There is no ax-
iomatic semantics nor weakest pre-condition (or strongest post-condition) calcu-
lus nor a specification for a VCGen. While this is implemented in the toolset, an
implementation is not a specification (although it could be used as a reference).

For greater formalisation and assurance, we believe that the language would
benefit from having a specification for the axiomatic semantics and for the VC-
Gen. The axiomatic semantics could be shown to be sound, regarding the op-
erational semantics and the VCGen could be shown to be sound and correct,
regarding the axiomatic semantics. Ideally this would involve mechanical veri-
fication using interactive proof assistants. This type of formal verification has
already been done by Homeier[16] for a standard While language.

SPARK is ideal for this because it is a real programming language, used in
large scale projects, but it is also one of the smallest real languages that do not
compromise expressive power, at least for its application domain. Even though
it is smaller than most languages, it is much bigger than any toy language.

Thus SPARK provides several challenges for researchers, related to its type
system, to the separation between specification and implementation, to the re-
finement of datatypes and so on and so forth.

There is ongoing work on this area from the author of the paper.

5.2 Adding Features and Tools for Program Verification

One of the most obvious things that is lacking in SPARK is loop variants. While
it could be argued that most loop variants in safety-critical systems are trivial,
and that is why they still have not been implemented in SPARK, SPARK would
benefit from having the possibility of specifying loop variance in its annotations,
for proving the termination of non-trivial loops.

Package invariants would also benefit SPARK. SPARK is able to restrict the
use of global variables in subprograms through the use of global and derives an-
notations, but SPARK is not able to assert that the program state has always
specific properties because it lacks the notion of package invariant. Package in-
variants raise some implementation difficulties, such as temporary invalid states
in a sequence of assignments and problems related to inheritance in OOP. These
problems have been addressed by JML in the past so we are certain that they
can be dealt with, especially given the restrictive nature of OOP in SPARK.

Regarding the BISL of SPARK, we could add a better way to write abstract
functions, logical predicates, axioms and lemmas. ACSL is one of the most pow-
erful BISLs when it comes to the expressiveness of these specifications. To main-
tain compatibility, these annotations could use a different notation so that the
SPARK tools could ignore them (they would be dealt with by specific tools).

It would also be interesting to have the possibility of writing algebraic defini-
tions in SPARK. This would enable to write things such as top(push(stack, x)) =
x. Being able to write these types of specifications would allow for a higher level
of reasoning and it would also allow to define properties about the sequence
of execution (or protocol) of a given package or set of packages. The Common
Algebraic Specification Language (CASL)[4] has a well-defined semantics and

A (Very) Short Introduction to SPARK INForum 2010 – 487

could serve as a basis for this. It was developed under the rationale of specifying
requirements, design and architecture of conventional software.

Another limitation of SPARK is in dealing with the verification of floating-
point arithmetic (the documentation of SPARK[31] states that the realrtc op-
tion may detect numerical errors in programs but not their absence, much like
testing). This is not exclusive to SPARK since the verification of floating-point
arithmetic is a difficult issue (and a topic of active research) that many ap-
proaches do not even try to deal with and assume real arithmetic instead of
floating-point arithmetic. There is a recent article[10] with an interesting ap-
proach to this problem. It suggests a dedicated tool to deal with the verification
of the non floating-point part of the program and to use Gappa (Génération Au-
tomatique de Preuves de Propriétés Arithmétiques) to deal with the verification
of floating-point arithmetic.

5.3 Adding Features and Tools for Certification

The certification process for critical systems relies heavily on testing, even in
the presence of formal methods; this is true even for DO-178C. For JML there
is a tool[11] called jmlunit which is capable of generating test inputs by look-
ing at invariants and pre- and post-conditions, but it forces the user to supply
predefined data, as examples for the tests.

QuickCheck[13] is another approach for generating tests. Although we have to
specify generators for our custom datatypes (default datatypes have predefined
generators), this definition allows for greater variation. QuickCheck seems like
it could be adapted to SPARK and any implementation that would be made
would benefit greatly from the strongly-typed system of the language, probably
reducing the number of necessary generators that would have to be created
(although it should always be possible to create test generators, for our own
specific purposes, if we wish so).

It should be noted that there are several other approaches to the automatic
generation of test inputs and several other tools, as for example TestEra and
Korat. Because of space constraints we chose to cite only these two, since they
are extremely popular at the present date and also have a large community
supporting them. It should also be said that any eventual test generation could
also benefit from the algebraic specification mentioned earlier by having the
protocol guide the test generation process.

The approaches to testing that are described on the previous paragraphs are
very close to Model-Based Testing (MBT) based on source code annotations.
With this type of MBT, the model is derived from the specification in the source
code and then it generates abstract test data. A model checker then checks to
see if the properties of the model are being respected. In some cases, it can also
be possible to generate real test data and supply it to the program as unit test.

The MBT approach is used by the Spec Explorer[35] tool, using programs
written in Spec#[8] as the basis for the model. In Spec Explorer, when a counter
example is found, it is shown as a graph with all the actions that took place,
following the order and values that lead to the error. To do this, Spec Explorer

488 INForum 2010 Eduardo Brito

needs to have an automata of the program, which defines the protocol for it.
This approach also allows to model check and test reactive systems. This feature
may be helpful for model-checking and to do MBT on systems that may interact
with sensors and/or actuators, which are an essential part of critical systems.

6 Conclusion

We have presented a short introduction to what is SPARK, the philosophy and
toolset that support the language, and presented also projects, both industrial
and academic, which use SPARK in their development. Furthermore, we have
provided some directions to enhance SPARK that could interest people in formal
verification and safety-critical software development.

We believe that the directions we suggest can bring further support to SPARK
and its approach and they can be particularly useful in fostering a productive
environment between the academia and industry, especially in further developing
industrially usable and scalable formal methods for the (near) future.

References

1. Altran Praxis: New lunar lander project relies on SPARK programming language,
http://www.altran.com/document/?f=Altran 20100610 CP EN.pdf

2. Amey, P., Dion, B.: Combining model-driven design with diverse formal verification
(January 2006)

3. Antoine, L.B., Requet, A.: JACK: Java Applet Correctness Kit. In: In Proceedings,
4th Gemplus Developer Conference (2002)

4. Astesiano, E., Bidoit, M., Kirchner, H., Krieg-Brückner, B., Mosses, P.D., San-
nella, D., Tarlecki, A.: CASL: the common algebraic specification language. Theor.
Comput. Sci. 286(2), 153–196 (2002)

5. Barnes, J., Chapman, R., Johnson, R., Widmaier, J., Cooper, D., Everett, B.: En-
gineering the Tokeneer enclave protection software. In: IEEE International Sym-
posium on Secure Software Engineering (ISSSE). IEEE Press (2006)

6. Barnes, J.: High Integrity Software: The SPARK Approach to Safety and Security.
Addison Wesley, first edn. (March 2003)

7. Barnes, J.: Safe and Secure Software: An invitation to Ada 2005. AdaCore (2008)
8. Barnett, M., Rustan, Schulte, W.: The Spec# programming system: An overview

(2005)
9. Baudin, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:

ANSI/ISO C Specification Language, version 1.4 (2009)
10. Boldo, S., Filliâtre, J.C., Melquiond, G.: Combining Coq and Gappa for certifying

floating-point programs (2009)
11. Burdy, L., Cheon, Y., Cok, D., Ernst, M.D., Kiniry, J., Leavens, G.T., Rustan, K.,

Leino, M., Poll, E.: An overview of JML tools and applications (2003)
12. Chapman, R.: Industrial experience with spark. Ada Lett. XX(4), 64–68 (2000)
13. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of

Haskell programs (2000)
14. Crocker, D.: Perfect developer: A tool for object-oriented formal specification and

refinement (2003)

A (Very) Short Introduction to SPARK INForum 2010 – 489

15. Guttag, J.V., Horning, J.J., Garl, W.J., Jones, K.D., Modet, A., Wing, J.M.: Larch:
Languages and tools for formal specification. In: Texts and Monographs in Com-
puter Science. Springer-Verlag (1993)

16. Homeier, P.V., Martin, D.F.: Trustworthy tools for trustworthy programs: A veri-
fied verification condition generator. In: TPHOLs. pp. 269–284 (1994)

17. Jackson, P.B., Ellis, B.J., Sharp, K.: Using SMT solvers to verify high-integrity
programs. In: AFM ’07: Proceedings of the second workshop on Automated formal
methods. pp. 60–68. ACM, New York, NY, USA (2007)

18. Jackson, P.B., Passmore, G.O.: Proving spark verification conditions with smt
solvers (December 2009)

19. Jazequel, J.M., Meyer, B.: Design by Contract: the lessons of Ariane. Computer
30(1), 129–130 (1997)

20. Jones, C.B.: Systematic software development using VDM (2nd ed.). Prentice-Hall,
Inc., Upper Saddle River, NJ, USA (1990)

21. Lau, K.K., Wang, Z.: Verified component-based software in SPARK: Experimen-
tal results for a missile guidance system. In: Proc. 2007 ACM SIGAda Annual
International Conference. pp. 51–57. ACM (2007)

22. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A notation for detailed design (1999)
23. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of

JML accommodates both runtime assertion checking and formal verification. Sci.
Comput. Program. 55(1-3), 185–208 (2005)

24. Marche, C., Mohring, P.C., Urbain, X.: The Krakatoa tool for certification of
Java/JavaCard programs annotated in JML (2004)

25. Messer, R.: Introducing SPARK Pro 9.0 webinar (April 2010),
http://www.adacore.com/home/products/gnatpro/webinars/

26. Meyer, B.: Applying ”Design by Contract”. Computer 25(10), 40–51 (October 1992)
27. Meyer, B.: Object-Oriented Software Construction. Prentice Hall PTR, 2nd edn.

(March 2000)
28. O’Neil, I.: The formal semantics of SPARK83 (1994)
29. Owre, S., Rushby, J.M., , Shankar, N.: PVS: A prototype verification system. In:

Kapur, D. (ed.) 11th International Conference on Automated Deduction (CADE).
Lecture Notes in Artificial Intelligence, vol. 607, pp. 748–752. Springer-Verlag,
Saratoga, NY (jun 1992), http://www.csl.sri.com/papers/cade92-pvs/

30. SPARK Team: SPARK Examiner: The SPARK Ravenscar Profile (January 2008)
31. SPARK Team: Supplementary Release Note - The RealRTC Option (February

2009)
32. Spivey, J.M.: The Z notation: a reference manual. Prentice-Hall, Inc., Upper Saddle

River, NJ, USA (1989)
33. Sun microsystems: Java Card Techonolgy (2000)
34. Taft, S.T., Duff, R.A., Brukardt, R.L., Ploedereder, E., Leroy, P.: Ada 2005 Refer-

ence Manual. Language and Standard Libraries: International Standard ISO/IEC
8652/1995(E) with Technical Corrigendum 1 and Amendment 1 (Lecture Notes in
Computer Science). Springer-Verlag New York, Inc., Secaucus, NJ, USA (2007)

35. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nachmanson,
L.: Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer
(2008)

36. Woodcock, J.: Tokeneer experiments, http://research.microsoft.com/en-
us/events/vsworkshop2009/jim woodcock.pdf

37. Yin, X., Knight, J.C., Nguyen, E.A., Weimer, W.: Formal verification by reverse
synthesis. In: SAFECOMP. pp. 305–319 (2008)

490 INForum 2010 Eduardo Brito

Timing Analysis -
From Predictions to Certificates

Nuno Gaspar1, Simão Melo de Sousa1,2, and Rogério Reis2,3

1 RELEASE - Reliable And Secure Computation Group,
University of Beira Interior, Portugal,
{nmpgaspar, desousa}@di.ubi.pt,

2 LIACC-UP
3 DCC-FC, University of Porto, Portugal

rvr@ncc.up.pt

Abstract. In real-time systems, timing constraints must be satisfied in
order to guarantee that deadlines will be met. The calculation of each
task’s worst-case execution time (WCET) is a prerequisite for the schedu-
lability analysis, and hence of paramount importance for real-time sys-
tems. However, an accurate prediction can be difficult if the underlying
hardware architecture possesses features like caches and pipelines.
In this paper we report our work in progress project on ACCEPT,
an Abstraction-Carrying CodE Platform for Timing validation. Our ap-
proach counts on information gathered at source-code level (e.g. loop
bounds, infeasible paths), defined by annotations that also express the
intended timing behaviour. Furthermore, in the context of mobile code
safety and in order to minimize the trusted computing base, we produce
a checkable certificate whose validity entails compliance with the calcu-
lated WCET.

Keywords: real-time systems, worst-case execution time, abstract in-
terpretation, abstraction-carrying code, fixpoint computation, timing val-
idation

1 Introduction

Real-time systems can be seen as sets of tasks that are expected to perform some
functionality under predefined timing constraints. In general, in order to ensure
a correct system behaviour (schedulability analysis), an upper bound estimative
for the worst-case execution time (WCET) of each task is necessary.

To improve its performance, modern processors include mechanisms like
caches and pipelines which make instruction’s execution time context depen-
dent, increasing the difficulty of static timing analysis. To cope with this, one
could be tempted to always assume the local worst case scenario (e.g. cache
miss) in order to obtain safe predictions, but two problems could arise with such
approach. On one hand, it could lead to an excessive over-approximation of the
actual WCET, thus resulting in a waste of hardware resources. By other hand,

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 491–501

due to timing anomalies [RWT+06], the obtained prediction could in fact, be
unsafe (an under-approximation).

While our platform considers the extraction of information from the source-
code level (e.g. loop bounds, infeasible paths), in this paper we focus on the
underlying mechanisms for the production of certificates and their validation
process.

1.1 Motivation

The determination of safe and tight upper bounds for the WCET has been the
object of intensive study in the literature [WEE+08]. Yet, there is no attempt,
up to the present and to the best of our knowledge, to provide an independent
validation mechanism w.r.t. the correctness of the predicted time bounds.

Mobile code safety has been progressively gaining notoriety in the sphere of
real-time systems [SP01], both at research and industry levels, since they rep-
resent an enabling technology to tackle the limitations of standard client-server
based approaches. In this context, in spite of the fact that previous method-
ologies are leveraged by the undertake of a formal approach, one would still
have to put his faith on a potential untrusted third party, without being able to
independently validate the correctness of the predicted time bounds.

One could argue that typically, applications loaded in embedded systems
need not to satisfy real-time requirements (e.g. ring tones for mobile phones).
However, in [KSH05], Kirsch et al identify the mobility of real-time programs
as a challenging, but desirable feature for embedded systems. Indeed, even a
software/system update can be seen as mobile code. Thus, being able to in-
dependently validate its timing behaviour would be of major interest for such
systems. Moreover, a timing validation mechanism could also be a valuable asset
for original equipment manufacturers and sub-contractors applications.

For instance, consider the following application scenario. There are several
embedded systems that due to the functionality that they are expected to carry
out, cannot be easily reachable. Coral sensors or control computers for satellites
are examples of such embedded systems, where even a routine software/system
update can be considered as mobile code. This updated software is also expected
to satisfy stringent timing constraints, i.e. behave as mobile real-time code. Thus,
being able to independently validate its timing behaviour would be of major
interest for such systems.

This lack of an independent validation process is the issue that we address
in this paper.

1.2 Related Work

There are numerous approaches in the literature focused in algorithms and tools
for the derivation of the WCET [WEE+08]. Our goal here is not to present
yet another approach of that type, but rather to emphasize how to produce a
certificate that can be then used to validate the predicted time bounds.

492 INForum 2010 Nuno Gaspar, Simão Melo de Sousa, Rogério Reis

Nevertheless, we should refer that the problem of certifying resource con-
sumption, namely execution time, has already been addressed before, like in the
work of Crary and Weirich [CW00], that use an extended type system capable of
specifying and certifying bounds on resource consumption. However, this work
makes no effort to determine bounds on execution times, but rather provides a
mechanism to certify those bounds (for instance, obtained via a previous pro-
gram analysis). The result of their approach is an executable that is certified
w.r.t. resource consumption.

Furthermore, Bonenfant et al [BFHH07] present an interesting combination
of information retrieved at source code level, with low-level timing information
gathered with AbsInt’s aiT tool [FH04]. This work provides guaranteed bounds
on worst-case execution times for a strict, higher-order programming language.

The Mobility, Ubiquity and Security (MOBIUS) [BBC+06], and the Mobile
Resource Guarantees (MRG) [Gua05] research projects also aim at the certifica-
tion of resource consumption, their approaches rely mostly on theorem proving,
whereas ours relies on abstract interpretation.

1.3 Contributions

The work reported here is included in a broader effort to provide a source level
feedback on a BCET and WCET computation platform with certificate gener-
ation in the context of mobile code. This platform considers a high-level anno-
tation language, preserving its semantics through a WCET-aware compilation
process, and a back-annotation mechanism [HK07]. However, details on these
features will be reported elsewhere.

In this paper, we focus on the low level interface. In this sense, this paper is
a work in progress report on the BCET and WCET certificate generation and
validation, and it intends to introduce and justify the underlying architecture.

1.4 Organization of the Paper

The remainder of this paper is organised as follows. Section 2 presents our archi-
tecture proposal towards an Abstraction-Carrying Code [APH04] platform. We
explain the emergence of the certificate and how it can be used for independent
validation of the calculated WCET in Section 3. Finally, conclusions and future
work are discussed in Section 4.

2 Proposed Architecture

The general framework of our proposal is as illustrated by figure 1. We begin by
extending the C programming language with annotations, following a Design-by-
Contract [LC04] approach, that define the intended timing properties for each
function. The timing specification of the main function is of most importance,
however one may also want to define some constraints on the auxiliary functions.
Moreover, by placing these annotations directly into the source code, we are also

Timing Analysis - From Predictions to Certificates INForum 2010 – 493

able to express valuable informations for the subsequent WCET analysis, such
as infeasible paths and loop bounds. This is achieved by the use of a WCET-
aware compilation process, targeting the ARM instruction set, that preserves
the annotations semantics.

Fig. 1. Abstraction-Carrying Code based BCET/WCET Platform

Only at the hardware level one can accurately calculate the WCET, but
feedback about the compliance of the given timing specification should be done
at source-code level. Hence, in order to perform timing validation w.r.t. the
functions’ timing specification, we perform the WCET analysis at machine-code
level, taking into account the effects of the hardware specific features, and alert
of any possible non-compliance throughout the use of back annotations [HK07].
This is what is represented by the bottom left area of Figure 1. The idea of this
mechanism is to propagate the timing information back to the source-code level,
warning the system developers about the violation w.r.t. the timing specification.
However, as stated in subsection 1.3, details on this mechanism will be reported
elsewhere.

Let the set of execution times of a program P be denoted by JPK. The
problem of verifying the compliance of the given timing specification can be
thus formulated as follows:

P respects the timing specification I if JPK ⊆ I,

where I stands for the intended timing behaviour, i.e., the set of accepted ex-
ecution times. The idea is to express the collecting semantics [WW08] of P as
the fixpoint of a set of recursive equations. In general, however, the state space
to be considered is too large to exhaustively explore all possible executions and
some abstraction of the application domain is required in order to make the
timing analysis feasible. With this in mind, our approach relies on abstract in-
terpretation as the underlying technique. With its use, not only it provides us

494 INForum 2010 Nuno Gaspar, Simão Melo de Sousa, Rogério Reis

an adequate framework to reason about, but also with an elegant way to infer
an abstract model of the program that can play the role of a certificate.

2.1 Abstract Interpretation

In the abstract interpretation framework, a program P is interpreted over a
simpler abstract domain Dα. This abstract domain permits to trade efficiency
over precision, i.e., although it is an approximation, by computing the fixpoint
over this abstract domain, we will be able to produce precise, yet safe, (over-
)approximations of the collecting semantics.

The fixpoint calculation over this abstract domain will allow us to safely pre-
dict the processor behaviour for the program’s execution (e.g. cache miss). With
that information, and following the approach from the standard WCET archi-
tecture [Wil04], we can calculate the WCET, by determining its path through its
control-flow graph. This is achieved by solving its corresponding integer linear
program maximized for execution time. The process of determining the best-case
execution time (BCET) is performed analogously.

Let JPKα be the set of execution times calculated over the abstract domain
Dα. It is clear that JPKα is lower- and upper-bounded by BCET and WCET,
respectively. Moreover, since the comparison between actual and intended se-
mantics is easier if done in the same domain, we assume that the intended
timing specification is also given in the abstract domain, i.e., Iα ∈ Dα.

The problem of verifying the compliance with the given timing specification
can now be reformulated as

P respects the timing specification Iα if JPKα ⊆ Iα.

At this stage, feedback regarding any possible non-compliance of P w.r.t. the
timing specification can be reported through the use of back annotations [HK07],
allowing the system developers to proceed accordingly.

2.2 Abstraction-Carrying Code

Proof-Carrying Code (PCC) [Nec97] is a general mechanism enabling a program
consumer to locally check the validity of the code w.r.t. some safety policy. The
inherent key benefit is that there is no need to trust any third party. However,
there are three essential challenges for PCC to be used in practice:

(i) definition of expressive safety and functionality policies,
(ii) automatic generation of the certificate, i.e., proving the program correct, and
(iii) efficient certificate checking in the consumer side.

In the context of mobile code safety, most approaches rely on theorem prov-
ing, whereas Abstraction-Carrying Code (ACC) [APH04] relies on abstract in-
terpretation.

In ACC, and in particular for the purposes of our platform, the above chal-
lenges are addressed by (i) getting hold of the effects that the processor specific

Timing Analysis - From Predictions to Certificates INForum 2010 – 495

features (e.g. caches, pipeline) have on the execution time, which has already
been addressed in the literature [The04,GR09]; (ii) using a fixpoint static an-
alyzer to automatically infer an abstract model of the program, which can be
then used as a certificate; and (iii) by a simple, easy-to-trust fixpoint checker.

3 Certificate Production and Validation

Let us now elaborate on this process applied to our platform proposal. A program
is characterized by its control-flow graph, constituted by a set of edges E ⊆
V×Ins×V , where V represents the program points, vi ∈ V models the program’s
entry point and Ins models the instruction to be executed whenever taking that
edge.

A semantic function J.K : Ins → (S → S) assigns to each ins ∈ Ins, a
transfer function that models its effect on the program state S, being evaluated.
For instance, in the ARM instruction set, the instruction B address is specified
as R15 := address, i.e., update of the program counter register to the address
given by the evaluation of the expression address, and thus would have to be
modelled accordingly to its specification.

The collecting semantics assigns for each program point V , the set of program
states S, which may occur in any possible execution, i.e., CS : V → P(S) (where
P(S) stands for powerset of S). The analysis to be performed can be specified
by extracting a number of equations from the program being considered. There
are two types of equations. The first one, relates exit with entry information for
each program point V . While the second, relates entry information of a program
point Vi, with exit information of nodes from which there exists an edge to the
program point Vi, i.e.,

⋃{Vj | (Vj , ins, Vi) ∈ E}.
The resulting system of equations can be solved by computing the least fix-

point lfp(F) = Fn(λv.∅) of the functional F : (V → P(S))→ (V → P(S)):

F (f)(v′) =

{
S0 if v′ = vin,⋃

(v,ins,v′) ∈ E JinsK(f(v)) otherwise,
(1)

where S0 ⊆ S is the set of the program’s initial states.
However, as mentioned in Section 2, computing the collecting semantics of a

large and complex program P can be too much expensive to be feasible. Hence,
the analysis is performed on a simpler abstract domain Dα = (S,L, β, γ), where
L = (L,v,⊔,⊥,>) is a complete semi-lattice and β : S → L is a representation
function, mapping concrete to abstract states. The idea, is that β maps a state
S to the best property describing it. Finally, γ : L → P(S) is a concretization
function mapping abstract states to concrete states.

As we have seen above, the collecting semantics operates over sets of states,
while our abstract domain, operates over sets of properties. Thus, with the pur-
pose of relating these two domains, we define an abstraction function α : P(S)→
L, by α(S′) =

⊔{β(s) | s ∈ S′}. The concretization function γ, and the abstrac-
tion function α, will therefore yield the following relation:

496 INForum 2010 Nuno Gaspar, Simão Melo de Sousa, Rogério Reis

P(S)−−→←−−α
γ

L

The above relation is defined such that α(X) v l ⇔ X ⊆ γ(l), and thus
establishing the pair (α, γ) as a Galois connection. Furthermore, in order to
ensure termination we require the Ascending Chain Condition to hold, i.e., every
ascending chain of elements eventually terminates. For this, both the abstraction
function α, and the concretization function γ, must be monotonic w.r.t. the v
and ⊆ operators, respectively.

The semantic function defined above, can now be redefined as an abstract
semantic function J.Kα : Ins→ (L→ L), over the abstract domain. The abstract
counterparts of the transfer functions JinsK, i.e., JinsKα, must also be monotonic
w.r.t. the v operator. Finally, the analysis can now be applied with the abstract
collecting semantics CSα : V → L, such that ∀v ∈ V : CS(s) ⊆ γ(CSα(v)), i.e.,
the computed results are either precise or an over-approximation of the collecting
semantics, and thus are safe.

The resulting system of equations can be solved by computing the fixpoint
lfp(Fα) = Fnα (λv.⊥) of the functional Fα : (V → L)→ (V → L):

Fα(f)(v′) =

{
l0 if v′ = vin,⊔

(v,ins,v′) ∈ E JinsKα(f(v)) otherwise,
(2)

where the abstraction of the concrete initial states is defined as initial abstract
state, thus α(S0) v l0.

It should be clear that, since the abstract transfer functions, JinsKα, are
monotonic w.r.t. thev operator, by induction we obtain Fnα (λv.⊥) v Fn+1

α (λv.⊥)
for all n. All the elements of the sequence are in L, and since this is a finite set,
not all elements of the sequence can be distinct. Thus, there must be some n
such that:

Fn+1
α (λv.⊥) = Fnα (λv.⊥)

Furthermore, since Fn+1
α (λv.⊥) = Fα(Fnα (λv.⊥)), we have reached the least

fixpoint of Fα, i.e., lfp(Fα), and thus found a solution to the equation system.
The analysis to be instantiated depends on the target processor being evalu-

ated. In our current prototype implementation of ACCEPT, we focus ourselves
in the ARM7TDMI-S and ARM920T processors. While for the former only a
pipeline analysis is performed that captures the instruction’s overlapping effect,
for the latter, since it also features a cache memory, an integrated cache and
pipeline analysis is performed [The04].

3.1 Program Producer - Certificate Production

After computing this fixpoint, and thus having the cycles counts for each basic
block of the control-flow graph, we are able to calculate both the BCET and

Timing Analysis - From Predictions to Certificates INForum 2010 – 497

WCET by means of integer linear programming techniques, and thus verify the
compliance with the giving timing specification (Figure 1). However, we can also
let the obtained fixpoint play the role of a certificate.

In the context of mobile code safety one cannot trust the origin of the pro-
gram. Hence, by adding to the code the certificate and sending both to the
program consumer, it can be performed a local and independent check of the
program’s timing behaviour, thereby avoiding the need to trust in the code pro-
ducer.

3.2 Program Consumer - Certificate Validation

The program consumer receives a program along with its certificate. In order
to check the compliance with the intended timing specification, the first step
is to compute the program’s control-flow graph and verify that the certificate
is a valid abstraction. Then, since the certificate is supposedly a fixpoint, the
checking procedure can be written as:

Check(Certificate) =

{
True if Fα(Certificate) = Certificate,

False otherwise.
(3)

Since the certificate is supposed to be a fixpoint, another iteration over it
cannot change anything, thus, on the program consumer side, a simple one-pass
computation is suficient to check that the certificate is indeed a fixpoint.

In the cases where the received certificate does not behave as a fixpoint, the
program consumer can simply reject the program. One could argue that we could
let the program run, and kill its execution in the case of a timing behaviour non-
compliance. However, that would be a waste of resources, and in the context of
embedded systems, which tend to have very limited computational resources, it
is unacceptable. On the other hand, if the certificate is indeed a fixpoint, then
the program consumer can locally compute the BCET and WCET by standard
integer linear programming techniques, and thus check the compliance with the
timing specification. Furthermore, it should be noted that in this framework,
it is also possible for the program consumer to define new timing policies. For
instance, one can be interested in tightening the timing constraints.

This validation process requires that both the producer and consumer share
the same abstract transfer functions. Indeed, if the consumer used different ab-
stract transfer functions the certificate checking process would be inefficient, and
thus prohibitive for such scarce resource equipments as embedded systems. One
could argue that the independence in the timing validation process is compro-
mised by that fact, however, it should be noted that the trusted computing base
is limited to this checking operation, i.e., a simple, easy-to-trust fixpoint checker,
that only has to perform a one iteration process. Hence, this approach allows
to detect if a program has been tampered with, since an adulteration in the
program code would be detected when performing the checking operation, i.e.,

498 INForum 2010 Nuno Gaspar, Simão Melo de Sousa, Rogério Reis

the fixpoint iteration. In the context of mobile code, this is particularly relevant
since, rather than simply put a blind confidence on a previous timing analysis,
one can validate the program’s timing behaviour by solely relying on a fixpoint
checker.

4 Conclusions and Future Work

Abstract Interpretation has been widely used in the industry, being static tim-
ing analysis one of its most successful applications [WW08]. In our approach
we also use the Abstract Interpretation framework as the underlying technique,
we obtain our BCET and WCET predictions taking into account the hardware
specificities (cache, pipeline) [The04,GR09], by explicitly following a standard
fixpoint computation strategy [Kil73], and then apply standard integer linear
programming techniques in order to compute the BCET and WCET. This fix-
point computation will allow us to infer an abstract model of the program, which
can then be used as a certificate, i.e., a program consumer can locally validate
the received program w.r.t. to its timing behaviour, by simply checking that this
abstract model is indeed a fixpoint (a one-pass process), and then compute the
BCET and WCET with the received certificate.

This paper is a work in progress report on the timing certificate generation
and validation and intend to introduce and justify the underlying architecture.
We presented our architecture proposal for ACCEPT, an Abstraction-Carrying
CodE Platform for Timing validation. In our prototype being implemented, we
avoid a binary-to-assembly translation phase, by making our compilation process
directly produce ARM assembly.

At this stage there are still some open issues that remain to be addressed.
One of the main challenges that we face in order to make our ACCEPT platform
useful in practice is the size of the produced certificates. Embedded systems are
known for their scarce resources, and thus, cannot afford to waste computational
means. In [AASPH06], Albert et al introduce the notion of a reduced certificate,
with the objective of producing a certificate that only contains the essential
information which the program consumer cannot reproduce by itself, while not
yielding an overhead in the certificate checking process.

Our actual focus on the certification generation part of the ACCEPT plat-
form is now on the pragmatical evaluation of our proposal. For now we are not
concerned with performance, but with correctness and adequacy (in the context
of mobile code). However, a BCET/WCET platform is only useful if it provides
tight and safe time bounds. In this sense, we use state of the art algorithms
for their calculation. Nevertheless, comparing equitably this kind of platform
against reference tools [FH04], even pragmatically in the form of benchmark, is
not a trivial task, the same source-code, compilation process and/or low-level
code and target architecture must be considered. However, we plan to report on
case studies and practical results of our framework very soon.

To the best of our knowledge this is the first work applying the concepts of
Abstraction-Carrying Code to the static timing analysis field.

Timing Analysis - From Predictions to Certificates INForum 2010 – 499

Acknowledgments

This work is partially supported by the RESCUE project PTDC/EIA/65862/2006
funded by FCT (Fundação para a Ciência e a Tecnologia). We also thank Vitor
Rodrigues for his valuable suggestions and comments.

References

[AASPH06] Elvira Albert, Puri Arenas-Sánchez, Germán Puebla, and Manuel V.
Hermenegildo. Reduced certificates for abstraction-carrying code. In ICLP,
pages 163–178, 2006.

[APH04] Elvira Albert, Germán Puebla, and Manuel V. Hermenegildo. Abstraction-
carrying code. In LPAR, pages 380–397, 2004.

[BBC+06] Gilles Barthe, Lennart Beringer, Pierre Crégut, Benjamin Grégoire, Martin
Hofmann, Peter Müller, Erik Poll, Germán Puebla, Ian Stark, and Eric
Vétillard. Mobius: Mobility, ubiquity, security. In TGC, 2006.

[BFHH07] Armelle Bonenfant, Christian Ferdin, Kevin Hammond, and Reinhold
Heckmann. Worst-case execution times for a purely functional language.
In In 18th IFL 2006. Springer, 2007.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or approximation
of fixpoints. In POPL ’77, pages 238–252. ACM, 1977.

[CW00] Karl Crary and Stephnie Weirich. Resource bound certification. In POPL
’00, pages 184–198, New York, NY, USA, 2000. ACM.

[FH04] Christian Ferdinand and Reinhold Heckmann. ait: worst case execution
time prediction by static program analysis. In IFIP Congress Topical Ses-
sions, pages 377–384, 2004.

[GR09] Daniel Grund and Jan Reineke. Abstract interpretation of FIFO replace-
ment. In SAS’09, pages 120–136. Springer-Verlag, 2009.

[Gua05] Mobile Resource Guarantees. http://groups.inf.ed.ac.uk/mrg/, 2005.
[HK07] Trevor Harmon and Raymond Klefstad. Interactive back-annotation of

worst-case execution time analysis for java microprocessors. In 13th IEEE
RTCSA, Washington, 2007. IEEE Computer Society.

[Kil73] Gary A. Kildall. A unified approach to global program optimization. In
POPL ’73, pages 194–206, New York, NY, USA, 1973. ACM.

[KSH05] Christoph M. Kirsch, Marco A. A. Sanvido, and Thomas A. Henzinger. A
programmable microkernel for real-time systems. In VEE ’05, 2005.

[LC04] Gary T. Leavens and Yoonsik Cheon. Design by contract with jml, 2004.
[Nec97] George C. Necula. Proof-carrying code. In POPL ’97, pages 106–119, New

York, NY, USA, 1997. ACM.
[RWT+06] Jan Reineke, Bjrn Wachter, Stephan Thesing, Reinhard Wilhelm, Ilia Po-

lian, Jochen Eisinger, and Bernd Becker. A definition and classification of
timing anomalies. In 6th Intl Workshop on WCET Analysis, 2006.

[SP01] Alexander D. Stoyen and Plamen V. Petrov. Towards a mobile code man-
agement environment for complex,real-time, distributed systems. Real-
Time Syst., 21(1/2):165–189, 2001.

[The04] Stephan Thesing. Safe and Precise WCET Determination by Abstraction
Interpretation of Pipeline Models. PhD thesis, Saarland University, 2004.

500 INForum 2010 Nuno Gaspar, Simão Melo de Sousa, Rogério Reis

[WEE+08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter
Puschner, Jan Staschulat, and Per Stenström. The worst-case execution-
time problem—overview of methods and survey of tools. ACM Trans.
Embed. Comput. Syst., 7(3):1–53, 2008.

[Wil04] Reinhard Wilhelm. Why ai + ilp is good for wcet, but mc is not, nor ilp
alone. In VMCAI’04, LNCS 2937, 2004.

[WW08] Reinhard Wilhelm and Björn Wachter. Abstract interpretation with ap-
plications to timing validation. In CAV ’08, 2008.

Timing Analysis - From Predictions to Certificates INForum 2010 – 501

Towards a Formally Verified Kernel Module

Joaquim Tojal1,2, Carlos Carloto1, José Miguel Faria2, and Simão Melo de
Sousa1,3⋆

1 University of Beira Interior,Dept. of Computer Science, Covilhã, Portugal
2 Critical Software SA.,Coimbra, Portugal

3 University of Porto, Artificial Intelligence and Computer Science Laboratory
(LIACC-UP), Porto, Portugal

Abstract. In this article we present the design by contract approach to
formal verification of an industrial real-time kernel using VCC (Verified
C Compiler) and Frama-C tools. The annotations were directly inserted
into the source code of an industrial kernel module, xLuna, and verified
automatically. VCC was also used to reason about concurrency issues in
a preemptable and real-time environment. In addition we describe some
particular methodological aspects of these two verifiers. These are the
first results towards a Formally Verified Kernel.

1 Introduction

Almost every computer system depends directly on the operating systems be-
havior. As such, having kernel code that is proved to be correct is a goal that
researchers and industrial companies have attempted to achieve. Large amounts
of low-level implementations like operating system core is obviously a perfect
and challenging target for formal verification. The interest in formally verify-
ing realistic and industrial low-level code and obtaining the highest standards
of safety like Common Criteria EAL7 has grown significantly in recent years.
In this work we target precisely this goal taking a modular approach to for-
mally verify a real industrial real-time operating system kernel which was not
designed with formal verification in mind. The kernel targeted is a particu-
lar interrupt manager of xLuna real-time kernel for embedded systems built
by Critical Software,SA. For verification, we use Microsoft Research Verified C
Compiler(VCC) and Frama-C tools to reason about functional correctness, con-
currency and safety properties of xLuna kernel. The specifications are based in
Hoare-style pre- and post-conditions inlined with the real code.

The remaining of this paper is organized as follows: Section 2 show the xLuna
architecture and some particular design aspects. Then, in section 3, we gave an
overview toolchain and verification methodologies for both, VCC and Frama-
C. Section 4 exposes the detail design of xLuna IRQ manager and respective
verification approaches. At the end, sections 5 and 6 give some conclusions that
led us to future improvements and related work to the subject.
⋆ This work was partially funded by Fundação para a Ciência e Tecnologia (FCT) and

Program POSI and the project RESCUE (PTDC/EIA/65862/2006)

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 503–514

2 xLuna

xLuna [17] is a microkernel based on the RTEMS [18] Real-Time Operating
System with the ability to run a GNU/Linux Operating System [19], provid-
ing therefore a runtime environment for real-time (RTEMS) and non-real-time
(Linux) applications. xLuna was designed to supports ESA’s LEON SPARC pro-
cessor [17] with the main goal of extending the RTEMS kernel in order to enable
a safely Linux execution without jeopardizing aspects of reliability, availability,
maintainability and safety. Its general architecture is shown in Figure 1. The

...

Linux Task

NRT1

Linux kernel

NRTm

HRTnHRT1 ...

RTEMSRTEMS

xLuna core

Memory

Manager
IRQ

Manager

ISC

Manager

Device

Drivers

Hardware

Legend:

Linux subsystem

(user mode)

RTEMS subsystem

(privileged mode)

Fig. 1. xLuna architecture

Linux subsystem runs as an unprivileged RTEMS task and in a different mem-
ory partition. This provides spacial partitioning, guaranteeing a safe isolation
between the non-real-time (NRT) and hard-real-time (HRT) subsystems. xLuna
provides four main modules:

– Memory manager : enforces the isolation requirements between RTEMS and
Linux and memory protection of Linux kernel from NRT user processes.

– Interrupt Manager (IRQ): connects interrupts of the real hardware to the
Linux kernel (which does not have access to them) and provides services.

– Inter-System communication (ISC): for bidirectional communication between
HRT and NRT tasks.

– Device Drivers : for other hardware virtualizations required (e.g. timer).

In the following section we describe the important aspects of the verification
tools used on xLuna’s kernel.

3 Methodology and Tools

3.1 Verified C Compiler (VCC)

VCC [11] is an automatic verification tool for concurrent C that is being de-
veloped by Microsoft Research, Redmond, USA and European Microsoft In-

504 INForum 2010 Joaquim Tojal, Carlos Carloto, José Faria, Simão Sousa

novation Center (EMIC), Aachen, Germany. VCC utilizes annotations based in
Hoare-style pre- and post-conditions closely attached to source code. That is, the
annotations are mixed into the codebase rather than within blocks of commented
(for the C compiler) specifications. Even so, the annotated C code can still be
compiled with any C compiler through conditional compilation: If a regular C
compiler is called, a special VCC flag is disabled and the annotations and speci-
fication code are preprocessed and transformed into empty strings. The concept
of complete code with annotations is the same used in JML [16] for Java code
or SPEC# [13] for C# programs.

Verification Toolchain VCC is fully integrated with the well known Microsoft
Visual Studio IDE, providing a familiar environment to programmers and mak-
ing the correct use of the VCC toolchain very simple. Three main steps are made
by VCC when trying to verify an annotated C program: (i) VCC translates anno-
tated C code into BoogiePL (an intermediated verification language), (ii) Boogie
translates BoogiePL into first-order predicate formulas (verification conditions)
and (iii) Z3 tries to solve them and if it finds a proof then the program is correct
according to the specifications.

VCC Annotations As in standard design by contract approach to partial
correctness, the pre- and post-conditions inserted into a C function constitute
a contract between the function and a function caller, guaranteeing that if the
function starts in a state that satisfies the precondition then the postcondition
holds at the end of the function. To express and reason about specifications, VCC
uses clauses such requires, ensures, result or writes representing, respectively,
pre- and post-conditions, function return value, and frame conditions which limit
what the function is authorized to modify. VCC also supports loop invariants
for reasoning about loop behavior and termination.

Ownership, Type Invariants and Ghost Code VCC memory model en-
sures that objects (pointers to structures) do not overlap in memory keeping a
typed and hierarchical view of all objects (Spec# ownership model). This own-
ership machinery is applied as a ghost transformation behind every structure in
the program. Each type has a related ownership control object in specification
code (ghost code), only visible to VCC and providing a bridge between implicit
specification code and VCC annotations in the real program. For the sake of
brevity the transformation process is not detailed in this paper (a more detailed
account can be found in [21], available at http://www.di.ubi.pt/~release).
Ghost code can also exist as explicit specification functions, objects or variables
only seen by VCC for verification purposes. Structures can be also annotated
with invariants related to their ownership behavior or to their own fields.

VCC implicitly lets an object own its representation and writing the object
allows writing its ownership domain. However, updating an object requires a
special wrap/unwrap protocol to transfer ownership domains (see Figure 2).

Towards a Formally Verified Kernel Module INForum 2010 – 505

Thread-owned

mutable

open

Object can be

modified

Object can be

modified

Invariant holdsInvariant holds

unwrapunwrap wrap

wrap owner

wrapped nested

unwrap owner
closed

unwrap owner

Fig. 2. VCC wrap/unwrap protocol

Defining an hierarchical structure gives VCC a tree view of the system. One
object can only have one owner and threads own themselves. Figure 2 shows
that in a specific ownership domain each object should be open or close inside of
the thread domain and close outside the thread domain. In a sequential fashion
an object can only be updated when it is mutable and must return to a safe
state performing some operations required by the wrap/unwrap protocol. The
explanation of these states is given bellow.

– Mutable. After creation the object is open and owned by me() which rep-
resents the current thread. In this state the thread is allowed to modify the
object and prevents other threads interference.

– Wrapped. Wrapping the object (wrap) requires its invariant to hold. The
reverse transition (unwrap) assume object invariants.

– Nested. Closed objects can be added to (or removed from) another objects
ownership via set owns(), set closed owner() (wrap owner) or unwrap owner
operations using giveup closed owner(). The reverse transition (unwrap)
assume object invariants.

3.2 Frama-C

Frama-C is a platform dedicated to the analysis of software source code written
in C. It gathers a series of different tools with several static analyses techniques
and a deductive verifier in a single collaborative framework. Its collaborative
approach allows different analyzers to build upon the results previously com-
puted by other analyzers. Frama-C is an extensible framework. It is open source
software and is organized with a plugin architecture. It contains several ready-
to-use plugins and new plugins may be built and use the results or functionalities
provided by the existing plugins. A common kernel centralizes information and
conducts the analysis. Plugins interact with each other through interfaces defined
by the kernel.
Currently, Frama-C provides several lightweight analyzers (e.g., “Metrics”, “Call-
graphs”, “Users”, “Constant Folding”, and “Occurrence”), semantic analyzers

506 INForum 2010 Joaquim Tojal, Carlos Carloto, José Faria, Simão Sousa

(e.g., “Functional Dependencies”, “Slicing”, and “Impact”), the sophisticated
“Value Analysis” plugin, which automatically computes variation domains for
the variables of a program, and deductive verification, through the “Jessie” plu-
gin. Jessie is the Frama-C plugin that enables design by contract development
of C programs. The contracts are written in the ANSI/ISO C Specification Lan-
guage (ACSL) [15]. The generated verification conditions can be submitted to
external automatic provers such as Simplify, Alt- Ergo, Z3, Yices, and CVC3.

4 Verification of xLuna IRQ Manager

Verifying low-level code that was not implemented with formal verification in
mind and adapting the verification methodology to that implementation is a
non-trivial task. When reasoning about xLuna as a formal verification target
its own architecture suggests that a modular approach should be taken in order
to achieve an overall correctness proof. One of the most critical and crucial
modules of xLuna is the IRQ manager, since it has to catch and process all
interrupt requests needed for proper system functionality. It thus constitutes an
interesting target for formal verification and was the subject of our study. Yet,
the different modules are considerably dependent on each other. Moreover, kernel
code is highly dependent of machine assembly instructions, which causes issues
for the verification task since VCC does not interpret assembly language. For
this reason, it was decided, at this stage, to assume that machine instructions
and inlined assembly are correct. All IRQ module dependencies were studied to
build proper code isolations and abstractions were made to fit the verification
methodology.

4.1 IRQ Design

Following xLuna architecture, the Linux kernel is running as an unprivileged
(user-mode) RTEMS task and thus, it does not have direct hardware access. The
main purpose of the IRQ manager is to serve as a bridge connecting the Linux
subsystem to hardware interrupts. This enables catching incoming hardware
interrupts required by Linux kernel, system calls made by Linux processes, or
xLuna system calls made by Linux kernel. Hardware interrupts or software traps
are both called events that are inserted into an Event Queue to be sent to their
handlers.
Interrupts are filtered by a dispatcher function which is responsible to insert them
into the event queue. Once there are events in the queue they should be processed
by the IRQ manager through a monitor task which calls the respective Linux
handlers or xLuna services (see Figure 3). Events can be treated synchronously
or asynchronously. In the queue structure there can be only one sync event at
a time. This event is a request caused by the running instruction and must be
processed synchronously. Async events are accumulated in the queue according
to their event type (e.g., TT ISC RTEMS TO LX is the special trap type 0x21
for inter systems communication that is inserted as an async event). As shown in

Towards a Formally Verified Kernel Module INForum 2010 – 507

IRQ Manager

IRQ Monitor Task

Event queue

Sync

IRQ Entry

Event code

AsyncRelated data

Dispatcher

Legend:

Event dispatching Process events Send to handler Event data

Fig. 3. Interrupt request manager

Figure 3, both Sync and Async events have an associated data structure which
contains the data needed for event handlers and the interrupt/trap code.

In the next sections, we describe the approach taken for verifying the treat-
ment of each event inserted in the queue and the correct usage of data structures
evolved in this flow.

4.2 VCC Verification Approach

We can drive the verification methodology used, through the analysis of an IRQ
manager function used to insert a synchronous event into the queue. As already
mentioned, VCC enforces a ownership model to guarantee a consistent and typed
view of all objects (e.g., pointers to data structures) which ensures for instance
that objects of the same type and different addresses do not overlap in memory
[12].

Sync

event

Async

events

Event queue Lock

Queue container

Protect the queue

Legend:

Ownership link

(owner)

Protected object

Fig. 4. VCC event queue ownership

508 INForum 2010 Joaquim Tojal, Carlos Carloto, José Faria, Simão Sousa

When xLuna interrupt manager is initialized, VCC considers all objects as mu-
table. Therefore ownership relations must to be configured at the program entry
point (irq init() function) to prevent further object updates without complying
with the ownership protocol. This setup ensures at IRQ manager boot time that:

– The queue is typed and protected at the end of the initialization;
– The queue is the owner of all sync and async events;
– When the queue is closed its invariant and the invariants of all embedded

types hold.

With this ownership setup in mind, the following example illustrates the addi-
tion of a sync event to the queue. The code is a simplified version of the original
function.

1 int ev en t qu eu e in s e r t s yn c (struct i r q e n t r y ∗ i r q claimp (c))
2 always (c , c l o s ed (&QueueLock))
3 r e q u i r e s (nested(&event queue))
4 r e q u i r e s (i rq−>data != NULL)
5 r e q u i r e s (! VCC SPEC FUN is asyn trap (i rq−>event))
6 r e q u i r e s (t h r e ad l o c a l (i r q))
7 reads (i r q)
8 wr i t e s (&event queue)
9 en su re s (&event queue . sync event == i r q)

10 en su re s (nested(&event queue))
11 {
12 //xLuna a s s e r t f unc t i on
13 ASSERT(irq−>event) ;
14 a s s e r t (typed(& irq−>event)) ;
15 s p a r c d i s a b l e i n t e r r u p t s () ;
16 spec (VCC SPEC FUN sparc disable interrupts (spec(&QueueLock

) spec (c)) ;)
17 // unwrap/wrap p ro to co l
18 unwrap(&event queue) ;
19 unwrap(&event queue . sync event) ;
20 // i n s e r t sync event (f o r vcc we can now change the queue)
21 event queue . sync event = ∗ i r q ;
22 // r e v e r s e wrapping
23 wrap(&event queue . sync event) ;
24 wrap(&event queue) ;
25 s p a r c e n ab l e i n t e r r u p t s () ;
26 spec (VCC SPEC FUN sparc enable interrupts (spec(&QueueLock)

spec (c)) ;)
27 return 0 ;
28 }

Listing 1.1. Insert synchronous event function in VCC

As preconditions one tells to VCC that this function will start in a state where:

– event queue is owned by an object and thus its invariant holds (line 3);

Towards a Formally Verified Kernel Module INForum 2010 – 509

– sync events always have data required by event handlers to work properly
(line 4);

– event code must be within sync event bounds (line 5);
– irq points to an object that is local to the running thread (lines 6) which is

only allowed to read the same irq object (lines 7). On the other hand, per-
missions to change event queue are necessary. The writes clause guarantees
that only event queue will be updated (line 8).

To respect the VCC ownership protocol one needs to unwrap (lines 18, 19)
the queue and its embedded IRQ entry, change it and then wrap in reverse
order (lines 23, 24). When an object is unwrapped, VCC implicitly assume its
invariant and assert it when wrap occurs. In the example, this ownership flow
will guarantee the second postcondition (line 10), whereas the first one ensures
that the queue sync event was updated correctly (line 9).

Lines 2, 15, 16, 25, 26 and the ghost claim parameter (line 1) are related with
concurrency verification and are explained in next section.

4.3 Concurrency Verification

The above described approach is suitable for sequential code. Nevertheless, the
kernel has to guarantee that executions are made without interference or un-
expected kernel behavior. In a concurrent real-time kernel, not only user pro-
cesses are preemptable but also kernel processes may be subject to stringent
scheduling policies or interrupts. In xLuna’s implementation, in order to achieve
non-interference updates of critical regions, low-level functions (implemented
in assembly language) that disable and enable back interrupts are used. The
required update steps are performed while interrupts are disabled. In our veri-
fication approach, such assembly functions are represented by VCC ghost code
instructions.

Lock approach Disabling interrupts gives to the running thread non-interference
execution steps before interrupts are enabled again. One can think about this
low-level access policy as a mandatory lock and use an abstract ghost imple-
mentation suitable for VCC methodology. When interrupts are disabled we call
a VCC ghost specification function (see Listing 1.1 line 16) that will transfer
ownership domain to the running thread and prevent preemption while inter-
rupts are enable (line 26). This allows reasoning about implementation steps in
a sequential fashion. Still, one needs to ensures that the lock is not destroyed or
deallocated: in VCC we can model this issue through a claim. The gray part of
Figure 4 shows the ownership configuration for ghost code and states that the
Queue Container ghost structure is the owner of the lock and the latter owns the
queue. The container has two invariants saying that (i) the object protected by
the lock is the queue and (ii) it is the owner of the lock. In VCC this knowledge
can be passed to functions through ghost parameters (claims). In the example,
the ghost claim parameter and the clause in line 2 guarantee that:

510 INForum 2010 Joaquim Tojal, Carlos Carloto, José Faria, Simão Sousa

– c has an implicit invariant ensuring that the container remains closed (con-
tainer invariant holds)

– the always clause tells VCC to enforce the fact that if the container is closed,
the lock is also closed and thus it can never be destroyed.

4.4 Frama-C Verification Approach

The main focus of the Frama-C verification was the safety and functional issues
of xLuna IRQ Manager. Before that, the initial stage comprised the evalua-
tion and tailoring of the original code: since, at the moment, Frama-C does not
support all the C language, some functions had to be changed to resolve some
incompatibilities. The main topics covered were:

– Pointer dereferencing: the code of the xLuna IRQ Manager has a significant
number of global variables and pointers. As such, pointer dereferencing was
one of the most relevant aspects;

– Arguments : analyze if the function arguments are correctly introduced and
do not prevent the functions from terminating;

– Loops : analyze the body of the loops and build the necessary contracts (loop
variants and loop invariants) to prove that each loop terminates

To illustrate the Frama-C verification approach, we consider the same example,
i.e., the function that inserts synchronous events into the event queue.

1 /∗@ requ i r e s \ v a l i d (i r q) ;
2 r e qu i r e s (i rq−>data !=NULL) ;
3 ensures \ r e s u l t==0 | | \ r e s u l t==(−1) ;
4 @∗/
5 int ev en t qu eu e in s e r t s yn c (struct i r q e n t r y ∗ i r q)
6 {
7 int l e v e l ;
8 ASSERT(irq−>event) ;
9 i f (even t queue has sync even t ()) return −1;

10 //@ a s s e r t \ v a l i d (i r q) ;
11 //@ ensures even t queue . sync even t == ∗ i r q ;
12 event queue . sync event = ∗ i r q ;
13 return 0 ;
14 }

Listing 1.2. Insert synchronous event function in Frama-C

The contracts included in this function are explained as follows:

– Line 1: This contract is a precondition: in order to the function finishes
it needs a valid irq. It is required that irq pointer is allocated in a safely
memory location.

Towards a Formally Verified Kernel Module INForum 2010 – 511

– Line 2: Also a precondition. In this contract we say that the data cannot be
null.

– Line 3: A postcondition that guarantees that the output of the function is
either 0 or -1. (It is 0 if the event is inserted; if not the output is -1.)

– Line 8: This ASSERT is not part of the contracts that we build. It is an
original xLuna C statement.

– Line 10: An assertion. It strengthens the precondition on line 1. It is right
before the place where is absolutely necessary that irq is not NULL.

– Line 11: The postcondition of the function.

For this function, it were generated 15 proof obligations; all of them proved with
success by the automatic prover.

The proof obligations were generated by why, and Alt-ergo was the automatic
prover utilized to discharge them. In the total of the project, it were generated
373 proof obligations., all of them automatically proved by Alt-ergo. The results
are analyzed in the next section.

5 Conclusions and Future Work

In this paper we have presented the design by contract approach to formal verifi-
cation of a realistic system using different verification tools for a feasibility study.
One can instantly conclude that the annotations burden in VCC is greater than
Frama-C, mainly due to the ghost code and type invariants supported by VCC.
In the overall IRQ model (about 1k LOC C) were inserted almost ten times
more VCC annotations than Frama-C. Safety properties such as correct array
index, arithmetic overflow and pointer deference or null pointers were verified in
most parts of the IRQ manager. All inside function updates were surrounded by
frame conditions and all parameters validated, type invariants hold with respect
to the VCC ownership protocol. As said before VCC memory model guarantees
that objects do not overlap in memory. At this time, pre- and post-conditions
were added to approximately 80% of IRQ manager C code. The rest of the IRQ
C code is related to switching and Linux stack manipulations. The concurrency
verification approach guarantees sequential execution in a preemptable environ-
ment and it is proved to be suitable to VCC methodology [20,10] and also used
in PikeOS. However, assembly language in kernel code can not be ignored when
aiming to an overall system verification. One possibility to extend VCC work
is the construction of a ghost model of the underlying hardware and assembly
language, and connect the specifications made to the ghost model.

After this work we are able to do an analysis of the platform Frama-C. It is a
platform that is being developed and in the last months it has been in constant
evolution. In this moment it is a platform that is good to work with. The inte-
gration of the ACSL, Jessie and the why platform makes Frama-C a very good
platform to work in the verification of programs. However it has some problems
that the developer needs to improve. Some of those problems are:

– Frama-C has limited support for function pointers. This is a problem when
used on the type of code found in an operating system module.

512 INForum 2010 Joaquim Tojal, Carlos Carloto, José Faria, Simão Sousa

– It currently lacks clear error messages describing what and where the prob-
lem is.

– Its implementation is not stable yet (it is an academic tool), it crashes often.
This mostly happens when there are pointers present in the code to be
verified.

– Some annotations cause crashes of Frama-C or its subsystems.

With Frama-C, in the functions that we analyze, the results on the automatic
prover was a success, and all the proof obligations of those function were checked
with success. As said before, some code of a few functions were removed because
of Frama-c incompatibilities, and other functions weren’t analyze because of
completely incompatibility with Frama-C. We have verified about 80% of the
IRQ Manager code. So as the Frama-C development proceed it will be possible
to reintroduce the code removed and to analyze the functions that we couldn’t
analyze with the actual version of Frama-C. After the work done in the verifi-
cation of the xLuna IRQ Manager we should be able to proceed to other xLuna
modules. As long as the xLuna modules aren’t too incompatible with the actual
version of Frama-C the verification of those modules may be possible. However
with the evolution of Frama-C it may be possible to verificate all of xLuna
modules.

6 Related Work

Prove correctness of low-level software implementations is a goal pursued for
decades, the early work on formal verification of operating systems comes from
1973-1980 with the Provably Secure Operating System (PSOS) [1]. Later in
seventies UCLA Data Secure Unix (DSU) [2] was the first approximating the
modern microkernel architecture. The proofs were guided based on first-order
predicate calculus and 20% of the code have been proven correct. Other early
work is the Kernel for Isolated Tasks (KIT) [3], KIT address the problem of
verifying properties for process isolation in a multi-tasking environment. PSOS,
DSU and KIT were pioneers in attempts to large scale software verifications
and inspired some techniques still used nowadays. Verified Fiasco (VFiasco) [4]
project started in 2001 with a experiment using SPIN model checker to verify a
small version of the Fiasco inter-process communication. After this experiment
the project moved on using the PVS theorem prover to formalize a subset of
C++ to reason about Fiasco implementations. SPIN model checker was also
used in other kernels such as Fluke [5], RUBIS [6] or HARMONY [7]. The L4
micro-kernel has also been a target for formal verification projects, the most re-
cent in seL4 project [8]. seL4 was concluded at the end of 2007 with a resulting
small (8700 LOC C and 600 LOC assembly) microkernel for run in ARM archi-
tecture. The OS design team used Haskell and Isabelle/HOL for fast prototyping
and specification proofs. More within the scope of this paper are the VerisoftXT
project which uses VCC verification methodology to prove correctness of Mi-
crosoft Hyper-V Hypervisor [9] and SYSGO PikeOS microkernel [10].

Towards a Formally Verified Kernel Module INForum 2010 – 513

References

1. P. Neumann, R. Feiertage: PSOS Revisited. Proceedings of the 19th Annual Com-
puter Security Applications Conference (2003) 208

2. B. Walker, R. Kemmerer, G. Popek: Specification and verification of the ucla unix
security kernel. Commun. ACM (1980) 118-131

3. W. Bevier: A verified operating system kernel. Report 11, Computational Logic Inc.,
Austin, Texas (1987)

4. M. Hohmuth, H. Tews: The vfiasco approach for a verified operating system. In 2nd
ECOOP Workshop on Program Languages and Operating Systems (2005)

5. P. Tullmann, J. Turner, J. McCorquodale, J. Lepreau, A. Chitturi, G. Back: Formal
methods: A practical tool for os implementors. Proceedings of the 6th Workshop on
Hot Topics in Operating Systems (1997)

6. G. Duval, J. Julliand: Modeling and verification of the rubis microkernel with spin.
In Proceedings of the First SPIN Workshop (1995)

7. T. Cattel: Modelization and verification of a multiprocessor real-time OS kernel.
Proceedings of the 7th IFIP WG6.1 International Conference on Formal Description
Techniques VII (1995)

8. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, S. Winwood: seL4:
Formal verification of an OS kernel. In Proc. 22nd ACM Symposium on Operating
Systems Principles (SOSP) (2009) 207-220

9. D. Leinenbach, T. Santen: Verifying the Microsoft Hyper-V Hypervisor with VCC.
Refinement Based Methods for the Construction of Dependable Systems, number
09381 in Dagstuhl Seminar Proceedings (2010) 104-108.

10. C. Baumann, B. Beckert, H. Blasum, T. Bormer: Ingredients of Operating System
Correctness. Embedded World 2010 Conference (2010)

11. E. Cohen , M. Dahlweid , M. Hillebrand , D. Leinenbach , M. Moskal , T. Santen
, W. Schulte , S. Tobies: VCC: A Practical System for Verifying Concurrent C.
Theorem Proving in Higher Order Logics (2009)

12. E. Cohen, M. Moskal, W. Schulte, S. Tobies: A Precise Yet Efficient Memory Model
for C. 4th International Workshop on Systems Software Verification (2009)

13. M. Barnett, K. Leino, and W. Schulte: The Spec# programming system: An
overview. In CASSIS 2004, LNCS vol. 3362, Springer (2004)

14. Frama-C Web page: http://frama-c.com/
15. J. Burghardt, J. Gerlach, K. Hartig, J. Soto, C. Weber: ACSL By Example: To-

wards a Verified C Standard Library (2010)
16. G. Leavens, and Y. Cheon: Design by Contract with JML. JML tutorial (2006)
17. P. Braga, L. Henriques, M. Zulianello: xLuna:eXtending free/open-source reaL-

time execUtive for oN-bord space Applications. Small Satellites Systems and Ser-
vices The ESA 4S Symposium (2008)

18. RTEMS web page: http://www.rtems.com/.
19. Snapgear Embedded Linux web page: http://www.snapgear.org/.
20. E. Hillebrand, D. Leinenbach: Formal Verification of a Reader-Writer Lock Im-

plementation in C. 4th International Workshop on Systems Software Verification
(2009) 123-141

21. J. Tojal. Towards a Formally Verified Microkernel using the VCC Verifier. Master’s
thesis, University of Beira Interior, Portugal (2010)

514 INForum 2010 Joaquim Tojal, Carlos Carloto, José Faria, Simão Sousa

Inferência de tipos em Python ?

Eva Maia Nelma Moreira Rogério Reis
{emaia,nam,rvr}@ncc.up.pt

DCC-FC & LIACC -UP

Resumo As linguagens dinamicamente tipificadas, como a linguagem
Python, permitem ao programador uma maior flexibilidade, no entanto
privam-no das vantagens da tipificação estática, como a detecção precoce
de erros. Este artigo tem como objectivo descrever um sistema estático
de tipos para um subconjunto do Python (RPython). Acreditamos que
a definição de um este sistema de inferência de tipos, como este, é um
passo importante para a construção de um sistema de verificação formal
de programas Python.

1 Introdução

A verificação formal de programas é, hoje, de reconhecida importância devido
ao aumento da necessidade de certificar o software como fiável. Em especial, é
importante certificar o software para os sistemas cŕıticos e embebidos. Quando o
desempenho destas aplicações não é cŕıtico, a necessidade de segurança, correcção
e rapidez de desenvolvimento justificam a utilização de linguagens de alto ńıvel,
como o Python.

Nos últimos trinta anos, os sistemas de tipos têm sido desenvolvidos e usados
com sucesso em diferentes linguagens de programação. Um sistema de tipos, é
um componente das linguagens tipificadas, que define um conjunto de regras que
associam tipos aos objectos do programa. O uso de um sistema de tipos permite
prevenir a ocorrência de determinados erros durante a execução do programa.

O Python [Ros95] é uma linguagem de programação de muito alto ńıvel,
orientada a objectos e dinamicamente tipificada. Possui uma sintaxe clara, que
facilita a legibilidade do código e o desenvolvimento rápido de programas.

Neste trabalho apresentamos um sistema que permite a inferência estática
de tipos em Python. Como esta linguagem possui algumas caracteŕısticas que
impossibilitam a inferência de tipos, na ausência de execução, consideramos um
seu subconjunto designado RPython [AACM07]. O RPython foi definido infor-
malmente no âmbito do projecto PyPy [Pro], cujo objectivo é a possibilidade de
execução eficiente de Python e a construção de um compilador “Just-in-time”.
Para esta sub-linguagem é posśıvel inferir tipos em tempo de compilação, uma
vez que possui as seguintes caracteŕısticas:

1. as variáveis têm tipo estático.
? Trabalho parcialmente suportado pela Fundação de Ciência e Tecnologia e programa

POSI, e pelo projecto RESCUE (PTDC/EIA/65862/2006)

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 515–518

2. os tipos complexos têm que ser homogéneos.
3. não possui caracteŕısticas introspectivas nem reflexivas.
4. não permite o uso de métodos especiais (*), a definição de funções dentro

de funções, a definição e uso de variáveis globais e apenas permite o uso de
herança simples.

Existem alguns trabalhos relacionados com a inferência de tipos em Python
[vS]. No entanto, nenhum deles procede à inferência de tipos, na ausência de
execução, em Python, de modo formal.

2 Sistema de tipos

Um sistema de tipos define um conjunto de regras que associam tipos aos con-
strutores de um programa.

A sintaxe abstracta do Python sobre a qual a inferência de tipos é efectuada é
definida pela seguinte gramática, na qual não faremos distinção entre expressões
e comandos:

e, ē ::= n | l | x | (e1, . . ., en) (tuplos) | [e1,. . ., en] (listas)
| {ē1:e1,. . .,ēn:en}(dicionários) | x=e | e op e | e opc e | e opb e
| opu e | if e: e else e | e[n]| return | return e
| while e: e else e | def f(x1 . . .xn):e | f(e1 . . . en)
| class c():[e1,. . .,en]| c(e1, . . ., en) | e.m(e1,. . ., en)| e.m

onde,

n ∈ {int, float, long}, l ∈ constantes, x ∈ nomes de variáveis
f ∈ nomes de funções, c ∈ nomes de classes, m ∈ nomes de métodos

op::= + | - | * | << | >> | | |∧ | & | / | % | ** | //
opc::= == | != | < | ≤ | > | ≥ | is | not is | in | not in
opb::= and | or
opu::= not | ∼ | + | -

Consideremos o contexto local a uma classe, Ω, definido do seguinte modo:

Ω ::= {m0::η0 . . . mn::ηn}
onde ηi se encontra definido abaixo.

O conjunto de tipos posśıveis para a linguagem define-se pela seguinte gramática,
onde TVar representa o conjunto das variáveis de tipo, τ e α os tipos monomórficos
e η os tipos polimórficos:

τ ,α ::= eTop
| eInt | eFloat | eLong | eString | eBool | eNone | σ ∈ TVar
| eTuple(τ1 . . . τn) | eList(τ) | eDict(τ) | eArrow([τ1 . . . τn],α)
| eClass(c,Ω) | eCCla(l, [c1,. . ., cn]) | eCv(l, [τ1,. . .,τn])
η ::= τ
| eAll([σ1,. . .,σn], eArrow([τ1 . . . τn],α))

516 INForum 2010 Eva Maia, Nelma Moreira, Rogério Reis

2.1 Regras de inferência

Ao conjunto das atribuições de tipo a variáveis ou funções, distintas, chamamos
contexto, e representamos por Γ . O contexto é global durante todo o processo
de inferência. A definição deste conjunto, onde ti ∈ x, f , é a seguinte:

Γ ::= {t0 :: η0, ..., tn :: ηn}

Dado um contexto Γ , um construtor e e um tipo τ , Γ ` e ::τ significa que
considerando o contexto Γ é posśıvel deduzir que o construtor e tem tipo τ .

De seguida, vamos definir algumas das regras de inferência para o sistema de
tipos.

Γ ` x :: τ, se (x :: τ) ∈ Γ (Var)
Γ ` ei :: τi 1 ≤ i ≤ n

Γ ` (e1, ..., en) :: eTuple ([τ1, ..., τn])
(Tuplo)

Γ ` ei :: τ 1 ≤ i ≤ n

Γ ` [e1, ..., en] :: eList (τ)
(Lst)

Γ ` ēi :: αi hashable(αi)
Γ ` ei :: τ 1 ≤ i ≤ n

{ē1 : e1, ..., ēn : en} :: eDict (τ)
(Dic)

Γ ` e :: τ1 Γ ` x :: τ2
τ1 <: τ2 ou τ2 <: τ1
Γ ` x = e :: eNone

(Atr)

Γ ` e1 :: τ1 Γ ` e2 :: τ2 τ1 <: τ2
Γ ` e1 + e2 :: τ2

(Opb1)
Γ ` e1 :: τ1 Γ ` e2 :: τ2 τ2 <: τ1

Γ ` e1 + e2 :: τ1
(Opb2)

τ1, τ2 ∈ {eInt, eF loat,
eLong, eString, eTuple(α), eList(α)}

Γ ` e1 :: τ1 Γ ` e2 :: τ2
τ1 <: τ2 ou τ2 <: τ1

Γ ` e1 opc e2 :: eBool
(Opc1)

Γ ` e1 :: eBool Γ ` e2 :: eBool
Γ ` e1 opb e2 :: eBool

(Opbool)
Γ ` e :: eList(τ) i :: eInt

Γ ` e[i] :: τ
(Alst1)

Γ ` e :: eList(τ) n :: eInt m :: eInt
Γ ` e[n : m] :: eList(τ)

(Alst2)
Γ ` e :: eDict(τ)

Γ ` i :: α hashable(α)
Γ ` e[i] :: τ

(Adic1)

Γ ` e :: eDict(eNone)
Γ ` i :: α hashable(α)

Γ ` e[i] :: eTop
(Adic2)

Γ ` return :: eNone (Return1)

Γ ` e :: τ
Γ ` return e :: τ

(Return2)

Γ ` e0 :: eBool Γ ` e1 :: τ
Γ ` e2 :: α τ <: α

Γ ` if e0 : e1 else e2 :: α
(Cond1)

Γ ` e0 :: eBool Γ ` e1 :: τ
Γ ` e2 :: α α <: τ

Γ ` if e0 : e1 else e2 :: τ
(Cond2)

Γ̄ = {xi :: τi} 1 ≤ i ≤ n Γ̄ ∪ Γ′ ` e :: α
Γ′′ ` def f (x1, ..., xn) : e :: eArrow([τ1, ..., τn], α)

(DefFunc)

Γ ′′ = Γ ∪ f :: eArrow([τ1, ..., τn], α)

Inferência de tipos em Python INForum 2010 – 517

Γ ` f :: eArrow([τ1, ..., τn], α) Γ ` ēi :: αi αi <: τi 1 ≤ i ≤ n

Γ ` f(ē1, ..., ēn) :: α
(Aplicação)

Γ̄ = { ei :: τi} 1 ≤ i ≤ n Γ̄ ∪ Γ′ ` e :: α
Γ′′ ` def f(e1, ..., en) : e :: eAll([τi ∈ TVar], eArrow([τi], α))

(Generalização)

Γ ′′ = Γ ∪ f :: eAll([σ1, ..., σn], eArrow([τ1, ..., τn], α))

Γ′ ` ei :: ηi 1 ≤ i ≤ n

Γ ` class c() : [e1, ..., en] :: eClass(c, {m1 :: η1, ..., mn :: ηn})
(DefCla)

Γ ` c :: eClass(c, Ω)
Γ, Ω ` init (e1, ..., en) :: eNone()

Γ ` c(e1, ..., en) :: eClass(c, Ω)
(Inst1)

Γ ` c :: eClass(c, Ω)
Γ, Ω ` init (e1, ..., en) :: eClass(c, Ω)

Γ ` c(e1, ..., en) :: eClass(c, Ω)
(Inst2)

Γ ` c(e1, ..., en) :: eClass(c, Ω)
Ω ` m(τ1, ..., τn) :: η

Γ ` ēi :: αi αi <: τi 1 ≤ i ≤ n

Γ ` c(e1, ..., en).m(ē1, ..., ēn) :: η
(Acm1)

Γ ` c(e1, ..., en) :: eClass(c, Ω)
Ω ` m :: η

Γ ` c(e1, ..., en).m :: η
(Acm2)

3 Conclusão

O sistema de inferência apresentado foi implementado em Python e está apre-
sentado em pormenor na tese de mestrado Inferência de tipos em Python [Mai].

Actualmente a certificação de software, como correcto e seguro, é de ex-
trema importância, especialmente para sistemas cŕıticos e embebidos. Muitas
das aplicações usadas nestes sistemas são desenvolvidas em linguagens de alto-
ńıvel, como o Python. Desejamos encadear o sistema de inferência de tipos aqui
apresentado com uma ferramenta de produção de obrigações de prova. Assim,
o desenvolvimento deste sistema estático de inferência de tipos foi apenas o
primeiro passo para um projecto futuro que implemente a certificação estática
de programas em Python.

Referências

[AACM07] Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D. Mat-
sakis. Rpython: a step towards reconciling dynamically and statically typed
oo languages. In DLS ’07: Proceedings of the 2007 symposium on Dynamic
languages, pages 53–64, New York, NY, USA, 2007. ACM.

[Mai] Eva Maia. Inferência de tipos em python.
[Pro] PyPy Project. Pypy: flexible and fast python implementation.
[Ros95] Guido Rossum. Python reference manual. Technical report, Amsterdam,

The Netherlands, The Netherlands, 1995.
[vS] Anton van Straaten. Type inference for python. Lambda the Ultimate The

Programming Languages Weblog.

518 INForum 2010 Eva Maia, Nelma Moreira, Rogério Reis

Reasoning about time-critical reactive systems:
A case-study

André M. Rodrigues da Silva

DI - CCTC, Universidade do Minho
Campus de Gualtar

4710-057 – Braga – Portugal
a47408@alunos.uminho.pt

Abstract. Nowadays, there is a lot of technology that must not fail at
any circumstances. A car airbag is a simple reactive system that must
work every time the car crashes. In order to model problems like this,
there are some model-checking applications that can help us do the job.
In this paper a well known case study will be modeled and verified in
Uppaal and some variants of the problem will be documented. At the
end the problem will be generalized in order to make it easy to apply to
other problems with different values.

Keywords: Uppaal, timed automata, reactive system, case-study

1 Introduction

This paper presents a case-study on modeling and verification of time-critical sys-
tems using timed automata [2] and the Uppaal model checker [4]. The case study
revisits a well-known problem on multimedia design: the specification and veri-
fication of media streams subject to a number of quality of service constraints,
namely end-to-end latency and throughput. The proposed solution improves, in
what concerns generality, a previous attempt documented in [5]

The full version of this paper can be found at http://tinyurl.com/paper55.

2 Case study: The media stream channel revisited

The problem chosen as a case-study for this paper was a media stream channel.
This has three elements: the Source that emits messages, the Sink that receives
and processes them, and the Channel that establishes the connection between
the Source and the Sink.

These elements are obliged to the following requirements:

– Source emits a message every 50ms;
– Channel takes between 80ms and 90ms to deliver the message;
– Channel may loose messages, but no more than 20% of them;
– A message is considered lost if it does not arrive at the Sink within 90ms;

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 519–522

– Sink takes 5ms to process each received message;
– An error should be generated if less than 15 messages per second arrive to

the Sink.

These requirements should be modeled in Uppaal, first by simulation in order
to get a feeling about its behavior and then tested through the verification of
suitable queries to check if the envisaged requirements are indeed enforced.

3 Problems and Solutions

One of the problems we have faced was to find a way to avoid the absence of
control over the messages. Actually, each message is sent by the Source every
50ms, and the Channel must have a way to simulate the delay of the commu-
nication of that message. Moreover, it must be possible to have more than one
message in delay at the same time.

Fortunately, it was realized that two processes alone were enough to solve
the problem, because of the Source frequency and the Channel latency values —
this was the crucial observation in this case-study. Such two processes must have
the possibility of being reused, inasmuch as when one of them starts processing
one message, it will be busy for at most 90ms, and, as in this interval another
message may be generated, there must be another process ready to synchronize.

Fig. 1. A possible solution.

In order to make this process reusable, the initial state is always waiting
for a message. On its arrival the process resets the clock and goes to a state
where it waits for a time t between 80ms and 91ms as shown in Fig. 1. Invariant

520 INForum 2010 André M. Rodrigues da Silva

t < check() attached to this state caters for the possibility of losing messages.
Note that the transitions must have a parameter to identify which Channel
process will receive the message.

To make sure there is an error if less than 15 messages are processed by
the Sink, a Tester process was created to count the number of successful sinkin
synchronizations per second. To do this, the latter increments a variable each
time a message is sent and resets the clocks and the counter every seconds,
sending an error to the Error process if the number of messages is less than 15.

In order to make sure that Channel does not loose more than 20% of the
messages, the number of total messages and the number of messages lost should
be known. But we can’t have unbounded integers with this information, because
when we try to verify a property, the proof tree would grow till the maximum
integer allowed is reached or till the memory runs out. To fix this problem, we
resort to an easy calculation: saying that Channel may loose messages, but no
more than 20% is the same as saying that in every 5 messages, 1 may be lost.
So, instead of counting all the messages, we can decide to increment the counter
until it reaches 5, and then reset it, incrementing one possibility of loss.

The counter that stores the number of possible losses at any moment still
remains in model and must be delimited. Actually it makes no sense for a media
channel to have a huge number of possible losses, even because the Sink will
emit an error if it receives less than 15 messages per second. So it is acceptable if
we introduce a little error here, that in theory will decrease the percentage fixed
in the requirements, meaning that less losses are allowed. To implement this, the
function update(), only tolerates the counter poss loss to be incremented until it
reaches a MAX value, globally defined. This value will maximize the number of
states considered in the proof tree; and the smaller this number, the faster the
proof will be.

The check function mentioned above is defined as follows

int check()

{ if (poss_loss>0) return 91;

return 90; }

and will enable or disable the transition of loss depending on the value of poss loss.
A property selected for verification was the most obvious:

A[] not deadlock

i.e. no state reaches a deadlock configuration. Simple as it was, its verification was
a considerable challenge, but after the replacement of the unbounded counters, the
property was verified.

4 Concluding

The final model, depicted in Fig. 1, can be easily generalized to other media stream
channels, with different latencies and frequencies. In order to do that, the frequency of
the source , the maximum latency of the channel and the interval of latency should be
declared as integer constants respecting the following rules:

Reasoning about time-critical reactive systems: A case-study INForum 2010 – 521

const int source_freq=10; //must be greater than Sink process time

const int max_latency=150;

const int latency_interv=5; //must be <= source_freq

const int N=max_latency/source_freq+1;

With the values above, 15 channel processes are created by the Simulator, as the
value of constant N is computed to guarantee deadlock avoidance. Restrictions at the
source frequency and the latency interval are due to the Sink processing time, because
there is only one instance of it. Note that the latency interval must be less than the
source frequency. Otherwise one process could be trying to send a message to the Sink
while another message was still being processed. Note that the Source must synchronize
with more than two processes, so the index of the transition must be incremented until
it reaches N − 1, being then restarted.

The case study discussed in this paper, set as an exercise on the practical use of
Uppaal, illustrated how this sort of tool-supported formal methods can give a precious
help to the design of real-time, complex systems. The final solution not only followed
a different strategy, but also represents a more general solution to the media stream
problem than the one proposed in [5].

The Uppaal simulator is a excellent help when creating a model, because it allows
debugging even before the specification is mature and complete enough to be model-
checked. Note, however, its role is always limited to that of an animator of the intended
behaviour. In this case-study, for example, the verifier found a problem that could not
be handled by the the simulator, the latter being unable to pursue exhaustive checking.
However, the error found could have been a lot easier to debug if the model-checker
had issued a warning, informing that the variable was not defined as a bounded integer
and was being incremented.

In concluding, it is a fact that model checking [3] is, at present, a mature collection
of techniques and practical tools for automated debugging of complex reactive systems
[1]. Actually, as this small case-study may have helped to illustrate, it is no more a
theoretical oddity, but, on contrary, its relevance for the working software engineering
cannot be understated.

Acknowledgments. I would like to thank to Lúıs Soares Barbosa for all the support
and encouragement he gave me, because without it, I wouldn’t have written this short
article.

References

1. L. Aceto, A. Ingólfdótir, K. G. Larsen, and J. Srba. Reactive Systems: Modelling,
specification and verification. Cambridge University Press, 2007.

2. R. Alur. Timed automata. Theoretical Computer Science, 126:183–235, 1999.
3. C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
4. J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal - a tool

suite for automatic verification of real-time systems, 1996.
5. H. Bowman, G. P. Faconti, and M. Massink. Specification and verification of media

constraints using upaal. In Design, Specification and Verification of Interactive
Systems’98, Proceedings of the Fifth International Eurographics Workshop, June
3-5, 1998, Abingdon, United Kingdom, volume 1, pages 261–277. Springer, 1998.

522 INForum 2010 André M. Rodrigues da Silva

Gestão e Tratamento de Informação

523

A Search Log Analysis of a
Portuguese Web Search Engine

Miguel Costa1,2 and Mário J. Silva2

(miguel.costa@fccn.pt, mjs@di.fc.ul.pt)

1 Foundation for National Scientific Computing, Lisbon, Portugal
2 University of Lisbon, Faculty of Sciences, LaSIGE, Lisbon, Portugal

Abstract. We present a characterization of the information-seeking be-
havior of the users of a Portuguese web search engine, based on the
analysis of its logs. We obtained detailed statistics about the users’ ses-
sions, queries, terms and searched topics over a period of two years. The
results show that the users prefer fast and short sessions, composed of
short queries and few clicks. The trend is towards a reduction of the
number of interactions with the web search engine. We also discuss the
specificities and interests of the Portuguese users and their implications
on the development of better adapted web search engines.

1 Introduction

Web search engines are one of the most used systems on the Internet. Commercial
web search engines, like Google and Yahoo!, receive hundreds of millions of
queries per day 1. Their goal is to satisfy the users’ information needs as well as
possible. Hence, it is necessary to understand what and how users search, what
they expected and the difficulties they face when seeking information.

User studies analyze user behavior through several methods, some quanti-
tative, such as surveys and log mining [1, 2], and others qualitative, such as
observations and think-aloud protocols [3, 4]. Qualitative analysis can provide
valuable insights on the usability of systems and user satisfaction. However, the
time spent experimenting with participants and the costs of acquiring specialized
equipments, often lead researchers to reduce the users sample to a size smaller
than required to obtain statistically significant results. Another problem of qual-
itative methods is their intrusiveness in the search process. Just the fact that
the users are aware of being observed can affect their normal behavior.

On the other hand, search logs capture a large and varied amount of inter-
actions between users and search engines. This large number of interactions is
less susceptible to bias and enables identifying stronger relationships between
the data. Additionally, analyses of search logs can be cheaper and non intrusive.
Previous studies based on search logs show that there are differences between
users from different world regions. The users’ behavior reflects their distinct lan-
guage, vocabulary and cultural bindings. For instance, Korean users submit on

1
see blog.nielsen.com/nielsenwire/online_mobile/nielsen-reports-march-2010-u-s-search-rankings

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 525–536

average queries with one term less than U.S. and European users, because their
words are often compound nouns [5]. European users also search slightly differ-
ently than the U.S. users [6]. For instance, Europeans search more about people
and places, while the U.S. users are more focused on e-commerce [1]. Hence, we
considered it important to study the specificities of the Portuguese web search
engine users and the degree to which the searching technology applied to other
countries can be adopted.

This study draws the first profile of Portuguese users. It is based on the 2003
and 2004 search logs from the Tumba! web search engine [7]. As far as we know,
this is also the first study about users whose native language is Portuguese,
considered the fifth language with more users on the Internet 2. This profile is
slightly outdated since the logs are six years old. Web search engine companies
have become increasingly reluctant of releasing their logs because of privacy
concerns [8], so logs are now scarce and outdated. However, these logs enable
us to directly compare the results with similar studies from the same period.
This study is also a baseline for new research over more current logs and might
contribute to the development of better adapted web search engines. Examples
include optimizing their performance [9] or designing better web interfaces [10].

This paper is organized as follows. In Section 2, we cover the related work.
In Section 3, we describe the logs dataset from which we based our study. The
methodology of analysis is explained in Section 4 and the results are detailed in
Section 5. Section 6 finalizes with the discussion of results and conclusions.

2 Related Work

Several studies performed quantitative analysis of search logs in the past, with
the goal of understanding how web search engines were used. A common obser-
vation across these studies is that most users conduct short sessions with only
one or two queries, composed by one or two terms each [1]. When users sub-
mit more than one query, they tend to refine the next query by changing one
term at a time. Most users only see the first search engine results page (SERP)
and rarely use advanced search operators. These discoveries imply that the use
of web search engines is different from traditional IR systems, which receive
queries three to seven times longer [11]. Queries for special topics (e.g. sex) and
multimedia formats (e.g. images) are also longer [2].

A comparison by Spink et al. of the searching behaviors of users from the U.S.
and Europe, pointed out a few differences [6]. Statistics for U.S. and European
users were collected from the Excite and FAST web search engines, respectively.
FAST users were mostly from Germany and Norway. U.S. users submitted on
average more terms per query (2.6 vs. 2.3), but less queries per session (2.3 vs.
2.9) and accessed less SERPs (1.7 vs. 2.2). Longer queries may produce better
results and this may explain why the U.S. users explored less SERPs. U.S. and
European users also searched topics differently. U.S. users searched more about
Commerce, Travel, Employment or Economy, while European users searched
2

see http://www.internetworldstats.com/stats7.htm

526 INForum 2010 Miguel Costa, Mário J. Silva

more about People, Places or Things. However, Spink et al. only classified the
English language queries for the supposed German and Norwegian users, which
could have skewed the results.

The evolution of behaviors throughout time hardly changed. The longitudinal
study of Spink et al. over Excite’s users of 1997, 1999 and 2001, showed that
the only significant difference was an increase, from 28.6% in 1997 to 50.5% in
2001, in the number of queries where only one SERP was viewed [12]. Another
finding was that search topics shifted from entertainment and sex to commerce
and people. The authors stated that e-commerce queries coincided with changes
on the information distribution of the web. According to Lawrence and Giles, in
1999 about 83% of the web servers contained commercial content [13].

Jansen’s analysis of the Altavista logs of 1998 and 2002, indicated that users
evolved to longer queries, longer sessions, more modified queries and less re-
sults seen [14]. It seems that users became more persistent when searching for
information. However, the results from 1998 could have been affected by the in-
activity timeout of 5 minutes selected to delimit sessions, which is shorter than
in posterior studies. Jansen and Spink analyzed users from FAST in 2001 and
2002 [15]. They detected a move toward a great simplicity in searching. Single
query sessions and single term queries increased. The percentage of users refining
queries decreased. On the other hand, users saw more SERPs. The frequency of
topics searched by the European users also changed. There was a large increase
from 22.5% to 41.5% of queries searching about People, Places or Things. On
the other hand, there was a decline of more than 5% for queries searching about
Computers or Internet and Sex or Pornography.

There were other important discoveries. Beitzel et al. showed that the volume
of queries varies along the hours of the day and the days of the week [16].
The topics searched are also more or less popular at different times of the day.
Hölscher and Strube discovered that expert users submit more complex queries
and have more flexible searching strategies than the newbies [4]. Ozmutlu et al.
pointed out that users may search for multiple topics in a single session [17].

3 Tumba!’s Logs Dataset

Tumba! was a search engine for the Portuguese web, which was available as
a public service from 2002 to 2006 [7]. At the time, the Portuguese web was
considered the subset of web pages satisfying one of the following conditions: (1)
hosted on a site under a .PT domain; (2) hosted on a site under other domain
(except .BR), written in Portuguese and with at least one incoming link from a
web page hosted under a .PT domain. The interaction with the users and the
layout of the results was similar to other web search engines, such as Google.

Our analysis is based on the Tumba!’s logs, covering two full years of search
interactions, 2003 and 2004. By interactions, we mean all queries and clicks
submitted by the users and recorded by the web search engine. This large time
range has several advantages. First, we can see how the users evolved over the
years. Second, it is less likely to be affected by ephemeral trends. Third, we can
identify seasonal search patterns, for instance, during the Christmas season.

A Search Log Analysis of a Portuguese Web Search Engine INForum 2010 – 527

The logs follow the Apache Common Log Format (see http://httpd.apache.
org/docs/2.0/logs.html). Each entry corresponds to an interaction with the
search engine in the form of a HTTP request. It contains the user’s IP address
and the user’s session identifier (id). However, Tumba! did not register the ses-
sion id in the log. Each entry contains also a timestamp indicating when the
interaction occurred, the HTTP request line that came from the client and two
parameters of the data sent back by the server, which are the HTTP response’
status code and size. Figure 1 presents three entries of this log, which are purely
illustrative.

213.22.91.10 - [03/Feb/2004:23:15:27 +0000] "GET ?q=lisbon&lang=pt HTTP/1.1" 200 19978
213.22.91.10 - [03/Feb/2004:23:15:31 +0000] "GET ?q=lisbon&lang=pt&start=10 HTTP/1.1" 200 21419
213.22.91.10 - [03/Feb/2004:23:15:33 +0000] "GET ?q=lisbon&lang=pt&start=10&

click=pt.wikipedia.org/wiki/Lisbon&rank=12 HTTP/1.1" 200 18409

Fig. 1: Log entries format.

We never used the log data to match a real identity. However, we had to
check that these logs did indeed correspond to Portuguese users. We counted
90% of Tumba!’s users with IP addresses assigned to Portugal and near 98% of
the interactions were submitted through the Portuguese language interface. This
strongly indicates that the users were mostly Portuguese.

4 Methodology

The analysis focused on four dimensions: sessions, queries, terms and clicks. We
define them in the following way:

– A session is a set of interactions that belong to the same user when attempt-
ing to satisfy one information need. The session is the level of analysis in
determining the success or failure of a search. It is composed by one or more
queries and zero or more clicks.

– A query is a search request composed by a set of terms. We define an initial
query as the first query submitted in a session, while all the following queries
are defined as subsequent. An identical query is a query with exactly the same
terms as the previous one and submitted in the same session. A unique query
corresponds to one query regardless of the number of times it was logged.
The set of unique queries is the set of query variations. An advanced query
is a query with at least one advanced operator.

– A term is a series of characters bounded by white spaces, such as words, num-
bers, abbreviations, URLs, symbols or combinations between them. There
are also advanced search operators, but they are not counted as terms. We
define a unique term as one term on the dataset regardless of the number of
times it was logged. The set of unique terms is the submitted lexicon.

– A click in this context refers to the following of a hyperlink in a SERP to
immediately view a query result (i.e. web page).

Next, we briefly present the methods used on the search log analysis.

528 INForum 2010 Miguel Costa, Mário J. Silva

4.1 Log preparation

Abnormal sessions and queries could skew the results of the study. Thus, we
started by preparing the log fields for analysis through a series of data cleansing
steps. All incomplete entries, empty queries and sessions without any query were
discarded. Internal queries submitted by the Tumba! watchdog and the sessions
with more than 100 queries were also excluded. Sessions with many queries were
likely to come from web crawlers and we were only interested in the queries
submitted by users. This cutoff value of 100 was also used in some other studies,
thus enabling a more direct comparison with our results [15, 14]. The queries
that resulted from navigation clicks to see another SERP were not counted as a
new query. These are the same queries parameterized to show more results.

All terms were normalized to lowercase since capitalization was ignored. Ex-
tra white spaces were removed and since the search engine did not perform
stemming, all variations of a query term were considered as different terms. The
set of query terms also includes punctuation, misspellings and mistakes.

4.2 Session delimitation

Previous studies used the users’ IP address and/or session identifier (id) to de-
limit sessions. However, the Tumba! logs did not capture the session id. Hence,
we cannot tell if the requests with the same IP came from different computers
behind the same proxy server.

Most studies also used a time interval t of inactivity to delimit sessions.
Two consecutive interactions are included on different sessions if they have an
inactivity between them of at least t. This gap serves to separate two information
needs of the same user, asked at different times. Without this gap, we could have
sessions of several days, which would hardly represent the reality. Studies diverge
on the choice of this interval, from 5 minutes [18] to 30 minutes [19], while others
argue that no time boundary is effective in segmenting sessions [20]. We selected
the 30 minute interval, since 95% of the sessions are shorter and because it is the
session default timeout on most web applications. This interval also produced
results close to the ones of SVM classifiers used for delimiting sessions [21].

5 Log Analysis

The logged interactions and their parameters were statistically accounted. The
users of the Portuguese web search engine Tumba! performed 254,728 and 133,827
searching sessions in 2003 and 2004, respectively. Analyzing the averages, the
users submitted 2.94 queries per session in 2003 and 2.49 in 2004. In these two
years, the average number of query terms was around 2.2, with nearly 7 char-
acters per term. The users saw 1.4 SERPs per query and clicked around 0.7
times on their hyperlinks to view a result. This means that for each query, the
users saw mostly the first and sometimes the next SERP, where they clicked at
most once. Table 1 shows these general statistics. The results remained almost
constant during the two years, except for a decrease in the number of queries
per session. Next, we will detail our analysis and explain the remaining results.

A Search Log Analysis of a Portuguese Web Search Engine INForum 2010 – 529

Dataset 1 year-2003 1 year-2004
Sessions 254,728 133,827
Queries 749,914 333,871
Terms 1,630,392 738,576
SERPs 1,087,369 474,157
Clicks 584,161 240,961

Queries per Session 2.94 2.49
Terms per Query 2.17 2.21
SERPs per Query 1.45 1.42
Clicks per Query 0.78 0.72

Characters per Term 6.99 6.80
Initial Queries 33.97% 40.08%

Subsequent Queries 66.03% 59.92%
- Modified 32.80% 33.48%
- Identical 29.35% 32.71%
- Terms Swapped 0.26% 0.29%
- New 37.59% 33.52%
Unique Queries 44.03% 48.52%
Unique Terms 8.00% 10.33%

Queries never repeated 30.02% 34.04%
Terms never repeated 3.72% 4.77%

Table 1: General statistics.

Session year 2003 year 2004
∆

duration % sessions % sessions
[0, 1[43.18% 53.31% +10.13%
[1, 5[25.89% 21.67% -4.22%
[5, 10[10.69% 8.91% -1.78%
[10, 15[5.88% 4.80% -1.08%
[15, 30[8.89% 7.29% -1.60%
[30, 60[4.47% 3.33% -1.14%
[60, 120[0.93% 0.64% -0.29%
[120, 180[0.07% 0.04% -0.03%
[180, 240[0.01% 0.01% 0.00%
[240,∞[0.00% 0.00% 0.00%

Table 2: Session duration (minutes).

queries
year 2003 year 2004

∆
% sessions % sessions

1 40.73% 49.52% +8.79%
2 22.10% 21.10% -1.00%
3 12.71% 10.86% -1.85%
4 7.76% 6.09% -1.67%
5 4.97% 3.84% -1.13%
6 3.24% 2.43% -0.81%
7 2.24% 1.61% -0.63%
8 1.50% 1.17% -0.33%
9 1.09% 0.78% -0.31%
≥10 3.67% 2.61% -1.06%

Table 3: Number of queries per session.

5.1 Session Level Analysis

Session duration The duration of a session is measured as the time between
the first query submitted until the last time the user interacted with the search
engine. We ignore if the user spent more session time viewing web pages clicked
from the SERP or used part of the time doing parallel tasks [17].

We can see on Table 2 that sessions ended quickly and the tendency is to end
even faster. There was an increase, from 43.18% in 2003 to 53.31% in 2004, of
the sessions with less than 1 minute. The average duration of the sessions also
decreased, from 6 minutes and 31 seconds in 2003 to exactly 5 minutes in 2004.
Around 80% of the sessions lasted less than 10 minutes and only less than 1%
had a duration longer than one hour.

Query distribution Table 3 shows that the majority of the users did not go
beyond their second query. Information retrieval is an iterative process, but the
users hardly iterated. Around 90% of the sessions had up to 5 queries and only
less than 4% had 10 or more queries. This last number can represent highly
motivated users searching for special topics (e.g. sex) [2]. The results also show
that there was an increase of almost 9% on sessions with only one query from
2003 to 2004. This is the main reason why the averages of the queries per session
and the session duration decreased between the two years.

5.2 Query Level Analysis

Modified queries Sequences of queries are sometimes a way for users to refine
or reformulate the search in a trial and error approach. A modified query is

530 INForum 2010 Miguel Costa, Mário J. Silva

terms year 2003 year 2004
∆

changed % modified queries % modified queries
≤-5 0.32% 0.40% +0.08%
-4 0.48% 0.55% +0.07%
-3 1.48% 1.71% +0.23%
-2 5.01% 5.41% +0.40%
-1 15.58% 15.77% +0.19%
0 30.23% 28.97% -1.26%

+1 36.52% 35.56% -0.96%
+2 7.39% 8.23% +0.84%
+3 1.97% 2.18% +0.21%
+4 0.64% 0.79% +0.15%
≥+5 0.37% 0.44% +0.07%

Table 4: Number of terms changed per modified query.

defined as a subsequent query pertaining to the same information need and it
is assumed that two queries have the same information need if they share at
least one term. We ignored the stopwords (too common terms) in this analysis.
Thus, a modified query could be a specialization of the query (adding terms), a
generalization (removing terms) or both at the same time.

We counted 32.80% in 2003 and 33.48% in 2004 of modified queries from all
subsequent queries (see Table 1). Looking to Table 4, we see that more than
80% of the modified queries are the result of a zero or one change on the number
of terms. A zero length change means that the users modified some terms, but
their number remained the same. Users tend to add more terms in the modified
queries rather than to remove them. We counted around 47% versus 23%. As
other users, Tumba!’s users tend to go from broad to narrow queries [11, 22, 18].

Identical and New queries Sometimes the users repeat queries. This can
happen for a variety of reasons, such as a refresh of the SERP, a back-button click
or the submission of the same query more than once due to a network or search
engine delay. We counted 29.35% in 2003 and 32.71% in 2004 of identical queries
(see Table 1), where each query is exactly the same as the previous one made in
the same session. We also counted the subsequent queries with the same terms,
but written in a different order. For instance, a query Lisbon Portugal followed
by a query Portugal Lisbon. Only a small number of subsequent queries, 0.26%
in 2003 and 0.29% in 2004, had the order of the terms swapped. Besides the
modified and identical queries, the users also submitted in the same session,
37.59% in 2003 and 33.52% in 2004, of subsequent queries with only new terms
(see Table 1). This indicates that at most, around of one third of the subsequent
queries are the result of a new information need.

Advanced queries An advanced query is a query with at least one advanced
operator. In Tumba!, the users could use three advanced operators: NOT, to
exclude all results with a term in their text (e.g. -Lisbon); PHRASE, to match
all results with a phrase in their text (e.g. “cities of Portugal”); SITE, to match
all results from a domain name (e.g. site:wikipedia.org).

Table 5 contains the percentages of advanced queries. It shows that only,
12.79% in 2003 and 11.40% in 2004, of the queries included advanced operators.

A Search Log Analysis of a Portuguese Web Search Engine INForum 2010 – 531

advanced
year 2003 year 2004 ∆

operator
% adv. % total % adv. % total % adv.
queries queries queries queries queries

NOT 2.91% 0.37% 3.60% 0.41% +0.69%
PHRASE 43.15% 5.52% 49.93% 5.69% +6.78%

SITE 53.95% 6.90% 46.46% 5.30% -7.49%

total 100.00% 12.79% 100.00% 11.40%

Table 5: Advanced operators per query.

SERP year 2003 year 2004
∆

viewed % queries % queries
1 100.00% 100.00% 0.00%
2 16.76% 14.38% -2.38%
3 8.56% 7.41% -1.15%
4 5.20% 4.52% -0.68%
5 3.57% 3.10% -0.47%
6 2.54% 2.25% -0.29%
7 1.93% 1.73% -0.20%
8 1.51% 1.40% -0.11%
9 1.25% 1.18% -0.07%
≥10 5.74% 6.71% +0.97%

Table 6: SERPs viewed per query.

The small use of advanced operators is in accordance with previous studies [4, 18,
11, 3]. The SITE and PHRASE operators divided the preferences, being used in
more than 43% of the advanced queries each. The NOT operator was used in less
than 4% of the advanced queries and was insignificantly used when compared
to the total number of queries. Overall, it seems that the users were unfamiliar
with the advanced operators. Eastman and Jansen suggest that the low presence
of advanced operators is due to the little or no benefit they provide [23].

SERPs The users saw on average about 1.4 SERPs per query on the two
analyzed years. Table 6 presents the SERPs viewed per query. All users saw
the first SERP as expected, since the search engine always returned it after a
query. Then, the users followed the natural order of the SERPs, but in a sharp
decline. For instance, the second SERP was viewed in 16.76% of the queries.
This indicates that prefetching of SERPs would not significantly improve web
search engine performance. The results also show slight decreases on all the
SERPs viewed. For instance, from 2003 to 2004 the second SERP was viewed
less 2.38%. Moreover, the percentage of sessions where the users viewed only the
first SERP increased from 68.11% in 2003 to 76.66% in 2004.

Clicks The users clicked around 0.7 times per query to access a web page
listed on the SERPs. We analyzed the results they clicked and observed that its
distribution fits the power law, with a 0.98 correlation (see Figure 2). This is
similar to other studies, which also present a discontinuity in the last ranking
position of each SERP (multiple of 10) [24]. The results almost did not vary
between the two years. More than 70% of the clicks occurred on the first SERP.
This is a good indicator of the ranking quality of the Tumba! web search engine.

Term distribution The distribution of the terms per query listed in Table 7
shows that the length of the queries varied little from 2003 to 2004. The majority
of the queries had 1 or 2 terms. This is also visible by the 2.2 average of terms per
query (see Table 1). More than 93% of the queries had up to 4 terms and more
than 99% up to 7 terms. These results indicate that the users tend to submit
short queries, with each term having in average 6.99 characters in 2003 and 6.80
in 2004. These values are useful, for instance, to optimize index structures [25]
or to determine the adequate length of the input text boxes on the interface.

532 INForum 2010 Miguel Costa, Mário J. Silva

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

ranks of results clicked

fr
eq

ue
nc

y
(n

or
m

al
iz

ed
)

2003
2004

Fig. 2: Distribution of ranks clicked.

terms
year 2003 year 2004

∆
% queries % queries

1 39.30% 39.98% +0.68%
2 29.00% 26.87% -2.13%
3 18.66% 18.84% +0.18%
4 7.04% 7.37% +0.33%
5 3.27% 3.66% +0.39%
6 1.41% 1.66% +0.25%
7 0.68% 0.85% +0.17%
8 0.29% 0.37% +0.08%
9 0.15% 0.18% +0.03%
≥10 0.21% 0.22% +0.01%

Table 7: Number of terms per query.

Query frequency distribution We ranked the unique queries by their de-
creasing frequency and verified that its distribution fits the power law as in
other studies [9], with a 0.95 correlation. This means that a small number of
queries were submitted many times, while a large number of queries were sub-
mitted just a few times. The 36,000 and 22,000 most frequent queries in 2003
and 2004, respectively, represent 50% of the total volume of submitted queries.
However, they are only 11% in 2003 and 13.56% in 2004, of all the unique queries.
Figure 3 depicts the 2003 and 2004 cumulative distributions of queries. We can
see that, by caching a little more than 10% of the most frequent queries, the
Tumba! search engine could respond to 50% of the query requests.

5.3 Term Level Analysis

Term frequency distribution Analogous to the query frequency distribution,
we ranked the unique terms by their decreasing frequency. Its distribution also
fits the power law, now with a 0.98 correlation. As depicted in Figure 4, the
cumulative distribution shows that it is necessary to cache just around 1% of
the most frequent terms, 1,200, to handle 50% of the queries. Much less RAM
is necessary to cache terms than queries for a similar hit rate. These results are
consistent with the ones presented by Baeza-Yates et al. [9]. However, caching
the terms instead of the queries, adds the extra processing over the posting lists
to evaluate the results matching the query. A proper tradeoff must be found.

5.4 Topical analysis

Table 8 lists the 20 most frequent queries and terms searched in 2003 and 2004.
Sexo (sex) is the most searched query in both years, while emprego (job) is the
second. Then, in 2003, like in 2004, the top 20 contains many queries related
with sex and some queries related to the University of Lisbon, such as mestrados
(master degrees), since Tumba! was also the University’s site search engine. Other
interests were games, the totoloto lottery, maps, chat, postcards, mp3 and music,
the Benfica team and the Euro 2004 soccer event, humor and jokes, the eMule

A Search Log Analysis of a Portuguese Web Search Engine INForum 2010 – 533

0 20 40 60 80 100
0

20

40

60

80

100

% unique queries (ranked by decreasing frequency)

cu
m

ul
at

iv
e

%
 o

f a
ll

qu
er

ie
s

2003
2004

Fig. 3: Cumulative distributions of queries.

0 20 40 60 80 100
0

20

40

60

80

100

% unique terms (ranked by decreasing frequency)

cu
m

ul
at

iv
e

%
 o

f a
ll

te
rm

s

2003
2004

Fig. 4: Cumulative distribution of terms.

P2P program, taxes and photos. As a rough profile, we could say that the main
concerns of the Portuguese users are sex, job and entertainment.

With the purpose of determining the types of information that people search
for, we manually classified for each year, a random sample of 1,000 queries under
the eleven general categories defined by Spink et al [12]. We chose this taxonomy
for reasons of comparability with previous studies. To reduce bias, the same
queries were independently classified by two evaluators, which then resolved their
discrepancies. Table 9 shows the query percentages by topic categories. The most
searched category was Commerce, Travel, Employment or Economy, with 22.40%
of the queries in 2003 and 20.30% in 2004. This broad topic decreased 2.10%. On
the other hand, the second most searched category, People, Places or Things,
increased 2.90%, from 14.80% to 17.70%. Despite the sexual related queries being
on the top of the most searched queries, the Sex or Pornography topic counts
only with 4.90% of the queries in 2003 and 5.80% in 2004. Noteworthy, is also
the 3.60% decrease of the Entertainment or Recreation topic.

6 Discussion and Conclusion

The Portuguese users, like other users, did not spend much time and effort on
individual web searches. The Portuguese users submitted short sessions with
short queries and few clicks, did not see beyond the first SERP and rarely used
advanced operators. From 2003 to 2004 the average session duration and queries
per session decreased. Sessions with less than one minute increased 10% and
sessions with only one query increased 9%. The sessions where only the first
SERP was viewed increased 8%. These results are in accordance with other
results about the European users, which indicate that searching is moving toward
a greater simplicity [15]. An analysis over an extended period is necessary to
confirm this tendency. However, if verified, web search engines will be receiving
less data while they cope with providing the same good results.

The Portuguese users have some peculiarities. The most common modifica-
tion from users of other studies is to maintain the same number of terms when
changing a query [11, 22, 18]. The Portuguese users on the other hand, tend to

534 INForum 2010 Miguel Costa, Mário J. Silva

rank
year 2003 year 2004

query queries term terms query queries term terms
1 sexo 1.26% sexo 1.03% sexo 2.04% sexo 1.39%
2 emprego 0.29% portugal 0.40% emprego 0.24% portugal 0.42%
3 isep 0.14% fotos 0.35% emule 0.22% fotos 0.33%
4 jogos 0.12% lisboa 0.32% jogos 0.15% lisboa 0.28%
5 totoloto 0.10% emprego 0.26% chat 0.13% jogos 0.24%
6 escola 0.10% escola 0.23% pornografia 0.13% imagens 0.22%
7 mestrados 0.10% porto 0.22% totoloto 0.13% 2004 0.21%
8 pornografia 0.09% jogos 0.21% f****** 0.12% emprego 0.20%
9 porno 0.09% imagens 0.17% porno 0.10% emule 0.20%
10 mapas 0.08% mapa 0.17% cadastro comercial 0.10% download 0.19%
11 cadi 0.08% trabalho 0.17% anedotas 0.10% porto 0.18%
12 chat 0.08% gratis 0.16% irs 0.09% escola 0.18%
13 postais 0.07% download 0.16% travestis 0.08% mapa 0.17%
14 mp3 0.07% cursos 0.15% mestrados 0.08% lei 0.17%
15 benfica 0.07% portuguesa 0.15% euro 2004 0.08% escolas 0.16%
16 humor 0.07% universidade 0.15% tumba 0.07% gratis 0.16%
17 contos eroticos 0.07% formação 0.14% google 0.07% trabalho 0.14%
18 acompanhantes 0.07% 2003 0.14% contos eroticos 0.07% comercial 0.14%
19 anedotas 0.07% musica 0.14% horarios 0.07% portuguesa 0.14%
20 sexo gratis 0.07% ensino 0.14% sexo gratis 0.07% cursos 0.14%

Table 8: The 20 most frequent searched queries and terms. Characters **** hide expletives.

Categories
year 2003 year 2004

∆
% queries % queries

1 Commerce, Travel, Employment or Economy 22.40% 20.30% -2.10%
2 People, Places or Things 14.80% 17.70% 2.90%
3 Health or Sciences 10.50% 11.80% 1.30%
4 Education or Humanities 7.20% 10.50% 3.30%
5 Society, Culture, Ethnicity or Religion 5.60% 6.10% 0.50%
6 Computers or Internet 6.40% 5.90% -0.50%
7 Sex or Pornography 4.90% 5.80% 0.90%
8 Entertainment or Recreation 8.70% 5.10% -3.60%
9 Government 7.00% 4.20% -2.80%
10 Performing or Fine arts 1.60% 1.60% 0.00%
11 Unknown or Other 11.20% 11.30% 0.10%

Table 9: Topic categories of the queries.

refine the query by adding a term. For the other searching aspects, we can make
the rough generalization that the European users submit less information to sat-
isfy an information need than the U.S. users, but compensate by seeing more
SERPs [6, 1]. The Portuguese users, which are also European, submit even less
information and see even less SERPs than the other users. Table 10 summarizes
these findings. We can speculate that these differences are due to the cultural
differences of users, which are less tolerant and give up more easily. Other hy-
pothesis is that the differences are due to the superior results’ quality or superior
interface that enabled the users to find the information sooner. The analysis over
the search logs is insufficient to respond this question.

An important finding of this study is that the specificities of the Portuguese
users do not preclude the general adoption of searching technology used by the
U.S. and European users. On the other hand, the identification of these specifici-
ties can contribute to the development of better adapted web search engines. For
instance, our results show that caching around 1% of the most frequent query
terms enables response to 50% of the queries and caching the last query of a
user in a session enables response to near a third of the queries.

A Search Log Analysis of a Portuguese Web Search Engine INForum 2010 – 535

world region U.S. Europe Portugal
search engine Excite FAST Tumba!

single term queries 20% - 30% 25% - 35% 40%
terms per query 2.6 2.3 2.2

queries per session 2.3 2.9 2.49 - 2.94
advanced queries 11% - 20% 2% - 10% 11% - 13%
SERPs viewed 1.7 2.2 1.4
topic most seen Commerce, Travel People, Places Commerce, Travel

Table 10: General comparisons between users.

References

1. Jansen, B., Spink, A.: How are we searching the World Wide Web? A comparison of nine search
engine transaction logs. Information Processing and Management 42(1) (2006) 248–263

2. Markey, K.: Twenty-five years of end-user searching, Part 1: Research findings. American Society
for Information Science and Technology 58(8) (2007) 1071–1081

3. Aula, A., Khan, R.M., Guan, Z.: How does search behavior change as search becomes more dif-
ficult? In: Proc. of the 28th International Conference on Human Factors in Computing Systems.
(2010) 35–44

4. Hölscher, C., Strube, G.: Web search behavior of Internet experts and newbies. Computer
networks 33(1-6) (2000) 337–346

5. Park, S., Ho Lee, J., Jin Bae, H.: End user searching: A Web log analysis of NAVER, a Korean
Web search engine. Library and Information Science Research 27(2) (2005) 203–221

6. Spink, A., Ozmutlu, S., Ozmutlu, H.C., Jansen, B.J.: U.S. versus European Web searching
trends. SIGIR Forum 36(2) (2002) 32–38

7. Costa, M.: Sidra: a flexible web search system. Master’s thesis, University of Lisbon, Faculty
of Sciences (November 2004) Also available as Technical Report DI/FCUL TR 4-17.

8. Barbaro, M., Zeller, T.: A face is exposed for AOL searcher No. 4417749. New York Times 9
(2006) http://www.nytimes.com/2006/08/09/technology/09aol.html.

9. Baeza-Yates, R., Gionis, A., Junqueira, F.P., Murdock, V., Plachouras, V., Silvestri, F.: Design
trade-offs for search engine caching. ACM Transactions on the Web 2(4) (2008) 1–28

10. Hearst, M.: Search User Interfaces. Cambridge University Press (2009)
11. Jansen, B.J., Spink, A., Saracevic, T.: Real life, real users, and real needs: a study and analysis

of user queries on the Web. Information Processing and Management 36(2) (2000) 207–227
12. Spink, A., Jansen, B., Wolfram, D., Saracevic, T.: From e-sex to e-commerce: Web search

changes. IEEE Computer 35(3) (2002) 107–109
13. Lawrence, S., Giles, C.: Accessibility of information on the web. Intelligence 11(1) (2000) 32–39
14. Jansen, B., Spink, A., Pedersen, J.: A temporal comparison of AltaVista Web searching. Amer-

ican Society for Information Science and Technology 56(6) (2005) 559–570
15. Jansen, B., Spink, A.: An analysis of Web searching by European AlltheWeb.com users. Infor-

mation Processing and Management 41(2) (2005) 361–381
16. Beitzel, S., Jensen, E., Chowdhury, A., Frieder, O., Grossman, D.: Temporal analysis of a

very large topically categorized web query log. American Society for Information Science and
Technology 58(2) (2007) 166–178

17. Ozmutlu, S., Ozmutlu, H., Spink, A.: Multitasking Web searching and implications for design.
American Society for Information Science and Technology 40(1) (2003) 416–421

18. Silverstein, C., Marais, H., Henzinger, M., Moricz, M.: Analysis of a very large web search engine
query log. In: ACM SIGIR Forum. Volume 33. (1999) 6–12

19. Cacheda, F., Vina, A.: Understanding how people use search engines: a statistical analysis for e-
business. E-work and e-commerce: novel solutions and practices for a global networked economy
(2001) 319

20. Jones, R., Klinkner, K.L.: Beyond the session timeout: automatic hierarchical segmentation of
search topics in query logs. In: Proc. of the 17th ACM Conference on Information and Knowledge
Management, New York, NY, USA, ACM (2008) 699–708

21. Radlinski, F., Joachims, T.: Query chains: learning to rank from implicit feedback. In: Proc.
of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining.
(2005) 239–248

22. Spink, A., Wolfram, D., Jansen, M., Saracevic, T.: Searching the web: The public and their
queries. American Society for Information Science and Technology 52(3) (2001) 226–234

23. Eastman, C., Jansen, B.: Coverage, relevance, and ranking: The impact of query operators on
Web search engine results. ACM Transactions on Information Systems (TOIS) 21(4) (2003)
383–411

24. Baeza-Yates, R., Hurtado, C., Mendoza, M., Dupret, G.: Modeling user search behavior. In:
Proc. of the 3rd Latin American Web Congress. (2005) 242

25. Lucchese, C., Orlando, S., Perego, R., Silvestri, F.: Mining query logs to optimize index parti-
tioning in parallel web search engines. In: Proc. of the 2nd International Conference on Scalable
Information Systems. (2007) 1–9

536 INForum 2010 Miguel Costa, Mário J. Silva

Extracção de conhecimento léxico-semântico a
partir de resumos da Wikipédia

Hugo Gonçalo Oliveira⋆, Hernani Costa, Paulo Gomes
hroliv@dei.uc.pt, hpcosta@student.dei.uc.pt, pgomes@dei.uc.pt

Cognitive and Media Systems Group
Centro de Informática e Sistemas

Universidade de Coimbra, Portugal

Resumo Este artigo apresenta um sistema para a aquisição automática
de relações semânticas a partir de texto em português, o que pode ser
visto como um passo central na construção automática de recursos léxico-
semânticos. O sistema foi aplicado à Wikipédia, actualmente uma enorme
fonte de conhecimento livre. Os resultados obtidos e a sua avaliação são
discutidos, as actuais limitações referidas e são ainda apresentadas várias
ideias para futuras melhorias.

Abstract This paper presents a system for the automatic acquisition of
semantic relations from Portuguese text, which can be seen as core step
in the automatic construction of lexico-semantic resources. The system
was applied to Wikipedia, currently a huge and free source of knowledge.
The obtained results are shown and their evaluation is discussed together
with the current limitations and cues for further improvement.

1 Introdução

A realização de tarefas, cada vez mais comuns, onde é necessário compreender
as interacções entre as palavras e os seus significados, tal como a resposta
automática a perguntas, a tradução automática ou a recuperação de informação,
levou à criação de recursos semânticos computacionais de larga cobertura, como
as ontologias lexicais, de onde se destaca, para o inglês, a WordNet de Princeton
[9]. No entanto, a construção e a manutenção deste tipo de recurso envolve muito
trabalho intensivo, realizado por humanos. De forma a contornar este problema,
têm nas últimas décadas surgido várias propostas para, a partir de texto, extrair
automaticamente conhecimento léxico-semântico que pode ser utilizado para
criar ou para ampliar uma ontologia lexical.

Estas abordagens têm sido aplicadas a diferentes tipos de texto, e
conhecimento léxico-semântico vem sendo extráıdo a partir de recursos
estruturados, como os dicionários [6] [17] [12], ou não estruturados, como os
corpos [13] [5] [10]. Se por um lado há vantagens em utilizar dicionários,
por estes se encontrarem já estruturados em palavras e significados e ainda
⋆ Financiado pela bolsa FCT SFRH/BD/44955/2008

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 537–548

por utilizarem um vocabulário simples, quase previśıvel, este tipo de recurso
contém conhecimento limitado, é normalmente estático e nem sempre se encontra
dispońıvel para fins de investigação. Por outro lado, hoje em dia é posśıvel
encontrar muito texto pela Web, praticamente acerca de qualquer assunto,
mas cujo processamento não é tão simples devido à existência de menos
restrições sintácticas e à utilização de vocabulário mais variado e mais amb́ıguo.
Um terceiro tipo de recurso, que podemos considerar semi-estruturado, é a
enciclopédia, onde existem também entradas para diferentes entidades, mas cujas
descrições são mais extensas, podendo ser encaradas como texto de corpos. Além
disso, o conteúdo das enciclopédias não se limita a informação sobre as palavras
e inclui mais conhecimento sobre o mundo e saber humano.

Assim, também devido à sua disponibilidade na Web, no últimos anos tornou-
se frequente a utilização de enciclopédias, como a Wikipédia1, para extrair
informação. Tendo em conta a sua construção colaborativa, este recurso é uma
enorme fonte de informação em permanente evolução. Para o inglês, a Wikipédia
foi já utilizada numa grande quantidade de tarefas, onde destacamos a extracção
de relações taxonómicas [14] e de outras relações léxico-semânticas, com vista
ao enriquecimento da WordNet [19]. A utilidade da Wikipédia na extracção
de conhecimento léxico-semântico é apontada por [21], que implementaram um
interface para o acesso programático a este recurso e também ao Wikcionário.
Além disso, a descrição de alguns trabalhos que utilizam a Wikipédia para extrair
conceitos, relações, factos e descrições pode encontrar-se em [15]. Também para
o português a Wikipédia se revelou ser um importante recurso, por exemplo no
apoio à identificação de entidades mencionadas (EM) [4].

O trabalho aqui descrito enquadra-se num projecto que tem como objectivo
final a construção automática de uma ontologia lexical para o português onde,
entre outros recursos, a Wikipédia é também explorada. Mais precisamente, são
extráıdas relações semânticas a partir dos resumos da versão portuguesa da
Wikipédia de forma a obter informação que pode ser utilizada para criar um
novo recurso ou para enriquecer recursos lexicais já existentes, como o PAPEL
[11], uma rede lexical extráıda automaticamente a partir de um dicionário.

Começamos por apresentar as fases do nosso sistema que se baseia num
conjunto de gramáticas semânticas, onde estão presentes padrões textuais
indicadores de relações. De seguida descrevemos a experimentação realizada que
inclui: a extracção de triplos a partir da Wikipédia; a análise dos resultados; a
avaliação manual de uma amostra de resultados; a análise dos principais padrões
textuais que originaram triplos; e uma proposta para avaliação automática, cuja
utilidade não foi contudo comprovada. Por fim conclúımos ao apontar algumas
limitações actuais do sistema e referimos ideias para trabalho futuro.

2 Extracção automática de relações semânticas

O sistema de extracção de relações semânticas que estamos a desenvolver é
constitúıdo por vários módulos (ver figura 1) e está centrado num conjunto de
1 http://wikipedia.org

538 INForum 2010 Hugo Gonçalo Oliveira, Hernani Costa, Paulo Gomes

Texto Gramáticas

Separação
em

frases

Extracção
de

triplos

Remoção
de

triplos

Tratamento
categoria
gramatical

Atribuição
de

pesos

Figura 1. Os módulos do sistema de extracção.

gramáticas semânticas, constrúıdas com base em padrões que indicam relações
em texto escrito em português. Até ao momento, o sistema extrai relações de
sinońımia, hiperońımia, parte, causa e finalidade. Exemplos destas relações e
de alguns dos padrões ou palavras chave utilizados na sua extracção podem
encontrar-se na apresentação dos resultados obtidos, mais propriamente na
tabela 1 e na tabela 3. Como o sistema está preparado para analisar texto
frase a frase, o primeiro módulo prepara o texto fornecido, separando-o em
frases. Na fase de extracção, cada frase é analisada e é obtida uma uma árvore
de derivação por gramática. Em cada árvore o sistema procura por nós que
identificam um padrão, dentro dos quais poderão existir nós identificadores dos
argumentos de uma relação, cujo conteúdo serão termos, ou enumerações de
termos, a ser combinados num triplo relacional. Por exemplo, ao encontrar
os nós HIPERONIMO e HIPONIMO, o sistema vai extrair o triplo hiper
HIPERONIMO DE hipo, em que hiper e hipo são respectivamente os conteúdos
de HIPERONIMO e HIPONIMO.

Na versão actual das gramáticas optámos por extrair relações entre termos
compostos, ou seja, se um termo ocorrer modificado por um adjectivo (p.e.
computador pessoal) ou por uma preposição (p.e. sistema de controlo) é
extráıdo dessa forma, e pode dar origem a um termo com várias palavras
(p.e. movimento de massa exclusivo das regiões vulcânicas). Futuramente, após
avaliar a relevância destes termos, será posśıvel tomar decisões relativamente à
sua manutenção, possibilitando também uma melhor organização do recurso.

Ainda na fase de extracção, o sistema tira partido de dois padrões
léxico-sintácticos, [N ADJ] e [N de|do|da|com|para N], para obter relações
de hiperońımia a partir de termos compostos. Por exemplo, a partir dos
termos computador pessoal e sistema de controlo são extráıdos respectivamente
os triplos computador HIPERONIMO DE computador pessoal e sistema
HIPERONIMO DE sistema de controlo. Neste tipo de extracção, o segundo
padrão mencionado não é aplicado se o primeiro N se tratar de uma palavra
sem conteúdo (p.e. tipo, forma) ou que implique uma relação de parte (p.e.
parte, membro, grupo, conjunto) e não de hiperońımia, chamadas, no contexto
da análise de dicionários, cabeças vazias (do inglês empty heads)[6].

Para identificar as categorias gramaticais das palavras é previamente
realizada a análise morfo-sintáctica de cada frase, utilizando um modelo para
o pos-tagger fornecido no pacote OpenNLP2, treinado com o Bosque, uma

2 http://opennlp.sourceforge.net/

Extração de conhecimento léxico-semântico ... INForum 2010 – 539

parte do treebank Floresta Sintá(c)tica [1] completamente revista por linguistas.
No entanto, as gramáticas contêm essencialmente padrões lexicais e apoiam-se
nas categorias gramaticais apenas para identificar adjectivos. Além da análise
morfo-sintáctica, cada palavra da frase é lematizada, também recorrendo a um
modelo do OpenNLP a que foi acrescentado um pequeno conjunto de regras para
passagem de plural para singular.

Após a extracção, triplos cujos argumentos estejam numa lista de palavras
não pretendidas (essencialmente stopwords) são removidos. A penúltima fase
possibilita remover triplos ou alterar o nome da sua relação com base na categoria
gramatical dos seus argumentos, baseando-se numa especificação onde, para cada
nome de relação extráıda, poderá existir um segundo nome de acordo com a
categoria gramatical dos seus argumentos. Se pretendido, é também posśıvel
lematizar os argumentos dos triplos, com base no lema obtido anteriormente.

Estamos ainda a ponderar a inclusão de uma fase em que os triplos recebem
pesos de acordo não só com a frequência com que foram extráıdos, mas também
com o valor de métricas distribucionais calculadas na Web ou numa colecção de
documentos, tal como [5] ou [20] sugerem. A este respeito verificamos [7] que a
qualidade de triplos de hiperońımia e também de parte está correlacionada com
o valor de algumas métricas distibucionais em corpos, como o LSA e o coeficiente
de Jaccard. Os pesos poderão depois ser utilizados para eliminar triplos pouco
relevantes ou cuja probabilidade de estarem correctos seja baixa.

3 Experimentação com a Wikipédia

Para testar o nosso sistema optámos por aplicá-lo a resumos da versão
portuguesa da Wikipédia. Estes foram escolhidos por descreverem em poucas
palavras o conteúdo de cada artigo, tendo por isso a informação mais relevante
nele contida e menos variações ao ńıvel da estrutura.

3.1 Preparação

Cedo verificámos que grande parte dos conteúdos da Wikipédia são demasiado
espećıficos para serem centrais na construção de uma ontologia lexical, como é o
caso de artigos sobre personalidades, organizações ou épocas históricas. Devido
a este problema procuramos uma forma de filtrar resumos associados a EM, o
que levaria também a uma diminuição da quantidade de texto a processar.

Para tal, utilizamos os resumos disponibilizados pelo projecto DBpedia [2]
e a taxonomia definida no seu âmbito. Com vista à construção de uma base
de conhecimento, a DBpedia mapeia a Wikipédia numa taxonomia onde a cada
artigo é atribúıdo um ou vários tipos de alto ńıvel, como por exemplo Person,
Place, Organization, MeanOfTransportation, Device ou Species, além de tipos
mais espećıficos como Writer, Airport, SoccerClub, Bird, Automobile ou Weapon.

Ainda que a atribuição de tipos não se encontre dispońıvel para a versão
portuguesa da Wikipédia, há uma correspondência entre os identificadores das
entradas nas várias ĺınguas que dizem respeito ao mesmo assunto. Por isso

540 INForum 2010 Hugo Gonçalo Oliveira, Hernani Costa, Paulo Gomes

utilizamos os tipos atribúıdos às entradas da versão inglesa para filtrar da versão
portuguesa entradas do tipo Person, Place, Organization, Event, entre outros
associados a EM. Apesar de haver várias entradas da Wikipédia portuguesa
sem correspondência, cerca de 30% dos 368.521 resumos originais foi removido,
perfazendo as 494.187 frases a que chamaremos o conjunto de resumos A.

Ainda assim, ficamos com muito texto que não nos interessava processar,
de onde destacamos entradas acerca de geografia portuguesa e brasileira. Por
isso, à custa de perdermos entradas interessantes e que só existem na Wikipédia
portuguesa, optamos por diminuir ainda mais o conjunto de frases mantendo
apenas entradas que, através da taxonomia, conseguimos confirmar pertencerem
aos tipos: Species, AnatomicalStructure, ChemicalCompound, Disease, Currency,
Drug, Activity, Language, MusicGenre, Colour, EthnicGroup e Protein. Além
disso, apesar de vários resumos serem constitúıdos por duas ou três frases,
optámos por utilizar apenas a primeira frase de cada um. Desta forma ficamos
com um total de 37.898 frases para processar, que constituem o conjunto B,
aquele que mais exploramos nesta experiência.

3.2 Resultados

As quantidades de triplos extráıdos a partir de ambos os conjuntos (A e B),
antes (Total) e depois (S/rep) de remover triplos repetidos, são apresentadas
na tabela 1 juntamente com alguns exemplos. Para a hiperońımia separamos
os triplos extráıdos a partir da análise de termos compostos (TC) dos triplos
extráıdos através da identificação de padrões textuais.

Relação
Extráıdos A Extráıdos B

Exemplos
Total S/rep Total S/rep

Hiperońımia TC 711.954 390.492 24.367 16.228 (desordem,desordem cerebral)
(átomo,átomo de carbono)

Hiperońımia 149.845 144.839 31.254 29.563 (desporto,automobilismo)
(estilo de música,folk)

Sinońımia 25.816 25.518 11.872 11.862 (inglês antigo,anglo-saxão)
(estupro,violação)

Parte 12.093 11.485 1.321 1.287 (jejuno,instestino) (rolas,columbidae)

Finalidade 13.277 12.992 777 743 (amoxicilina,tratamento de infecções)
(construção, terracota)

Causador 5.854 5.740 559 520 (parasita, doença)
(doença neuromuscular,fadiga)

Tabela 1. Resultados totais da extracção em triplos.

Verifica-se que, de ambos os conjuntos, foi extráıdo um grande número
de relações de hiperońımia através da análise de padrões textuais. Isto
explica-se porque muitos resumos começam com a construção [X é um
Y], resultando em X HIPERONIMO DE Y. Além disso, há frases com

Extração de conhecimento léxico-semântico ... INForum 2010 – 541

uma enumeração no lugar de X, o que dá imediatamente origem a
uma relação de hiperońımia por cada termo enumerado. Por exemplo,
a frase A heróına ou diacetilmorfina é uma droga dá origem a:
droga HIPERONIMO DE heróına , droga HIPERONIMO DE diacetilmorfina ,
heróına SINONIMO DE diacetilmorfina e diacetilmorfina SINONIMO DE
heróına.

Outras curiosidades estão relacionadas com o âmbito dos triplos extráıdos. As
relações de hiperońımia atribuem essencialmente um género, espécie ou ordem
a plantas, animais ou outros seres vivos. As relações de finalidade associam
normalmente problemas de saúde às suas terapêuticas, e as relações de causa
também se estabelecem muitas vezes entre problemas de saúde, suas causas e
efeitos. Já as relações de sinońımia são por vezes estabelecidas entre termos
na variante europeia e na variante brasileira do português, como por exemplo
em marrom SINONIMO DE castanho ou esófago SINONIMO DE esôfago.
Além disso, muitas das frases de onde são extráıdas relações de sinońımia são
iniciadas pela enumeração de uma grande quantidade de sinónimos. O caso
extremo desta situação é a frase iniciada por: Bagre-bandeira, bagre-cacumo,
bagre-de-penacho, bagre-do-mar, bagre-fita, bagre-mandim, bagre-sari, bandeira,
bandeirado, bandim, pirá-bandeira, sarassará, sargento ou bagre-bandeirado ... é
um peixe da famı́lia dos aríıdeos....

3.3 Avaliação manual

A primeira abordagem à avaliação dos nossos resultados foi feita manualmente,
através da classificação de um grupo de triplos seleccionado aleatoriamente de
acordo com a escala proposta em [10], que sugere a classificação de triplos em
quatro grupos: correctos (3); com uma preposição ou um adjectivo que deixam
um dos argumentos estranho e impede o triplo de estar correcto (2); correcto,
mas demasiado geral ou espećıfico para ter utilidade (1); incorrecto (0).

Assim, foram inicialmente geradas 12 amostras aleatórias com 85 triplos
extráıdos a partir do conjunto A, classificadas cada uma por dois revisores.
Para confirmarem a qualidade dos triplos, os revisores foram aconselhados
a procurar na Web, incluindo a própria Wikipédia, por informação acerca
das entidades envolvidas. A utilização desta escala permitiu por um lado
identificar triplos que, devido a algum problema com as regras das gramáticas,
deu origem a argumentos incompletos, e por outro identificar triplos que
apesar de estarem correctos, não têm grande utilidade prática, principalmente
no âmbito de uma ontologia lexical. Nesta categoria, encontram-se triplos
que indicam subdivisões geográficas (p.e. sub-região estat́ıstica portuguesa
PARTE DE região do alentejo), relacionados com épocas históricas (p.e.
tragédia de 1892 CAUSADOR DE crise poĺıtica), entre outros demasiado
espećıficos (p.e. romancista brasileiro PARTE DE academia brasileira de letras,
escola HIPERONIMO DE escola de música Juilliard).

Além disso, utilizamos a especificação de relações utilizada no PAPEL [12]
para tratar o nome de cada triplo de acordo com as categorias gramaticais dos
seus argumentos. No entanto verificamos que, essencialmente devido a limitações

542 INForum 2010 Hugo Gonçalo Oliveira, Hernani Costa, Paulo Gomes

do pos-tagger, mas também devido ao género de texto processado, a grande
maioria dos triplos cujo nome era alterado devido à categoria de um, ou ambos, os
argumentos não ser substantivo, estava incorrecto. Optamos então por prosseguir
a avaliação utilizando apenas relações cujos argumentos eram identificados como
substantivos.

Tendo isto em conta, foram gerados novos dados para teste com triplos do
conjunto B. Para tal, utilizamos 663 triplos que já tinham sido classificados na
primeira avaliação e se mantinham no conjunto B, aos quais juntamos mais 12
amostras aleatórias, com cerca de 90 triplos cada uma, avaliadas da mesma forma
que as primeiras.

Os resultados da segunda avaliação encontram-se na tabela 2, onde as
proporções apresentadas somam as avaliações dos dois revisores, a que juntamos
a concordância exacta entre ambos (CcEx) e a concordância relaxada (CcRel),
em que os valores 1 e 3 foram considerados correctos e 0 e 2 incorrectos,
atendendo a que estes resultados poderiam vir a ser utilizada noutro âmbito
e os triplos classificados com 1 também estão correctos.

Um dado saliente ao comparar os resultados obtidos com o conjunto A com
os obtidos com o conjunto B é a diferença do número de triplos classificados com
1. Em termos de proporção, este número decresceu de 39% para 22% do total
de triplos. Também em proporção, houve um aumento de triplos correctos. Por
exemplo, os triplos classificados com 3 aumentaram aproximadamente 2 e 1,5
vezes nas relações de finalidade e causa. As melhorias dever-se-ão ao conjunto
B ser mais restrito, com uma construção mais próxima e onde existirá menor
ambiguidade. Ainda assim, cerca de um quarto dos triplos de causa e finalidade
e um quinto dos triplos de parte continua completamente errado, o que estará
essencialmente relacionado com a ambiguidade de alguns padrões utilizados.

Na tabela 2 verifica-se ainda uma maior concordância na divisão entre
triplos correctos e incorrectos, essencialmente por se tratar de uma divisão mais
objectiva, onde não entra a subjectividade de avaliar a utilidade efectiva de
um triplo numa ontologia lexical. Por exemplo, vários triplos de hiperońımia
extráıdos através de termos compostos não acrescentam muito à base de
conhecimento (p.e. equipa HIPERONIMO DE equipa de seis jogadores), mas
esta classificação é bastante senśıvel ao critério do revisor.

Há no entanto um ponto em que esta avaliação piorou, mais propriamente na
proporção de triplos de hiperońımia classificados com 2. Isto acontece porque
a proporção de frases sobre espécies aumentou e muitas destas espécies são
identificadas por duas palavras. Por exemplo, na frase O Iriatherina werneri
é uma espécie de peixe de aquário, o pos-tagger não conhece as duas palavras da
entidade Iriatherina werneri, o que leva o sistema a não interpretar a entidade
como um substantivo modificado e, por isso, a extrair um triplo com um
argumento incompleto, peixe de aquário HIPERONIMO DE werneri .

3.4 Eficiência dos padrões

Além de avaliar a qualidade dos triplos extráıdos, também nos pareceu
interessante fazer o levantamento dos padrões ou palavras chave que davam

Extração de conhecimento léxico-semântico ... INForum 2010 – 543

Relação Avaliados 3(%) 2(%) 1(%) 0(%) CcEx(%) CcRel(%)

Hiperońımia TC 323 35,0 4,2 42,1 18,7 57,3 82,7
Hiperońımia 322 57,5 33,8 1,6 7,1 89,8 93,1
Sinońımia 286 85,7 7,3 0,4 6,6 90,0 91,6

Parte 268 44,2 26,7 8,4 20,7 63,1 78,4
Finalidade 264 53,0 16,5 4,0 26,5 71,2 82,2
Causador 244 41,8 24,6 7,8 25,8 61,5 79,5

Tabela 2. Resultados da avaliação manual de triplos.

origem a mais triplos. A esses dados, que para o conjunto B se encontram na
tabela 3, juntamos informação acerca da classificação obtida na avaliação manual
por triplos extráıdos através destes padrões. Neste caso, apenas considerámos
triplos onde a avaliação de ambos os revisores era concordante. Dentro
dos padrões que levam à extracção de mais triplos incorrectos, destacamos
[usado|utilizado] que, quando seguido de [em|no|na] pode não indicar a
relação de finalidade, mas sim um local onde um objecto é utilizado, como em
O Ariary malgaxe é a moeda usada em Madagáscar. Outro padrão bastante
amb́ıguo parece ser [inclui|incluem]. Por outro lado, a utilização do padrão
é um género de apenas levou à extracção de triplos de hiperońımia correctos.

Relação Padrão Extráıdos
Avaliados
3 2 1 0

Hiperońımia termo composto 24.367 72 7 75 32
Hiperońımia é uma espécie de 15.824 54 96 0 0
Hiperońımia é um|uma 10.960 87 11 0 15
Hiperońımia é um género de 2.402 24 0 0 0
Sinońımia ou 4.886 154 2 0 2
Sinońımia também conhecido|a|os|as por|como 3.016 60 4 0 4

Parte inclui|incluem 471 34 0 2 15
Parte grupo de 158 17 3 1 0

Finalidade utilizado|a|os|as para|como|em|no|na 376 71 16 1 20
Finalidade usado|a|os|as para|como|em|no|na 237 41 3 1 4
Causador causado|a|os|as 165 27 11 1 10

Tabela 3. Triplos extráıdos e sua qualidade de acordo com o padrão utilizado.

3.5 Proposta para validação automática

Como é sabido, ainda que seja provavelmente a forma mais confiável de avaliação,
a avaliação manual de relações semânticas é um trabalho moroso e cansativo,
além de ser muitas vezes subjectivo por mais critérios que sejam definidos.
Isto confirma-se pelas taxas de concordância que obtivemos na nossa avaliação
manual. Ainda que tenhamos utilizado duas formas para medir a concordância,

544 INForum 2010 Hugo Gonçalo Oliveira, Hernani Costa, Paulo Gomes

nem sempre é fácil distinguir entre as várias classificações de uma escala. Por
exemplo, além da subjectividade existente ao decidir a utilidade de um triplo, a
distinção entre a classificação 1 e 2 pode não ser muito clara, já que o triplo pode
ser muito geral, ou espećıfico, exactamente por lhe faltar um modificador. Além
disso, este tipo de avaliação não é facilmente repet́ıvel, o que não se passaria se
existisse um método automático para avaliar a qualidade dos resultados. Com
isto em mente, surgiu a nossa primeira abordagem a uma avaliação automática.

Uma das formas que vem sendo comum para validar, de forma automática,
dados resultantes da extracção de informação passa por tirar partido da enorme
quantidade de informação dispońıvel na Web. No caso espećıfico da validação de
triplos semânticos, uma alternativa seria procurar por frases em que a relação
entre ambos os argumentos está expĺıcita através de padrões textuais. Isto é feito
por exemplo em [12], mas sobre um corpo de not́ıcias.

Seguindo estas ideias, a validação automática dos triplos extráıdos no âmbito
deste trabalho teria por base a aplicação de quatro métricas vulgarmente
utilizadas para avaliar, na Web, a semelhança entre dois termos [3], mais
precisamente: WebJaccard (1), WebOverlap (2), WebPMI (4) e WebDice (3).
Nestas equações, P (X) refere-se ao número de páginas em que o termo X ocorre
e P (X ∩ Y) é o número de páginas em que X e Y co-ocorrem. Na equação 4, N
deveria ser o total de páginas indexadas no motor de pesquisa que, não sendo
calculável, poderá ser aproximado a 1010 [3].

WebJaccard(X, Y) =
P (X ∩ Y)

P (X) + P (Y)− P (X, Y)
(1)

WebOverlap(X, Y) =
P (X ∩ Y)

min (P (X), P (Y))
(2)

WebDice(X, Y) =
2 ∗ P (X ∩ Y)

P (X) + P (Y)
(3)

WebPMI(X, Y) = log2

(
P (X ∩ Y)

P (X) ∗ P (Y)
∗N

)
(4)

As medidas acima referidas são normalmente utilizadas no cálculo da
semelhança distribucional entre dois termos, ou seja, a semelhança dos termos
com base nas suas ocorrências e vizinhanças, e, ainda que termos relacionados
tenham habitualmente distribuições semelhantes, estas métricas não têm
nenhuma relação semântica espećıfica em vista. Sendo assim, inspirados por
[16], para aplicarmos estas métricas à validação de triplos semânticos, deverá
ser inclúıdo também um padrão textual frequente indicador da relação, ou seja
X = XR, Y = RY e X ∩ Y = XRY , sendo R o padrão. A tabela 4 contém
padrões que podem ser utilizados para cada relação, depois de observar aqueles
que mais frequentemente extráıram triplos (tabela 3). Curiosamente os padrões
que extraem mais triplos indicam a relação inversa, ou seja, por exemplo, para
validar o triplo t1 RELACAO t2, X = t2 e Y = t1.

O primeiro passo foi calcular estas métricas para cada triplo avaliado
manualmente em que a classificação fosse concordante para ambos os revisores.
Para cada triplo e padrão relativo à sua relação (ver versão simplificada na

Extração de conhecimento léxico-semântico ... INForum 2010 – 545

tabela 4), calculamos as métricas com base no Google. Logo áı verificamos que
obt́ınhamos valores apenas para uma pequena quantidade de triplos (20% dos
concordantes), porque os restantes nunca co-ocorriam com o padrão escolhido.
Isto é compreenśıvel, tendo em conta que termos semanticamente relacionados
podem co-ocorrer de várias formas ou, por outras palavras, cada relação
semântica pode ser traduzida numa enorme quantidade de padrões textuais.
Outras limitações estão relacionadas com a própria pesquisa do Google, que não
é suficientemente versátil para englobar um grande número de expressões. Além
disso, ao procurar por um termo flexionado, o Google não consegue procurar por
termos com o mesmo lema, o que limita as pesquisas deste tipo.

Ainda assim, passamos ao passo seguinte onde pretend́ıamos verificar se
existia uma correlação entre os valores obtidos com as métricas para cada tipo
de relação e a avaliação humana. Contudo, devido aos factores já referidos, a
que acrescentamos a pouca quantidade de triplos dispońıveis para esse cálculo,
obtivemos sempre valores de correlação baixa, que nunca ultrapassavam os 20%,
mesmo transformando a escala da avaliação manual numa escala apenas com 0s
e 1s (semelhante à considerada para o cálculo da concordância relaxada).

No futuro pretendemos continuar a nossa busca por um método de validação
automática para este trabalho e queremos ainda experimentar estas métricas
em corpos para os quais exista um interface de pesquisa mais versátil, como o
serviço AC/DC [8].

Relação Padrão indicador (R)

Hiperońımia é|s~ao um|uma

Sinońımia também conhecido|conhecida|chamado|chamada|designado|designada de|por|pela

Parte-de tem|possui|engloba|abrange|inclui|têm um|uma|vários|alguns|

Causa devido|derivado|derivada|causado|causada|resultado|efeito|consequência
a|ao|à|por|pelo|pela| de|do|da

Finalidade usado|usada|utilizado|utilizada|através|objectivo|finalidade|intuito|serve
no|na|para|de o|a|um|uma

Tabela 4. Triplos extráıdos e sua qualidade de acordo com o padrão utilizado.

4 Discussão e trabalho futuro

Apresentamos neste artigo o nosso sistema de extracção de relações semânticas a
partir de texto não estruturado escrito em português e a sua aplicação a resumos
da Wikipédia. O conhecimento extráıdo, já estruturado, pode ser de grande
utilidade no aumento de recursos lexicais para a nossa ĺıngua. Nesse contexto,
seria interessante realizar uma análise à quantidade de conhecimento extráıdo
que ainda não se encontra no recurso em causa, uma pouco à imagem do que
Hearst [13] fez para a WordNet.

Como se pode observar pelos resultados da avaliação, há ainda um longo
caminho a percorrer e o sistema tem várias limitações, não só relacionadas
com a ambiguidade e com a enorme possibilidade de formas para indicar uma

546 INForum 2010 Hugo Gonçalo Oliveira, Hernani Costa, Paulo Gomes

relação semântica, mas também relacionadas com o pos-tagger utilizado e o
lematizador, que quando não reconhecem uma palavra procuram inferir a sua
categoria gramatical com base em probabilidades e o seu lema com base em
regras. Torna-se por isso, para já, imposśıvel obter triplos cujos argumentos
estejam lematizados, pois correŕıamos o risco de deteriorar a sua qualidade.
Procuraremos ultrapassar esta limitação com a utilização de outro pos-tagger
ou analisador morfológico.

Apesar de termos encontrado uma forma de filtrar quase todas as EM, através
da taxonomia da DBpedia, haverá ainda várias entradas relevantes para o nosso
recurso que ocorrem apenas na Wikipédia portuguesa e estão, desta forma, a ser
filtradas sem necessidade. Por isso continuaremos em busca de uma filtragem
mais adequada às nossas necessidades, e que poderá tirar partido de outra
informação dispońıvel na Wikipédia.

Além de questões já referidas ao longo da descrição da experimentação, e
de experiências com métricas de semelhança distribucional, algo que também
queremos realizar no futuro é definir um método para aferir a relevância de
relações de hiperońımia obtidas através da análise de termos compostos. Por um
lado, há uma pequena parte de triplos que podem ser obtidos desta forma e que
não estão correctos (p.e. bola de berlim não é uma bola e pé de atleta não é um
pé) e por outro, os triplos correctos nem sempre têm grande utilidade, tal como
discutido na secção 2. Logo, este método terá em conta do numero de ocorrências
e utilizações dos vários átomos do termo composto em colecções de documentos.

Numa fase posterior do trabalho pretendemos vir a integrar um conjunto de
triplos extráıdos da Wikipédia, também de forma automática, numa ontologia
lexical ao estilo da WordNet mas para o português. À semelhança do que foi
feito por [18], os termos serão associados, ou darão origem, a synsets, e os triplos
passar-se-ão a estabelecer entre synsets. Este tipo de estruturas são uma forma
aceitável de lidar com a ambiguidade e, além disso, permitirão a inferência de
novas relações. Uma primeira abordagem a este problema, onde são utilizados
recursos lexicais para o português, é descrita em [11].

Há ainda a acrescentar que, futuramente, pretendemos disponibilizar os
resultados deste trabalho para toda a comunidade que trabalhe com o
processamento computacional da ĺıngua portuguesa.

Referências

1. Afonso, S., Bick, E., Haber, R., Santos, D.: Floresta sintá(c)tica: um treebank
para o português. In: Gonçalves, A., Correia, C.N. (eds.) Actas do XVII Encontro
Nacional da Associação Portuguesa de Lingúıstica (APL 2001). pp. 533–545. APL,
Lisboa (2001)

2. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R.,
Hellmann, S.: Dbpedia – a crystallization point for the web of data. Web Semantics:
Science, Services and Agents on the World Wide Web 7(3), 154–165 (Setembro
2009)

3. Bollegala, D., Matsuo, Y., Ishizuka, M.: Measuring semantic similarity between
words using web search engines. In: Proc. 16th International conference on World
Wide Web (WWW’07). pp. 757–766. ACM, New York, NY, USA (2007)

Extração de conhecimento léxico-semântico ... INForum 2010 – 547

4. Cardoso, N.: REMBRANDT - Reconhecimento de Entidades Mencionadas Baseado
em Relações e ANálise Detalhada do Texto. In: Mota, C., Santos, D. (eds.) Desafios
na avaliação conjunta do reconhecimento de entidades mencionadas, pp. 195–211.
Linguateca (2008)

5. Cederberg, S., Widdows, D.: Using lsa and noun coordination information to
improve the precision and recall of automatic hyponymy extraction. In: Proc. 7th
Conference on Computational Natural Language Learning (CoNLL). pp. 111–118.
Association for Computational Linguistics, Morristown, NJ, USA (2003)

6. Chodorow, M.S., Byrd, R.J., Heidorn, G.E.: Extracting semantic hierarchies
from a large on-line dictionary. In: Proceedings of the 23rd annual meeting
on Association for Computational Linguistics. pp. 299–304. Association for
Computational Linguistics, Morristown, NJ, USA (1985)

7. Costa, H., Gonçalo Oliveira, H., Gomes, P.: The impact of distributional metrics in
the quality of relational triples. In: Proc. ECAI Workshop on Language Technology
for Cultural Heritage, Social Sciences, and Humanities (LaTeCH 2010) (2010), no
prelo

8. Costa, L., Santos, D., Rocha, P.A.: Estudando o português tal como é usado: o
serviço AC/DC. In: The 7th Brazilian Symposium in Information and Human
Language Technology (STIL 2009) (2009)

9. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database (Language, Speech,
and Communication). The MIT Press (1998)

10. Freitas, M.C.: Elaboração automática de ontologias de domı́nio: discussão e
resultados. Ph.D. thesis, Pontif́ıcia Universidade Católica do Rio de Janeiro (2007)

11. Gonçalo Oliveira, H., Gomes, P.: Towards the automatic creation of a wordnet from
a term-based lexical network. In: Proceedings of the ACL Workshop TextGraphs-5:
Graph-based Methods for Natural Language Processing (2010), no prelo

12. Gonçalo Oliveira, H., Santos, D., Gomes, P.: Extracção de relações semânticas
entre palavras a partir de um dicionário: o PAPEL e sua avaliação. Linguamática
2(1), 77–93 (Maio 2010), nova versão, revista e aumentada, da publicação Gonçalo
Oliveira et al (2009), no STIL 2009

13. Hearst, M.A.: Automated discovery of wordnet relations. In: [9], pp. 131–151 (1998)
14. Herbelot, A., Copestake, A.: Acquiring ontological relationships from wikipedia

using RMRS. In: Proc. ISWC 2006 Workshop on Web Content Mining with Human
Language Technologies (2006)

15. Medelyan, O., Milne, D., Legg, C., Witten, I.H.: Mining meaning from wikipedia.
Intl. Journal of Human-Computer Studies (Maio 2009)

16. Oliveira, P.C.: Probabilistic Reasoning in the Semantic Web using Markov Logic.
Master’s thesis, Universidade de Coimbra, Faculdade de Ciências e Tecnologia,
Departmento de Engenharia Informática (2009)

17. Richardson, S.D., Dolan, W.B., Vanderwende, L.: Mindnet: Acquiring and
structuring semantic information from text. In: Proc. 17th Intl. Conf. on
Computational Linguistics (COLING). pp. 1098–1102 (1998)

18. Ruiz-Casado, M., Alfonseca, E., Castells, P.: Automatic assignment of wikipedia
encyclopedic entries to wordnet synsets. In: Proc. Advances in Web Intelligence 3rd
Intl. Atlantic Web Intelligence Conference (AWIC). pp. 380–386. Springer (2005)

19. Ruiz-Casado, M., Alfonseca, E., Castells, P.: Automatising the learning of lexical
patterns: An application to the enrichment of wordnet by extracting semantic
relationships from wikipedia. Data Knowledge Engineering 61(3), 484–499 (2007)

20. Wandmacher, T., Ovchinnikova, E., Krumnack, U., Dittmann, H.: Extraction,
evaluation and integration of lexical-semantic relations for the automated
construction of a lexical ontology. In: Third Australasian Ontology Workshop
(AOW 2007). CRPIT, vol. 85, pp. 61–69. ACS, Gold Coast, Australia (2007)

21. Zesch, T., Müller, C., Gurevych, I.: Extracting lexical semantic knowledge from
Wikipedia and Wiktionary. In: Proc. 6th Intl. Language Resources and Evaluation
(LREC’08). Marrakech, Morocco (2008)

548 INForum 2010 Hugo Gonçalo Oliveira, Hernani Costa, Paulo Gomes

Extraction of Family Relations between Entities

Daniel Santos, Nuno Mamede, Jorge Baptista

IST – Instituto Superior Técnico
Universidade do Algarve

L2F – Spoken Language Systems Laboratory – INESC ID Lisboa
Rua Alves Redol 9, 1000-029 Lisboa, Portugal

{daniel.santos,nuno.mamede}@ist.utl.pt,jbaptis@ualg.pt

Abstract. Nowadays, there is a growing need to automatically extract
information from texts. In this active research field much effort has been
invested to improve the identification and classification of named enti-
ties, the detection of time expressions, and the identification of semantic
relations between text entities. This paper presents a system that iden-
tifies and classifies family relations. The directives, the options used, the
implementation and the results obtained are here presented.

Resumo. Existe uma necessidade crescente em extrair informação a
partir de um texto, nomeadamente na identificação e classificação de en-
tidades mencionadas e na identificação de relações semânticas entre essas
entidades. Este artigo apresenta um sistema que identifica relações famil-
iares. Descrevem-se as directivas de identificação e anotação, as opções
adoptadas, a implementação do sistema e os resultados obtidos.

1 Introduction

Automatic extraction of semantic knowledge is one of the goals of Natural Lan-
guage Processing. The extraction of semantic relations between entities repre-
sented in a text can improve the performance of systems that rely on this type
of information, such as question/answering systems and text summarization sys-
tems. Family relations are a particularly well defined set of semantic relations.
Historical and biographical documents are examples of texts that are every rich
in Family Relations.

Although the evaluation of these type of systems for the English language
has produced very good results, for the Portuguese language the extraction of
semantic relations is still in an early phase and results are not as good yet. In
the late 80’s, the first major evaluation campaigns for relation extraction in the
English language took place in MUC1 (Message Understanding Conference). In
the late 90’s, the ACE (Automatic Content Extraction) conference promoted a
joint evaluation almost every year.

For the Portuguese language, the only joint evaluation contest ever held for
the extraction of semantic relations took place in 2008, as a specific track of the
1 http://www.itl.nist.gov/iad/894.02/related_projects/muc/proceedings/ie_

task.html

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 549–560

HAREM conference (Avaliação e Reconhecimento de Entidades Mencionadas)
[Mota & Santos, 2008]. Results reported in this task were not as good as those
achieved in the Named Entities Recognition task.

This paper describes the implementation of a system built to identify family
relations (like parenting, sibling, etc.), for the Portuguese language and reports
on an evaluation of that system. The main goal is to get a good f-measure
minimizing the number of incorrect classifications, ie, maximizing precision.

The remainder of this paper is organized as follows. Section 2 presents the
state of the art and the methodologies used. Section 3 describes the architecture
and the implementation of this system. Section 4 presents the strategy used to
extract the semantic relations, while Section 5 contains the evaluation. Finally,
in Section 6 some conclusions are drawn in order to structure future work.

2 Related Work

The Family relation type has been present in every ACE edition, although it
underwent some changes over time. In the earlier editions2, this category was
associated to several subcategories, but after the fourth edition3 there has been
only one major category Family, which includes all different types of family rela-
tions. In HAREM, the Portuguese joint evaluation contest, the Family category
was also present as one of the subcategories of “Outras” [Freitas et. al., 2009].

Both evaluations consider all family relations in a single category without
specifying the type of the relation. We decided that family relations should be
differentiated from other types of semantic relations. In order to do that, we
created a set of features to identify this particular type of semantic relation.

Two major groups of methods are usually adopted for the semantic relations
extraction task: rule-based and machine learning approaches. All systems eval-
uated in HAREM are based on rules, i.e, these systems analyze the syntactic
structure of sentences looking for patterns and then, based on the information
that is present on every sentence and the patterns extracted, they deduce re-
lations among entities. For example, in the sentence O João é primo do José
“João is José’s cousin” if the system matches the pattern consisting in a noun
phrase (NP) whose head is a human noun (e.g. João), the verb ser “to be”, a
family relation noun (e.g. primo “cousin”) and a prepositional phrase (PP) in-
troduced by de “of” with another human head noun (e.g. José); and if a subject
relation has been established between the first NP and the verb, while a modifier
relation has been found to exist between the head of the last NP and the family
relation noun, then a Family relation between the two human nouns should be
established. The best system in the global task of relation extraction in HAREM
was REMBRANDT [Cardoso, 2008] which is based on a set of rules used to infer

2 More information about ACE02 in “ACE Evaluation plan version 06” is available
in http://www.itl.nist.gov/iad/mig/tests/ace/2002/doc/

3 “Version (7) of the 2004 ACE evaluation plan” in http://www.itl.nist.gov/iad/

mig/tests/ace/2004/

550 INForum 2010 Daniel Santos, Nuno Mamede, Jorge Baptista

new relations. The result achieved was 45% f-measure, with 60% precision and
35% recall.

Culotta and Sorensen [Culotta & Sorensen, 2004] use the same categories de-
fined in the first two ACE editions, and they try different approaches for relation
extraction. They created a system based on machine learning with dependency
tree kernels. The first step consists in building a parse tree using a maximum
entropy statistical parser. This tree is then converted to a dependency tree that
represents the grammatical relations between words in a sentence. The final
step consists on the application of kernel methods, defined by the authors, for
the extraction of relations among entities. They report a best result of 63.2%
f-measure, with 81.2% precision and 51.8% recall.

3 Architecture

In this paper, a rule-base approach is adopted, since there is still no available
corpus for the Portuguese language annotated for family semantic relations.
The corpus used in HAREM cannot be used because: the annotations did not
include different types of family relations, the number of annotations in the data
set is too small for an efficient use of machine learning methods, and finally, the
annotations in this corpus are made between named entities and in this paper
we extract relations between any type of entities.

Furthermore, because semantic relations can be viewed as another layer of
information over syntactic dependencies, already being extracted by the syn-
tactic parser here used, it would be easier to extend the rule-based grammar
already implemented in this system [Mamede, 2007] to encompass also semantic
relations.

The identification of relations between entities is thus performed in XIP
(Xerox Incremental Parsing), one of the modules of the L2F4 NLP processing
chain, whose structure is sketched in Figure 1, and that will be briefly presented
below.

The first module (Segment Splitter) splits the text into tokens, while Pa-
lavroso [Medeiros, 1995] assigns to each token all the possible part-of-speech
(POS) tags, depending on the token ambiguity.

The Sentence Splitter splits the text into sentences. Every time the system
finds one of the following characters “.”, “!” and “?” it considers it as the end
of the current sentence. The result is converted into an adequate format and
piped into RuDriCo [Pardal, 2007], which uses several heuristics to remove or
select some of the POS that were given by the morphosyntactic labeling module.
This type of rules is based on previously known cases and they choose or elimi-
nate some specific POS for a given token given its neighboring context. Another
functionality of RuDriCo is the joining of strings of words forming compounds as
single tokens and splitting of contracted word forms into their component words;
for instance, the words Coreia; do; Norte becomes a single token Coreia do Norte
4 Laboratório de Sistemas de Ĺıngua Falada do Instituto de Engenharia de Sistemas

e Computadores - Investigação e Desenvolvimento

Extraction of Family Relations between Entities INForum 2010 – 551

Fig. 1. L2F NLP Processing Chain.

(“North Corea”), while the contraction disso is split in to preposition de (“of”)
and pronoun isso (“that”). The MARv module [Ribeiro et. al., 2003] performs
the remaining disambiguation. It uses a statistical model and the Viterbi algo-
rithm to choose the most probable category for each given token in the sentence.
The result is again converted and piped into XIP [Xerox, 2003], where a set of
complex operations is carried out, namely the structuring of the sentences into
chunks, the extraction of syntactic dependencies, named entities recognition,
and anaphora resolution. It is also at this stage that the extraction of semantic
relations takes place.

4 Methodology

Only one major category, named FAMILY, has been defined, covering all family
relations. Each relation will be associated to a feature that expresses the relation
type (uncle, parenting, sibling, etc.) and the gender of the relation arguments.
For example, in the sentence O João é primo do José “João is José’s cousin”,
already presented above, the following semantic relation is extracted:

FAMILY cousin 1M 2M(Jo~ao,José)

To look for relevant patterns, the words (mainly nouns) that express family
relations are very important lexical clues. For example, the word pai (“father”) is
a good lead, but its mere presence does not mean that we have a family relation in
that sentence, for example in sentences like São Pacómio, pai da vida monástica
cenob́ıtica5 “St. Pachomius, the father of cenobitic monastic life”, where pai is
used in the sense of “founding father”. In order to solve this and similar problems,
rules have to be rendered much more precise to ensure that a family relation is
captured only if its arguments are human nouns. These include proper nouns,
professions, titles, or generic human nouns like, man, woman, children, etc.

In order to identify family relations, a survey of the syntactic patterns that
these relation nouns determine was carried out. Some of these patterns are sim-
ilar regardless of the semantic relation they express.
5 http://hagiaecclesia.blogspot.com/2009/05/sao-pacomio-c.html.

552 INForum 2010 Daniel Santos, Nuno Mamede, Jorge Baptista

For example, the following sentences: O João é pai do Pedro “John is Peter’s
father”, O João é tio do Pedro “John is Peter’s uncle”, and O João é irmão do
Pedro “John is Peter’s brother” all have the same syntactic structure: João is
always the subject, the verb ser “to be” links the subject to the noun referring
the type of relation, and the PP with Pedro is governed by the relation noun.
Instead of making a specific rule for each relation, a general rule is constructed
in order to capture all these cases, while other rules specify the relation type
present in each sentence.

Next, before detailing how these rules were built, a brief overview of the XIP
syntax and of the dependency types used to extract family relations in presented.
XIP syntax is based on regular expressions. For clarity, XIP rules are split in
three parts (all of these three parts are optional):

|pattern| if <condition> <dependency terms>.

– The pattern part regards the nodes of a given sentence. A node or a chunk is
composed by one or more words, like a noun, a verb, an article, a preposition,
etc. The most common nodes are NP (noun phrase), VP (verb phrase), PP
(prepositional phrase). It is also possible to verify the presence of some word
features, for example the gender (masculine or feminine), and the number
(singular or plural). The features used in the extraction of family relations
are related to gender, number, the lemma of a word, the feature “relative”
that is present in every word related to a family relation (father, mother,
uncle, brother, sister, etc.) and finally we verify if a noun may represent a
person through the presence one of these features: people, individual, human
or profession.

– The <condition> part is an if clause, which is used to verify some conditions,
like the presence of a dependency that conveys a some specific meaning in
the sentence. For example the dependency SUBJ identifies the subject of the
verb; for the sentence O João é irmão do Pedro “John is Peter’s brother”
the subject dependency is created: SUBJ(é,Jo~ao).

– Several dependencies are used in the relation extraction task:
• The PREDSUBJ dependency links a copula verb like ser “to be” to a

predicative noun, an adjective or adverb; for example, in the sentence, O
João é irmão do Pedro “João is Pedro’s brother”, we have a PREDSUBJ
dependency between the verb ser “to be” and the noun irmão “brother”.

• The APPOSIT dependency links the noun with an apposite; in the sen-
tence O João, o irmão do Pedro, fez isso “João, Pedro’s brother, did
that”, the following dependency is extracted: APPOSIT(Jo~ao,irm~ao).

• The coordination dependency COORD links elements in a coordination
chain. For instance, if a verb operates on a noun and that noun has a
coordination dependency with another noun then the second noun is also
operated upon by the same verb (and is in the same syntactic relation
to the verb as the first noun).

• The HEAD dependency relates the nucleus of a chunk with the chunk
itself; in the previous sentence, the noun João is the head of the nominal
chunk O João.

Extraction of Family Relations between Entities INForum 2010 – 553

– Finally, the <dependency terms> determines the action of the rule. In the
relation extraction task, this part of the rule creates the family dependency.

The rule presented in Figure 2 is used to determine if a sentence has a family
relation. The first part imposes restrictions on the tree structure of the sentence:
this must have a NP that is composed by something (?*) and a noun present-
ing semantic, human-related features (people and individual, human, people or
profession); this NP can be followed by some optional NP or PP (these elements
often indicate the age or the profession of the first NP; for the kind of relations
here targeted, that information is not relevant); after those optional chunks there
must be a VF with a verb whose lemma is ser “to be”; Then we have another NP
with a noun that has the “relative” feature (like “father”, “uncle”, “brother”);
finally, we have again a PP with a noun referring to a human.

Afterwards, we verify some conditions by way of an if clause. The noun in
the first NP has to be the head of the chunk, the same thing happens in the PP.
The head of the first NP must be the subject of the verb, and the noun of the
second NP has to be in a PREDSUBJ relation with the verb.

At last, and if no previous family relation has been detected, we extract the
FAMILY relation between the two human nouns and in this first phase we keep
the type of the relation that is present in the second NP.

| NP#1{?*, noun#2[people, individual]; noun#2[human];

noun#2[people]; noun#2[profession]},

PUNCT*, NP*, PP*, PUNCT*,

VF{verb#3 [lemma:ser]}, NP{noun#4[relative]},

PP#5{?*,noun#6[people, individual]; noun#6[human];

noun#6[people]; noun#6[profession]} |

if(HEAD(#2,#1) & HEAD(#6,#5) & PREDSUBJ(#3,#4) &

SUBJ[PRE](#3,#2) &

~FAMILY(#2,#6) & ~FAMILY(#4,#2,#6))

FAMILY(#4,#2,#6)

Fig. 2. XIP rule: creates a new Family relation

Next, as shown in Figure 3, a set of rules is used to remove the type of relation
from the first argument of the FAMILY dependency and to add the relation type
as a feature of the dependency, now with only two arguments. In the if clause
we erase the previous dependency created and verify which is the lemma for
the first argument, e.g.primo “cousin”; if that is the case, then we create a new
dependency FAMILY with the feature cousin included. For each different lemma
referring a family relation, a similar rule has to be made.

It is also necessary to identify the gender of both arguments in a family
relation. In order to do that four features have been created: 1M; 2M; 1F and
2F. These features indicate whether the first or the second argument is either

554 INForum 2010 Daniel Santos, Nuno Mamede, Jorge Baptista

if(^FAMILY(#1,#2,#3) & #1[lemma:primo])

FAMILY[cousin=+](#2,#3)

Fig. 3. XIP rule: remove the type of relation from the arguments.

masculine or feminine. Figure 4 contains an example of this type of rules. In
this rule the dependency FAMILY is checked to determine if it does not have the
gender feature already, and if the first argument has the feature masc (masculine)
and does not have the feature fem (feminine). If these conditions are satisfied,
then the feature 1M is added, indicating that the first argument is masculine.

if(^FAMILY(#1,#2) & ~FAMILY[1M](#1,#2) & ~FAMILY[1F](#1,#2) &

#1[masc] & ~#1[fem])

FAMILY[1M=+](#1,#2)

Fig. 4. XIP rule: add the gender feature to the relation.

Although these rules identify most of the cases, some given names are am-
biguous and all family names are not marked for gender [Baptista et. al., 2006].
In those cases we decided not to include the gender of that argument.

To solve some of the ambiguity present, some rules were further refined.
These take into account the fact that often the noun expressing the relation
type indicates the gender of one of its arguments. For example in the sentence
Saraiva é tio de Silva “Saraiva is Silva’s uncle” we know that the family proper
name Saraiva represents a male person because of the relation noun here used.

We have also removed some ambiguity in nouns by changing its gender based
on the article that usually precedes the noun. Notice that in Brazilian Portuguese
the article is usually not used, while in European Portuguese the presence or
absence of the article is meaningful and its use is related to the degree of notoriety
or the familiarity of the speaker with the individual.

Several idiomatic expressions also convey familiar relations, for example the
sentence O João e a Joana deram o nó (literally, “João and Joana have tied the
knot”) means that these two people got married. These cases are different from
the ones we presented before because, instead of a global rule, each one must
have a specific rule since it conveys a single relation type and have a specific
syntactic structure.

Many relation nouns can be used in combination with other lexical elements
in order to distinguish or to define in a more specific way a basic family relation;
for example adoptive father, foster father, twin brother, etc. To handle these
type of relations we use regular expressions in the lemmas. For example, if the
lemma: “pai” is used, this expression will only match the word pai “father”,
however if we use as lemma: “pai(%c*)” then it will also match pai adoptivo
“adoptive father”.

Extraction of Family Relations between Entities INForum 2010 – 555

Symmetric relations, like irmão “sibling”, cunhado “brother-in-law” and
primo “cousin” also require specific rules to deal with sentences such as João
e o Pedro são primos “João and Pedro are cousins”, which are not captured
by the general rules. The symmetry property consists in the arguments of the
relation noun being able to appear coordinated in the subject position. Non-
symmetric relation nouns cannot enter this syntactic pattern: João e o Pedro
são pais “João and Pedro are fathers” (this sentence would be acceptable but
the “father” relation would not hold between the two human nouns).

So far, all relations presented here have two arguments, but some expressions
may appear to have more than two, for example, the sentence O João e o Carlos
são tios do Pedro “João and Carlos are Pedro’s uncles”.

In this sentence, the family relation “uncle” holds not only between João and
Pedro, but also between Carlos and Pedro. In order to capture cases like this,
where there is more than one relation in the same sentence, the following rules
were made:

if(FAMILY(#1,#2,#3) & #1[pl] & COORD(#4,#2) & COORD(#4,#5))

FAMILY(#1,#5,#3)

if(FAMILY(#1,#2,#3) & COORD(#4,#3) & COORD(#4,#5))

FAMILY(#1,#2,#5)

Fig. 5. XIP rule: creates an additional relation in cases where a sentence has a relation
with three arguments.

These rules verify if there is a coordination dependency between one of the
arguments of the previously detected relation and another entity. Whenever this
condition is met the same relation is propagated to the second entity.

The last special case is related to anaphora. Anaphora may be defined as the
referential relation that holds between two instances in a text: an expression (the
anaphor) that refers to another expression, which has occurred previously in the
same text (the antecedent). A module for anaphora resolution is currently being
developed for the Portuguese language at L2F/INESC-ID by another researcher.
Once this module is in place, its results are likely to improve the relations ex-
traction task.

Among the different types of anaphoric devices, zero anaphora [Mitkov, 2002]
constitutes a particularly challenge to anaphora resolution systems. Zero ana-
phora holds between a void anaphor, i.e. an empty syntactic slot, and its an-
tecedent; it is a form of ellipsis, used to avoid word repetition.

For example, in the sentence O João é irmão do Pedro mas cunhado do
Carlos “João is Pedro’s brother but [he is] Carlo’s brother-in-law” the subject of
the relation noun cunhado is also João but it has been zeroed not to be repeated,
since it refers to the subject of the first coordinate sentence [Pereira, 2010].

Zeroing also occurs in discourse following turn taking (e.g. answering a ques-
tion), like in the sentence: É tio do Pedro “[He] is Pedro’s uncle”. In these cases,

556 INForum 2010 Daniel Santos, Nuno Mamede, Jorge Baptista

the zeroed anaphor may be identified but its reference can not be solved at this
stage, for its antecedent is not in the current sentence. Therefore, a dummy node
is created, inheriting the features that the relation extraction rules can recover
from the context (v.g. in the sentence above, the masculine, singular, third per-
son). In the extracted relation, a dummy feature A0 is added. At a future stage
of the anaphora resolution module, this information would be used to correctly
calculate the antecedent of this zero anaphor.

5 Evaluation

For the evaluation of this task, we use three metrics which are common to other
research papers in this field. These three metrics are:

Precision = Correct Relations
Relations Identified

Recall = Correct Relations
Total Relations

f −measure = 2∗precision∗recall
precision+recall

At this stage, we only consider for evaluation purposes the patterns where
the relation noun and its argument named entities are explicitly present in the
text, such as in the examples discussed above. Other cases will be discussed in
the final section of the paper. We have implemented 99 rules to extract these
family relations.

Since the Family category has been treated differently by the systems pre-
sented in Chapter 2, and also because the evaluation corpus is different in almost
every investigation (except in joint evaluations), it is not possible to compare
rigorously the system here presented with those referred to above.

Two evaluation corpora were used to evaluate the relation extraction task.
The first evaluation corpus is a text containing the biography of all Portuguese
kings. We decided to use this type of documents because they are very rich
in family relations and they have common Portuguese names that should be
easily identified as a person named entities by the system. These biographies
were gathered from Wikipedia6 and they were then manually annotated for the
family relations they present.

The total number of family relations present in this evaluation corpus is 105.
The annotation task was made after the implementation phase, so that we could
not adapt our rules to these specific cases.

We performed a second evaluation because we noticed that the Portuguese
Kings biographies have many implicit relations, assuming that whoever is look-
ing at the text already knows something about the person whose life is being
described. An automatic system does not work so, and this may influence the
results.
6 http://www.wikipedia.pt

Extraction of Family Relations between Entities INForum 2010 – 557

The second evaluation corpus is then made up of the first 110 sentences con-
taining at least one relation noun, from a list of about 100 names, and retrieved
from the CETEMPúblico corpus7.

The results of the first evaluation corpus are presented in Table 1. Some
factors hindered these results, namely the implicit relations, mentioned above,
false positive relations, identification of relations with the incorrect arguments,
and other errors due to an incorrect performance of the NER module, which is
beyond the scope of this task.

For example, in the following sentence: O acordo foi firmado em 1174 pelo
casamento de Sancho, então pŕıncipe herdeiro, com a infanta Dulce Berenguer,
irmã mais nova do rei Afonso II de Aragão. The relation that should have been
extracted is:

FAMILY SPOUSE(Sancho, infanta Dulce Berenguer)

But the relationship that has actually been extracted is:

FAMILY SPOUSE(Sancho, infanta)

The problem in this example is that a composite node between the title
infanta “princess” and Dulce Berenguer should have been created; if it had,
the relation would be correctly established. Therefore, results were reassessed
counting cases like this as correct, in order to see their impact on the overall
results. As seen on the right side of Table 1, these results are indeed better.

Table 1. Results of the first evaluation corpus (the right table considers as correct the
relations with errors on the identification of people names).

Precision Recall F-measure Precision Recall F-measure

0.59 0.19 0.29 0.71 0.23 0.35

Table 2 presents the results for the second evaluation corpus. This second
corpus contained 110 sentences; only 21 of these had an explicit family relation,
while the remaining 89 contained at least one relation word, but no explicit
family relation to associate pairs of entities. As was mentioned above, only ex-
plicit relations with both entities expressed were considered for evaluation in
this paper.

Table 2. Results of the second evaluation corpus

Precision Recall F-measure

0.71 0.24 0.36

7 http://www.publico.pt/

558 INForum 2010 Daniel Santos, Nuno Mamede, Jorge Baptista

Some of the cases that lowered the precision are due to the incorrect identi-
fication of the arguments, i.e., the relation is explicitly present in the sentence,
but the rule is unable to correctly capture one of the arguments. The following
example exhibits this problem:

Quanto ao Troféu BMW 320iS, Jorge Petiz ultrapassou o seu irmão Alcides
a meio da corrida para obter uma vitória fácil, com 2,382′′ de avanço, deixando
o 3o, António Barros, a 4,788′′.

In this case, the name Alcides is an apposite to the word irmão (“brother”);
only this half of the relation (FAMILY A0 1M SIBLING) is correctly identified
but a dummy (anaphoric) first argument (A0) is construed since the system is
currently unable to identify Jorge Petiz, the sentence subject, as the relation’s
first argument. In order to do so, the reference of the possessive pronoun would
have to be resolved, which is outside the scope of this paper.

The evaluation corpus also contains some foreign names that are not iden-
tified as person named entities by the system, thus preventing the relation ex-
traction. This problem derives from the NER module and not from the relation
extraction module. Therefore, it was decided to add the missing names to the
XIP’s lexicon, and to perform a new evaluation. As expected the results are
better (see Table 3), particularly the recall.

Table 3. New Results of the second evaluation corpus

Precision Recall F-measure

0.70 0.33 0.45

6 Conclusions and future work

The extraction of semantic relations between named entities in text is a very
complex and challenging task. This paper reports a first attempt to extract
from texts semantic relations between named entities, using the NLP chain built
at L2F. Results from two different corpora are still unsatisfactory. The main
problems detected came from (i) the insufficient performance of the named en-
tity recognition module, which produced much of the incorrect matching of the
relations’ arguments; and (ii) the limited coverage of the syntactic-semantic de-
pendency extraction module (deep parser). Several dependency rules were built
to capture new patterns in order to improve the recall measure of the task.

One of the dependencies that requires further attention is apposition, as in
the sentence: [. . .]o grupo tinha em seu poder o tenente-coronel Mike Couillard,
37 anos, e o seu filho Matthew, dez anos. “the group had in his power the
lieutenant-coronel Mike Couillard, age 37, and his son Matthew, age 10”. Even
if the age insertions were sorted out, the system still does not correctly handle
titles, when they are adjoined to a proper name. The same happens with relation
nouns, like filho “son”, often appearing in front of the named entity.

Extraction of Family Relations between Entities INForum 2010 – 559

Data from the corpora have shown that family relations in texts are most
often expressed by way of incomplete mention, using just the relation noun,
as in the following example: No regresso, o meu pai já vinha a dormir. “On
the way home, my father was already sleeping”. In this case, a parenting rela-
tion is present, but the relation noun also designates a person whose reference
still needs to be established in the previous discourse. On the other hand, the
possessive refers to the enunciation subject, which calls for a much complex cal-
culation, across direct and reported speech. Correference resolution is therefore
an unavoidable track parallel to relation extraction task.

References

[Baptista et. al., 2006] Jorge Baptista, Fernando Batista, Nuno Mamede, Building a
Dictionary of Anthroponyms, In PROPOR 2006 - Computational Processing of the
Portuguese Language, Springer Verlag, Berlin Heidelberg, vol. 3960, pages 21-30,
Itatiaia, Brazil, May 2006.

[Cardoso, 2008] Nuno Cardoso: Rembrandt - reconhecimento de entidades men-
cionadas baseado em relações e análise detalhada do texto, Chapter 11, pages195-
211, 2008.

[Culotta & Sorensen, 2004] Aron Culotta, Jeffrey Sorensen: Dependency tree kernels
for relation extraction. In ACL’04: Proceedings of the 42nd Annual Meeting on
Association for Computational Linguistics, page423, Morristown, NJ, EUA, 2004.
Association for Computational Linguistics.

[Mamede, 2007] Nuno Mamede: A Cadeia de Processamento XIP. L2F (Laboratório
de Sistemas de Ĺıngua Falada, Maio 2007.

[Medeiros, 1995] J. C. Medeiros, Processamento Morfológico e Correcção Ortográfica
do Português. Master’s thesis, Instituto Superior Técnico - Universidade Técnica
de Lisboa, Portugal, 1995.

[Mitkov, 2002] Ruslan Mitkov, Anaphora Resolution, Pearson ESL, 1st Edition, 2002,
ISBN: 978-0582325050, Chapter 1.

[Mota & Santos, 2008] Cristina Mota, Diana Santos: Desafios na avaliação conjunta
do reconhecimento de entidade smencionadas: O Segundo HAREM, 2008.

[Freitas et. al., 2009] Cláudia Freitas, Diana Santos, Cristina Mota, Hugo Gonçalo
Oliveira, Paula Carvalho: Relation detection between named entities: report of a
shared task. In DEW’09: Proceedings of the Workshop on Semantic Evaluations:
Recent Achievements and Future Directions, pages 129-137, Morristown, NJ, EUA,
2009. Association for Computational Linguistics.

[Pardal, 2007] Joana Pardal, Manual do Utilizador do RuDriCo. Technical report, In-
stituto Superior Técnico - Universidade Técnica de Lisboa, Portugal, 2007.

[Ribeiro et. al., 2003] Ricardo Ribeiro, Nuno Mamede, and Isabel Trancoso, Compu-
tational Processing of the Portuguese Language: 6th International Workshop, PRO-
POR 2003, Faro, Portugal, June 26-27, 2003, volume 2721 of Lecture Notes in
Computer Science. chapter Using Morphossyntactic Information in TTS Systems:
Comparing Strategies for European Portuguese. Springer, 2003.

[Pereira, 2010] Simone Pereira, Linguistic Parameters for Anaphora Resolution, MA
thesis, Univ. Algarve, Faro, 2010.

[Xerox, 2003] Xerox, Xerox Incremental parser – Reference Guide, 2003.

560 INForum 2010 Daniel Santos, Nuno Mamede, Jorge Baptista

O impacto de diferentes fontes de conhecimento na
marcação de Nomes Próprios em Português

João Tomé da Silva Laranjinho and Irene Pimenta Rodrigues

joao.laranjinho@gmail.com, ipr@di.uevora.pt
Departamento de Informática

Universidade de Évora, Évora, Portugal

Resumo Neste artigo apresenta-se um sistema, independente do domı́nio, para
marcação de nomes de entidades para o português. Este sistema é avaliado de
forma a estudar o impacto de diferentes fontes de conhecimento nos resultados
do sistema.
O marcador usa informação morfo-sintáctica, sintáctica e semântica. A informação
morfo-sintáctica vem de um dicionário local que completa a sua informação re-
correndo a dicionários disponı́veis na rede como o da Priberam. A informação
sintáctica das frases vem de uma gramática construı́da para analisar frases inter-
rogativas, esta gramática tem bons resultados para as frases interrogativas (acima
de 95% de cobertura) mas para as frases dos outros corpura testados tem um mau
desempenho (abaixo dos 30% de cobertura). A informação semântica usada nas
experiências de avaliação vem da Wikipédia.
Na avaliação do sistema e do impacto das diferentes fontes de informação usaram-
se três corpura distintos: um conjunto de documentos com 700 perguntas do
CLEF; 300 frases de noticias do Público; e 200 frases do corpus CD do segundo
Harem.

Abstract We present a domain independent system that identifies proper na-
mes in Portuguese texts. This system is evaluated in order to study the impact of
the different knowledge sources on its performance. The knowledge sources are:
morph-syntactic obtained from a local dictionary that is able to consult online
dictionaries; syntactic from a Portuguese grammar that indicates if a sentence
with some proper names tagged is correct; and semantic obtained from an online
encyclopedia, the Wikipedia.
In the evaluation, we use three different corpus: a set of documents with 700
questions from CLEF, 300 sentences of news from Publico, and 200 sentences
from the corpus of the second Harem. The Portuguese grammar was developed
in order to analyse Portuguese interrogative sentences. This fact is reflected in
the performance of our system in the different corpus since the coverage of the
grammar is up to 95% for CLEF and bellow 30% for the others.

1 Introdução

Os sistemas de marcação de nomes de entidades são um caso particular (a identificação)
dos sistemas de reconhecimento de entidades mencionadas (REM) que identificam e
classificam as entidades de acordo com uma hierarquia pré-definida de categorias. Para

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 561–572

o inglês, alguns dos sistemas actuais conseguem um valor de 93% na medida F em
foruns de avaliação como o MUC-7 [NS07]. Para o português, no segundo Harem,
o melhor sistema, o sistema da Priberam [AFM+08] consegue atingir cerca de 71%
para a medida F na identificação de entidades mencionadas (ou marcação de nomes de
entidades).

O sistema REMUE (Reconhecimento de Entidades Mencionadas da Universidade
de Évora) foi, inicialmente, desenvolvido para melhorar o desempenho de um sistema
de resposta automática a perguntas [QRPV06], em particular para auxiliar na esco-
lha das melhores análises sintácticas de uma pergunta em português. A avaliação ini-
cial do REMUE foi feita usando um corpus com as perguntas do CLEF na tarefa de
pergunta-resposta [SR04] de várias edições. A marcação dos nomes de entidades neste
corpus foi feita manualmente para a avaliação do REMUE. Para estudar o compor-
tamento do REMUE noutro tipo de corpus construiu-se uma amostra com frases do
Público que também foram anotadas manualmente. E finalmente fez-se uma avaliação
com uma amostra da colecção dourada do Segundo Harem que apesar de não permitir
uma comparação directa com os sistemas que concorreram ao Harem nos permite ver o
impacto das diferentes fontes de conhecimento nos resultados do REMUE (o REMUE
não foi avaliado no Segundo Harem).

O REMUE usa três tipos de fontes de conhecimento para decidir a marcação de
nomes de entidades:

– Informação morfo-sintáctica - num dicionário local que completa a sua informação
recorrendo a dicionários disponı́veis na rede como o Dicionário da Priberam.

– Informação sintáctica - o resultado de um analisador sintáctico, a estrutura sin-
táctica das frases com os nomes de entidades das frases. Uma frase pode ter zero,
uma ou mais estruturas sintácticas associadas. A estrutura sintáctica pode ser par-
cial ou total. Esta informação é usada, pelo REMUE, para decidir a melhor marcação
de nomes de entidades na frase.

– Informação semântica - informação de dicionários e enciclopédias que indicam se
o nome da entidade existe nalgum contexto. No REMUE por enquanto só se usa a
informação da Wikipédia que como se pode ver na sua avaliação tem um grande
impacto na correcção das marcações.

As técnicas usadas nos sistemas de REM dividem-se em: modelos baseados em
regras e modelos estatı́sticos. Actualmente a técnica dominante é a baseada em modelos
estatı́sticos e aprendizagem. Estes sistemas requerem grandes quantidades de dados
anotados manualmente para a fase de treino e alguns sistemas tem um desempenho
dependente do domı́nio.

Os modelos baseados em regras têm apresentado melhores resultados (ver MUC-7),
no entanto, requerem muito trabalho feito por linguistas na sua implementação e muitas
vezes o seu desempenho depende do domı́nio.

Algum dos recursos utilizados no REM [AA08] são:

– Corpus - conjuntos de textos anotados. Normalmente em conjunto com os corpura,
são utilizadas estratégias de aprendizagem, como por exemplo: modelos de Markov
não observáveis (Hidden Markov Models - HMM), árvores de decisão, modelos de

562 INForum 2010 João Tomé da Silva Laranjinho, Irene Pimenta Rodrigues

máxima entropia, SVMs [NS07]. Um dos problemas da construção de um corpus
está relacionado com a anotação;

– Almanaques - dicionários de entidades mencionadas (EM);
– Metapalavras - representam as palavras próximas das EM. Estas são palavras que

dão alguma informação sobre as entidades, normalmente são utilizadas na fase de
desambiguação. Exemplos: escritor, rua, etc;

– Abreviaturas - palavras que fazem parte das entidades e dão informação sobre a
classe da entidade. Normalmente são utilizadas na classificação. Exemplo: Dr., Sr.,
etc;

– Regras de similaridade - um conjunto de regras que definem semelhanças entre as
entidades a serem classificadas e as entidades que existem em almanaques.

O desempenho de um sistema de REM pode ser medido com diversas métricas [SC07]
que representam o desempenho em valores numéricos.

As três métricas que normalmente são utilizadas para avaliar o desempenho de um
sistema de recolha de informação são as seguintes: abrangência (Recall), precisão (Pre-
cision) e medida F (F-Measure).

– A abrangência mede a relação entre o número de resultados correctos e o número
de resultados existentes. A fórmula da Abrangência é a seguinte:

Abrangência = Resultados Correctos ∩ Resultados Existentes
Resultados Existentes

– A precisão mede a relação entre o número de resultados correctos e o número de
resultados obtidos. A fórmula da Precisão é a seguinte:

Presisão = Resultados Correctos ∩ Resultados Obtidos
Resultados Obtidos

– A medida F é uma média harmónica entre a precisão (P) e a abrangência (A). A
fórmula da medida F é a seguinte:

Medida-F = 2* P∗A
P+A

Na próxima secção, 2, apresenta-se a arquitectura do REMUE com os seus módulos
de processamento e as diferentes fontes de conhecimento. Na secção 3, apresentam-
se os testes feitos com o REMUE em 3 corpura diferentes procurando ver o impacto
das diferentes fontes de conhecimento em cada um dos corpura. Para estudar o im-
pacto fazem-se 8 testes diferentes calculando a precisão, a cobertura e a medida F para
cada corpus. Finalmente, na secção 4, analisam-se os resultados da avaliação feita e
discutem-se alguns aspectos que podem ser melhorados no REMUE e na sua avaliação.

2 Arquitectura do sistema do REMUE

O REMUE recebe um ficheiro de texto para marcação de nomes de entidades e retorna
dois ficheiros, um com o texto em que os nomes de entidades surgem marcados e um
outro com a lista de nomes de entidades de cada frase.

Para a marcação dos nomes de entidades recorre-se a regras que codificam as pre-
ferências na escolha dos nomes de entidades. As regras usam informação sobre:

– O número de átomos do nome de entidade;

O impacto de diferentes fontes de conhecimento ... INForum 2010 – 563

– Informação sobre a primeira letra das palavras (maiúscula ou minúscula);
– A classe morfo-sintáctica de cada palavra;
– Informação sobre alguns caracteres como: aspas, números e sinais de pontuação.

O REMUE contém 4 módulos. Na Figura 1 é apresentada a arquitectura do RE-
MUE.

Figura 1. Arquitectura do REMUE

Os módulos são: pré-processamento, análise lexical, pontuar interpretações e saı́da.

2.1 Pré-processamento

Um texto para ser analisado deve encontrar-se separado em frases. Uma frase é cons-
tituı́da por palavras, números, sinais de pontuação, etc.

Na separação de um texto em frases utiliza-se uma estrutura que guarda, em cada
posição, o conjunto de interpretações de uma frase.

Uma interpretação de uma frase para ser analisada deve encontrar-se separada em
átomos. Um átomo é constituı́do por uma sequência de caracteres sem espaços em
branco. Os átomos podem ser palavras, números, sinais de pontuação, sequências de
letras alternadas com números, etc.

Um candidato a nome de entidade é constituı́do por uma ou várias palavras que
começam com maiúscula, podendo possuir números e elementos de ligação de nome de

564 INForum 2010 João Tomé da Silva Laranjinho, Irene Pimenta Rodrigues

entidades. Os elementos de ligação de nome de entidade considerados são os seguinte:
“de”, “da”, “do”, “das”, “dos”, “e”, “&” e “-”.

O sistema para uma interpretação que tem N candidatos a nomes de entidades pro-
duz 2N interpretações. As diferenças entre às interpretações são ao nı́vel do número de
candidatos a nomes de entidades marcados que variam entre 0 e N.

2.2 Análise Lexical

Na análise lexical reúne-se num ficheiro as palavras que não se encontram no dicionário
local.

O dicionário local contém informação (entradas) sobre palavras e nomes de enti-
dades, sendo a informação sobre as palavras relativa às classes gramaticais, além de
valores para variáveis morfo-sintáctico-semânticas. Enquanto que a informação sobre
os nomes de entidades é relativa a sua existência.

As entradas no dicionário local são as seguintes: adjectivo (adj), advérbio (adv),
determinante (det), substantivo comum (nome), número (num), preposição (prep), con-
tracção (contr), conjunção (conj), interjeição (interj), pronome (pron), verbo (verbo) e
nome de entidade (nomeEntidade).

O Priberam1 é um dicionário disponı́vel na rede, no qual podem ser feitas consul-
tas sobre palavras através da Internet. Em cada consulta obtém-se informações morfo-
sintáctico-semântica acerca da palavra pesquisada.

Para consultar, o Priberam foi desenvolvida uma aplicação que estabelece a ligação
ao mesmo. A aplicação recebe o ficheiro de texto com as palavras. Para cada palavra
estabelece-se uma ligação ao Priberam obtendo-se um ficheiro com a informação da
palavra.

A informação da palavra no Priberam consiste numa tabela. Cada tabela contém
duas partes (2 tr’s). Na primeira parte encontra-se informação directa sobre a pala-
vra em pesquisa. Na segunda parte além de existir informação directa, existe também
informação indirecta. A informação indirecta é complementada com ligações para ou-
tras palavras que se encontram relacionadas com a palavra em pesquisa.

Por exemplo, informação que se encontra no Priberam sobre a palavra “assassino”,
é a que se encontra na Tabela 1.

Relativamente à tabela com a informação da palavra “assassino”, na primeira parte
da tabela é refido que esta palavra é um ajectivo masculino e um substantivo comum de
género masculino. Na segunda parte é referido que a palavra “assassino” é um verbo
que se encontra na 1a pessoa do singular do presente do indicativo. Ainda na segunda
parte da tabela é feita referência ao verbo “assassinar” que é o infinitivo da conjugação
“assassino”.

Para processar a informação do Priberam foi criado um analisador sintáctico. O
analisar sintáctico por cada pesquisa cria uma estrutura com o nome da palavra pesqui-
sada e uma lista com as caracterı́sticas da mesma.

As estruturas obtidas no processamento da informação de Priberam devem ser con-
vertidas em entradas para o dicionário local, podendo uma estrutura dar origem a uma
ou mais entradas.

1 http://priberam.pt/dlpo/dlpo.aspx

O impacto de diferentes fontes de conhecimento ... INForum 2010 – 565

<xml search="assassino">

<table style="background-color:\#eee; width:100%;"

cellpadding="4"

cellspacing="0"

border="0"

bordercolor="\#cccccc">

<tr>

<td>

<div>

assassino |adj. |s. m.

</div>

</td>

</tr>

<tr>

<td>

<div>1a pess. sing. pres. ind. de

<a href="
 default.aspx?pal=assassinar">assassinar

</div>

</td>

</tr>

</table>

</xml>

Tabela 1. Informação da palavra “assassino” no dicionário da Priberam

A Wikipédia2 é uma enciclopédia, na qual podem ser feitas consultas via Internet
sobre nomes de entidades e outras palavras. Esta enciclopédia pode ser utilizada para
verificar se determinado nome de entidade existe.

A informação sobre a existência de uma entrada para um nome de entidade na Wi-
kipédia é feita em 2 passos.

No primeiro passo é estabelecida uma ligação à Wikipédia, que verifica se existem
entradas para o nome da entidade, devolvendo-se um valor Booleano, “true” ou “false”,
consoante tenha ou não entrada na Wikipédia.

No segundo passo gera-se a entrada para o dicionário local, no caso de existir en-
trada do nome da entidade na Wikipédia (devolvido “true”).

2.3 Heurı́stica para Pontuar Interpretações

A marcação dos candidatos a nomes de entidades numa frase pode produzir várias
interpretações. A melhor interpretação de uma frase é aquela que contém o maior
número de nomes de entidades marcados correctamente e que pode ser representada
por uma estrutura sintáctica (interpretação com análise sintáctica). Para encontrar a me-
lhor interpretação de uma frase pode recorrer-se a uma função heurı́stica que pontua
cada interpretação.

2 http://pt.wikipedia.org/wiki/Página principal

566 INForum 2010 João Tomé da Silva Laranjinho, Irene Pimenta Rodrigues

Nos candidatos a nomes de entidades existem caracterı́sticas comuns. Essas carac-
terı́sticas podem ser utilizadas para agrupar os candidatos com caracterı́sticas iguais e
atribuir-lhes iguais pontuações.

Os candidatos a nomes de entidades foram divididos em:

– NE WIKI - candidato a nome de entidade que tem entrada na Wikipédia;
– NE SIMPLES - candidato a nome de entidade que não tem entrada na Wikipédia e,

é composto por apenas uma palavra das seguintes classes gramaticais: substantivo
comum, adjectivo ou nome próprio;

– NE COMPOSTO - candidato a nome de entidade que não tem entrada na Wikipédia
e, é composto por mais que um átomo, em que o primeiro átomo é uma palavra que
pertence a uma das seguintes classes gramaticais: substantivos comum, adjectivos,
verbo ou nome próprio;

– NE NUM - candidato a nome de entidade que não tem entrada na Wikipédia e, é
composto por um valor numérico;

– NE ASPAS - candidato a nome de entidade delimitado por aspas (“”);
– NE DATA - candidato a nome de entidade marcado como data;
– NE HORA - candidato a nome de entidade marcado como hora;
– NAO NE - candidato a nome de entidade que não reúne nenhuma das caracterı́sticas

anteriores.

As interpretações de frases que têm análise sintáctica, ou seja, uma ou mais estru-
turas sintácticas, devem ser valorizadas face às que não têm. A pontuação atribuı́da a
essas interpretações, é um passo importante na escolha da melhor interpretação.

As interpretações que têm uma ou mais estruturas sintácticas foram divididas em:

– TOTAL REP - interpretação totalmente representável por uma estrutura sintáctica;
– PARCIAL REP - interpretação parcialmente representável por uma estrutura sintáctica;

O REMUE recebe um conjunto de interpretações de cada frase, pontuando os candi-
datos a nomes de entidades de cada interpretação e a interpretação em termos de análise
sintáctica.

Para a análise sintáctica desenvolveu-se um analisador sintáctico, recorrendo às
gramáticas de cláusulas definidas (Definite Clause Grammars - DCGs).

Este analisador sintáctico verifica se as interpretações das frases de um texto são
representadas por estruturas sintácticas e infere essas estruturas.

Na construção da estrutura, por cada palavra da frase a analisar são verificadas as
suas caracterı́sticas no dicionário local.

2.4 Saı́da

A saı́da de um ficheiro processado pelo REMUE é constituı́da pela interpretação mais
correcta de cada frase, ou seja, a interpretação que recebeu maior pontuação da função
heurı́stica.

Na saı́da, são gerados dois ficheiro, um com o texto em que os nomes de entidades
são destacados das restantes átomos com etiquetas e um outro ficheiro que contém por
linha: o número da frase, a lista de nomes de entidades e o valor de heurı́stica atribuı́do.

O impacto de diferentes fontes de conhecimento ... INForum 2010 – 567

3 Avaliação

Na avaliação do REMUE utilizaram-se 3 métricas que são usadas na avaliação de sis-
tema de recolha de informação: precisão, cobertura e medida F. Estas métricas foram
adaptadas ao problema de marcação de nomes de entidades.

Na avaliação comparam-se os ficheiros com a lista de nomes de entidades marcados
manualmente e a lista de nomes de entidades marcados pelo REMUE.

O resultado da avaliação é escrito, frase a frase, num ficheiro com as seguintes
variáveis: número da frase, número de nomes de entidades marcados, número de nomes
de entidades correctos dos marcados, número de nomes de entidades incorrectos dos
marcados, número de nomes de entidades existentes, precisão, cobertura, medida F e
valor da heurı́stica.

Na avaliação do REMUE foram utilizados 3 corpura: 700 perguntas do CLEF, 300
notı́cias do jornal o Público e 200 frases do Harem.

O CLEF (Cross-Language Evaluation Forun) é uma série de avaliações conjuntas
que promove a pesquisa e desenvolvimento na área de recolha de informação entre
várias lı́nguas. A participação do português tem sido financiada pela Linguateca, a nı́vel
de recursos humanos, e pelo diário Público (Portugal) e Folhas de São Paulo (Brasil), a
nı́vel de fornecimento de recursos. A Linguateca disponibiliza a colecção CHAVE que
contém textos, tópicos e perguntas utilizados nas edições do CLEF.

O corpus do CLEF foi usado para verificar até que ponto o uso da gramática de-
senvolvida para frases interrogativas tem impacto no desempenho do REMUE neste
corpus.

O corpus do CLEF foi anotado manualmente identificando os nomes de entidades
das frases, ou seja, sem classificação.

O corpus do Público foi utilizado para testar o desempenho do REMUE em frases
para as quais a gramática tem um mau resultado, não consegue obter análise sintáctica
em mais de 70% das frases do corpus.

O corpus do Segundo Harem foi utilizado para obter uma avaliação independente,
ou seja, com as anotações feitas pela equipe da Linguateca. Apesar de usarmos as
marcações do Harem, a avaliação foi feita por nós e só para uma amostra da Colecção
Dourada do Segundo Harem, o que nos impede de comparar os nossos resultados com
os dos sistemas que concorreram ao Segundo Harem. Fizemos os testes sobre uma
amostra do Segundo Harem porque a nossa gramática que foi construı́da para frases
interrogativas tem um mau desempenho (tempo e espaço) na análise das frases deste
corpus.

Com cada um dos conjuntos de textos foram realizados 8 testes, nos quais fo-
ram feitas variações das pontuações atribuı́das aos grupos de candidatos a nomes e
às interpretações de frases representáveis por estruturas sintácticas.

Com estes testes procuramos estudar o impacto da informação: morfo-sintáctica,
semântica e sintáctica no desempenho do sistema.

568 INForum 2010 João Tomé da Silva Laranjinho, Irene Pimenta Rodrigues

3.1 Heurı́stica Utilizada: Pontuações Atribuı́das
Em baixo pode ver-se a heurı́stica usada no Teste 1. Os valores da heurı́stica corres-
pondem aos que dão o melhor desempenho ao REMUE nos diferentes corpura. Estes
valores foram encontrados por tentativa e erro e não garantimos que sejam os melhores.

– NE WIKI = 10∗ (1+Es) (Es -número de átomos).
Neste teste valorizamos o facto de os nomes de entidades terem entrada na Wi-
kipédia e também preferimos os nomes de entidades mais compridos (com mais
átomos) se existirem na Wikipédia.

– NE SIMPLES = 4 e NE COMPOSTO = 9∗ (1+Es) (Es -número de átomos)
Valorizamos o comprimento dos nomes de entidades mesmo quando não temos
entrada na Wikipédia.

– NE NUM=−9
Desvalorizamos números isolados que sejam marcados como nomes de entidades.

– NE ASPAS = 15, NE DATA = 15 e NE HORA = 15
Valorizamos expressões entre aspas que sejam marcadas como nomes de entidades
e outras expressões que sejam marcadas como data e hora.

– NAO NE = −10 ∗ (1 + Es) (Es -é número de espaços em branco numa cadeia de
caracteres)
Desvalorizamos expressões que não satisfazem os nomes de entidades anteriores.

– TOTAL REP = 100 e PARCIAL REP = 60
Com estes valores, valorizamos bastante o facto de a frase com os nomes das enti-
dades marcados ter análise sintáctica (TOTAL REP=100 e PARCIAL REP=60)

Na Tabela abaixo podem ver-se os parâmetros usados na definição da heuristı́ca
para cada teste.

Heuristica
NE WIKI NE1*(1+Es)
NE SIMPLES NE2
NE COMPOSTO NE3*(1+Es)
NE NUM NE4
NE ASPAS NE5
NE DATA NE6
NE HORA NE7
NAO NE NE8*(1+Es)
TOTAL REP I1
PARCIAL REP I2

Teste1 Teste2 Teste3 Teste4 Teste5 Teste6 Teste7 Teste8
I1 100 0 100 100 100 100 100 100
I2 60 0 60 60 60 60 60 60

NP1 10 10 0 10 10 10 10 10
NP2 4 4 4 5 4 4 4 4
NP3 9 9 9 5 9 9 9 9
NP4 -9 -9 -9 -9 0 -9 -9 -9
NP5 15 15 15 15 15 0 15 15
NP7 15 15 15 15 15 15 0 15
NP8 15 15 15 15 15 15 15 0
Es N N N 0 N N N N

O impacto de diferentes fontes de conhecimento ... INForum 2010 – 569

Com estes testes pretendemos ver o impacto:

– teste 2 – da análise sintáctica. Não se tem em conta a existência de estrutura sintáctica
para a frase com os nomes de entidades.

– teste 3 – da Wikipédia. Não se tem em conta a informação sobre a existência de
entrada para o nome da entidade na Wikipédia.

– teste 4 – do comprimento do nome da entidade. Não se valoriza o número de átomos
do nome da entidade.

– teste 5 – dos números isolados. Não se valorizam os números isolados que sejam
marcados como nomes de entidades.

– teste 6 – das expressões entre aspas. Não se valorizam as expressões entre aspas
que sejam marcadas como nomes de entidades.

– teste 7 – das datas. Não se valorizam as expressões que sejam marcadas como datas.
– teste 8 – das horas. Não se valorizam as expressões que sejam marcadas como

horas.

Prec Cob Med-F
Teste 1 0,9836 0,9804 0,9808
Teste 2 0,9765 0,9746 0,9727
Teste 3 0,9315 0,9335 0,9313
Teste 4 0,8949 0,9029 0,8975
Teste 5 0,9779 0,9796 0,9780
Teste 6 0,9746 0,9768 0,9748
Teste 7 0,9779 0,9796 0,9780
Teste 8 0,9779 0,9796 0,9780

Figura 2. Testes com o corpus do CLEF

4 Conclusões e Trabalho Futuro

Na avaliação do REMUE foram utilizados 3 corpura: 700 perguntas do CLEF, 300
notı́cias do jornal o Público e 200 frases do Harem. Com cada um destes corpura foram
realizados 8 testes com variações de alguns dos parâmetros que pontuam os nomes de
entidades marcados e as interpretações de frases com análise sintáctica.

Como se pode ver na secção 3, onde se apresentam os resultados da avaliação do
REMEU para 3 domı́nios diferentes de frases, o teste 1 foi aquele que apresentou os

570 INForum 2010 João Tomé da Silva Laranjinho, Irene Pimenta Rodrigues

Prec Cob Med-F
Teste 1 0,9461 0,9547 0,9457
Teste 2 0,9450 0,9547 0,9450
Teste 3 0,8931 0,9238 0,8989
Teste 4 0,6945 0,7750 0,7210
Teste 5 0,8743 0,9547 0,8975
Teste 6 0,9003 0,9259 0,9042
Teste 7 0,9304 0,9547 0,9337
Teste 8 0,9304 0,9547 0,9337

Figura 3. Testes com corpus do Público

Prec Cob Med-F
Teste 1 0,7659 0,8877 0,8223
Teste 2 0,7559 0,8877 0,8165
Teste 3 0,6684 0,7194 0,6929
Teste 4 0,7126 0,8397 0,7710
Teste 5 0,7630 0,8827 0,8185
Teste 6 0,7582 0,8757 0,8127
Teste 7 0,7659 0,8827 0,8202
Teste 8 0,7659 0,8827 0,8202

Figura 4. Testes com corpus do HAREM

O impacto de diferentes fontes de conhecimento ... INForum 2010 – 571

melhores resultados nos 3 corpura. Neste teste valorizamos os nomes de entidades que
se encontram na Wikipédia, as expressões entre aspas, as datas e as horas. Além disso,
também valorizamos as interpretações de frases que contêm estruturas sintácticas.

No teste 2 não temos em contam se com os nomes de entidades marcados, a frase
tem análise sintáctica. Só nos corpura do CLEF e Harem se vê diferença, 0.8% e 1.0%,
entre o teste 1 e o teste 2, no corpus do Público a diferença é quase nula. Como a
gramática utilizada não tem um bom desempenho nas frases do Público e do Harem,
vamos procurar repetir os testes com uma gramática que tenha um melhor desempe-
nho para estes textos. No entanto podemos concluir que o uso de uma gramática pode
melhorar o desempenho do REMUE, ainda que de forma ligeira. Também podemos
concluir que o uso da gramática nunca baixa o desempenho do REMUE.

O teste 3 também demonstra que nos 3 corpura os resultados baixam, 16% na cober-
tura do Harem, 3% na cobertura do Público e 4% na cobertura do CLEF. Permite-nos
concluir que o uso de uma enciclopédia melhora os resultados.

O teste 4 retira o peso ao comprimento dos nomes de entidades, os resultados nos
diferentes corpura permite concluir que escolher os nomes mais compridos é uma boa
estratégia.

Os outros testes mostram que esta informação não tem grande impacto no desem-
penho do REMUE.

O REMUE pode evoluir em diferentes direcções mas as mais imediatas incluem:
utilizar uma gramática com maior cobertura, transportar o REMUE para o inglês, e
incluir a classificação das entidades mencionadas.

Referências

[AA08] Marcelo Adriano Amancio and Sandra Maria Aluı́sio. Explicitação de entidades men-
cionadas visando o aumento da inteligibilidade de textos em português. Technical
report, Universidade de São Paulo, Agosto de 2008.

[AFM+08] Carlos Amaral, Helena Figueira, Afonso Mendes, Pedro Mendes, Cláudia Pinto, and
Tiago Veiga. Adaptação do sistema de reconhecimento de entidades mencionadas da
priberam ao harem. In Cristina Mota and Diana Santos, editors, Desafios na avaliação
conjunta do reconhecimento de entidades mencionadas: O Segundo HAREM. Lingua-
teca, 2008.

[NS07] David Nadeau and Satoshi Sekine. A survey of named entity recognition and classi-
fication. Linguisticae Investigationes, 1(30):3–26, 2007.

[QRPV06] Paulo Quaresma, Irene Rodrigues, C. A. Prolo, and R. Viera. Um sistema de
pergunta-resposta para uma base de documentos. Letra de Hoje - Revista da Pon-
tifı́ca Universidade Católica do Rio Grande do Sul, 41(2):43–63, Junho 2006.

[SC07] Diana Santos and Nuno Cardoso, editors. Reconhecimento de entidades mencionadas
em português. Linguateca, 2007.

[SR04] Diana Santos and Paulo Rocha. Chave: topics and questions on the portuguese parti-
cipation in clef. In C. Peters and F. Borri, editors, Cross Language Evaluation Forum:
Working Notes for the CLEF 2004 Workshop, pages 639–648, Bath, UK, September
2004 2004.

572 INForum 2010 João Tomé da Silva Laranjinho, Irene Pimenta Rodrigues

RuDriCo2 - a faster disambiguator and
segmentation modifier

Cláudio Diniz, Nuno Mamede, João D. Pereira

IST – Instituto Superior Técnico
L2F – Spoken Language Systems Laboratory – INESC ID Lisboa

Rua Alves Redol 9, 1000-029 Lisboa, Portugal
{Cdiniz,Nuno.Mamede,Joao}@inesc-id.pt

Abstract. Currently, L2F ’s NLP chain has a bottleneck. Module Ru-
DriCo (Rule Driven Converter) is substantially slower than the remaining
modules of the chain. RuDriCo is a rule-based morphological disambigua-
tor with the possibility to change segmentation (join or split tokens). This
paper describes the changes made to the system to improve its perfor-
mance by using the concept of layers and also by reducing the number
of variables contained in the rules. It also describes the changes in rule
syntax, such as the addition of new operators and contexts, which makes
the rules more expressive.

Resumo. Actualmente, a cadeia de PLN do L2F tem um módulo que
é substancialmente mais lento que os outros, o RuDriCo. O RuDriCo é
um desambiguador morfológico baseado em regras que também permite
alterar a segmentação de texto. Este trabalho descreve os melhoramen-
tos realizados, nomeadamente a introdução de novos operadores, a in-
trodução do conceito de camada e a redução do número de variáveis
usadas na especificação das regras.

1 Introduction

Natural Language Processing (NLP) is one of the most important Artificial
Intelligence research areas. Many of the systems developed in this area, such as
dialog systems or spelling correction systems, use a set of modules responsible
for processing text. Usually such systems are organized in a pipeline and are
referred to as NLP chain. Currently, the L2F1 research group uses a NLP chain
(see Figure 1) to identify and classify Named Entities, extract semantic relations
between those entities, to mention only a few. RuDriCo is one of the modules of
the L2F NLP chain.

The L2F NLP chain is organized as follows. The first module receives the
text to process and tokenizes it, defining the segments that compose the text.
Palavroso [Medeiros, 1995] is a morphological tagger that receives the result of
this segmentation as input and associates all possible part-of-speech (POS) tags

1 Spoken Language Systems Laboratory of INESC-ID Lisboa.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 573–584

Fig. 1. L2F’s NLP chain

to each segment. The next module groups the segments into sentences. The
next module to apply is RuDriCo [Pardal, 2007]. This module is a rule-based
morphological disambiguator and it also makes segmentation changes to the
input, like joining segments (compound words). MARv [Ribeiro et al., 2003], a
stochastic morphological disambiguator, receives the result of RuDriCo and it
selects the best POS tag to each segment. Finally, the last module to apply is
XIP [Xerox, 2003] which is responsible for the syntactic analysis.

Disambiguation systems based on rules, also known as systems with linguistic
knowledge [Màrquez and Padró, 1997], are the target of this study. The rules
used in these systems are written by linguists. The rules consider the context of
each word, and depending on the context make their disambiguation. This kind
of methodology leaves some ambiguities unresolved, but is still common that
current systems have an accuracy rate around 99%2.

The input of RuDriCo is a set of rules and the text to process. Input text
is in XML format and consists in a set of sentences where each sentence has
one or more segments. The segments represent words that are constituted by a
surface (word) and one or more annotations (class). An annotation is composed
by a lemma (root) and a set of attribute-value pairs. The attribute-value pairs
represent the properties of each annotation, e.g. the category of a word. For
example, Figure 2 represents an ambiguous segment containing the word partido:
it has one surface and three annotations.

RuDriCo has two types of rules: disambiguation and segmentation rules. The
former ones allow the system to choose the correct category of a word by consid-
ering the surrounding context. Segmentation rules change the segmentation and
can be divided into contraction and expansion rules. Contraction rules convert
two or more segments into a single one. Expansion rules transform a segment
into at least two segments. An example of an expansion rule is to transform the
segment “Na” into two segments “Em” and “a”. An example of a contraction
rule is to turn segments “Coreia”, “do” and “Sul” into a single segment “Coreia
do Sul”.

In the original RuDriCo, all types of rules share the same syntax:

antecedent --> consequent .

where the antecedent defines the conditions that must exist to perform the
action specified in the consequent. In other words, RuDriCo tries to pair the
2 The hit rate does not take into account the words that are not disambiguated.

574 INForum 2010 Cláudio Diniz, Nuno Mamede, João D. Pereira

Fig. 2. The word “partido” represented in XML

antecedent with a sequence of segments from the XML input, and when it
succeeds, that sequence of segments is replaced by the segments described in the
consequent. The segment syntax is as follows:

’surface’ [’lemma’, ’prop_1’/’value1’, ’prop_2’/’value2’ ...]

where surface and lemma are obligatory.
Figure 3 contains an example of a contraction rule that transforms the seg-

ments “Coreia”, “do”, and “Sul”, in one segment with a single annotation.

Fig. 3. Rule to join segments “Coreia”, “do” and “Sul”

The RuDriCo main algorithm (see Figure 4) processes each sentence, segment
by segment. A sentence is declared processed when the algorithm cannot apply
any rule to it. When a rule is applied to a set of segments, the sentence is
processed again to see if there is a new rule that can be applied. The Agenda
algorithm (step 4) applies rules to input segments and is not explained since it
falls out of the scope of this paper.

RuDriCo has 3 main disadvantages: (i) it is not sufficiently expressive: it
does not have neither the “not” nor the “or” operator; (ii) it is not sufficiently

RuDriCo2 - a faster disambiguator and segmentation modifierINForum 2010 – 575

1: FOR EACH sentence S in text DO

2: FOR each segment I in S DO

3: agenda(I)

4: IF (agenda(I) has applied a rule) THEN

5: I = first segment of S

6: GOTO 3: /*first segment*/

7: ELSE

8: GOTO 2: /*next segment*/

9: ENDFOR

10: ENDFOR

Fig. 4. RuDriCo simplified algorithm.

efficient: it is the slowest module of the NLP chain; and (iii) it enters in infinite
recursion whenever the antecedent of one rule matches the consequent of another
rule, and the consequent of the first rule matches the antecedent of the second
rule.

The goal of this work is to develop RuDriCo2, a faster RuDriCo with a more
expressive and user-friendly syntax, and that avoids infinite recursion. This paper
describes the improvements introduced in RuDriCo to implement RuDriCo2.

2 State of the Art

The morphological disambiguators can be classified according to the methodol-
ogy that is used to solve the problem. [Cole et al., 1995] classifies these systems
in two types:
– based on rules, where the knowledge (rules) is manually coded;
– stochastic, where the knowledge is automatically extracted from a previously

manually annotated corpora.

Other authors classify these systems differently. For example, [Schmid, 1994b],
[Schmid, 1994a] and [Schulze et al., 1994] classify these type of systems using
different categories, based on neural networks. In this document, we will just
consider Cole’s classification. L2F’s NLP chain uses both types of morphological
disambiguators: RuDriCo is based on rules and MARv is stochastic. Some of the
most well known-rule based systems are:
– Computational Grammar Coder (CGC) [Klein and Simmons, 1963],
– TAGGIT [Greene and Rubin, 1962],
– EngCG [Voutilainen, 1995b] [Voutilainen, 1995a],
– Brill Tagger [Brill, 1992],
– XIP [Xerox, 2003],
– RuDriCo [Pardal, 2007].

CGC is a morphological analyzer and a disambiguator. It begins by addressing
some exceptions which the morphological analyzer cannot deal, with a lexicon
of 1500 words. After the morphological analyzer, the rule-based disambiguation

576 INForum 2010 Cláudio Diniz, Nuno Mamede, João D. Pereira

starts with about 500 rules. TAGGIT is based on the CGC and uses a larger
vocabulary.

EngCG is not only a disambiguator, but it also performs some extra tasks
such as the segmentation of the input text. The task sequence is the following:
(i) segmentation; (ii) morphological analysis; (iii) morphological disambiguation;
(iv) find other syntax tags; and (v) finite-state syntactic disambiguation. The
morphological disambiguation task is seen as a set of rules. Each rule specifies
one or more contexts where a label is false. A tag will be removed if a pattern is
established. If a word has a single tag, the word is not ambiguous. This system
leaves 3-7% of ambiguous words but their accuracy rate is 99.7%.

The system described in [Brill, 1992] is a morphological analyzer, but when
it assigns tags to words, the context is analyzed. This system uses automatically
learned rules to associate tags with the input text words. One of the drawbacks
of rule-based systems is the need of human experts and linguists for the complex
and time-consuming task of writing rules, but [Brill, 1992] shows that this effort
can be reduced. The system begins by assigning the most likely tag to each word
ignoring the context. Then it performs the learning task, which considers eight
types of predefined rules. The system instantiates them and chooses the rules
that have a lower error rate. After the rules are chosen, they are applied to the
text. The author claims that this system can get better results if some rules are
manually written.

The last system here considered is the XIP system [Xerox, 2003], which in-
cludes modules to perform morphological disambiguation, syntactic analysis and
changes to the hierarchy of segments. Section 2.1 compares XIP and RuDriCo.

2.1 Comparing RuDriCo and XIP

In RuDriCo, the input data is a list of segments, but in XIP, it is a hierarchy
of nodes. XIP has disambiguation rules, but it does not have contraction or
expansion rules. XIP chunking rules include the following two types: sequence
rules and immediate dominance rules. The sequence rules do something similar
to a contraction, grouping several nodes into a new node that is added to a
tree hierarchy. The difference between immediate dominance and sequence rules
is that immediate dominance rules can not represent any order between the
antecedent nodes. XIP still has two other types of rules that are not mentioned
here since they fall out of the scope of this paper.

Table 1 summarizes the features of XIP and RuDriCo. As it can be seen, XIP
does not have contraction rules, having, however sequence rules that change the
hierarchical structure instead of the segmentation.

The syntax of a disambiguation rule in XIP is the following:

1> noun,verb = |det| noun |verb|
The number at the beginning of a rule is the rule layer. The rules are applied
according to the layers they belong, starting with the rules of the layer with the
lowest number. The rules which do not have a layer are placed in the higher

RuDriCo2 - a faster disambiguator and segmentation modifierINForum 2010 – 577

Features RuDriCo XIP

Disambiguation rules x x

Contraction rules x

Expansion rules x

Chunking rules x

or operator x

not operator x
Table 1. Features of RuDriCo and XIP systems

priority layer, the layer number zero. The rule antecedent (noun,verb) indicates
that there must be a segment with two annotations, a noun and a verb. The
two sections between pipes (|det| and |verb|) are the contexts of the rule, the
left context and the right context. The contexts mean that the segment that
matches with the antecedent has to have a det before and a verb after. The
rule consequent is the part between the contexts (noun), and it indicates which
category should be chosen from the antecedent. In this example, the word is
disambiguated to noun. This rule can be written in RuDriCo’s syntax as the
rule in Figure 5.

Fig. 5. Disambiguation rule

Comparing the syntax of both systems, one concludes that XIP’s rules are
much more compact than RuDriCo’s rules. In RuDriCo the lemma and the
surface are always present in each item, but in XIP the surface and the lemma
can be omitted. Rules do not always need to use the lemma, nor a surface, as
the rule presented above. In RuDriCo, the way to ignore the lemma and the
surface is by using variables (S0, S1, S2, L0, L11, L2, and L12 in this example).
When a rule does not want to change a segment surface, a variable must be used
in the antecedent and the * operator on the consequent. This is a disadvantage
compared to XIP, because the use of variables requires more computation and the
rules are more complex. In conclusion, the syntax of RuDriCo is more complex
than the syntax of XIP, less compact and less expressive (RuDriCo does not
have logical operators).

578 INForum 2010 Cláudio Diniz, Nuno Mamede, João D. Pereira

3 Layers

In RuDriCo, all rules are stored into a single file and are considered at the
same time by the rule matching algorithm. The rules are tested in the order
they appear in this file. As an example, consider that the rules are organized as
follows: first the expansion rules, then the contraction rules and at the end of
the file the disambiguation rules. Then, expansion rules have an higher priority
than any other type of rule, because they are placed at the beginning of the rule
file.

Instead of loading a file with all the rules, RuDriCo2 loads a file with the
filenames of the files that contain the rules. The layers of the rules are relative
to the file they belong to. All layers of the first file have priority over the layers
of the following files, regardless of their numbers. The number that represents
the layer is only used to sort layers on that file.

To support the concept of layers, the rule processing algorithm, presented in
Figure 4, was extended with a new cycle that goes through all the layers. This
new cycle was added between steps 1 and 2.

Although adding complexity to the algorithm, the agenda algorithm solely
runs with the rules of one layer at a time. The performance of the RuDriCo al-
gorithm improves when the gain in the Agenda algorithm is larger than the loss
of having an additional cycle.

Layers can also be used to solve the problem of recursion between rules. If
the rules that generate recursion are placed in distinct layers then the recursion
is avoided.

4 Syntax

Because the syntax of RuDriCo is not expressive enough to express linguis-
tic knowledge, RuDriCo2 has an expanded syntax. The syntax is based on
RuDriCo’s original syntax, and the changes were made incrementally. The changes
to the syntax of RuDriCo are:
– node description (Section 4.1);
– contexts (Section 4.2);
– new operators (Section 4.3);

4.1 Node description

In RuDriCo, when an item is described in a rule, the surface and the lemma
are always present, even when their values are irrelevant. For instance, the rule
specified in Figure 5 uses three variables (L0, L12 and L2) that are not used
in the consequent. The use of variables for this purpose can be avoided if the
lemma and the surface become explicit attribute-value pairs. So, the properties
“lemma” and “surface” are introduced.

The second change in the syntax to describe the attribute-value pairs consists
in the absence of quotes (′) around the property names. Figure 6 contains an

RuDriCo2 - a faster disambiguator and segmentation modifierINForum 2010 – 579

example of the rule presented in Figure 5 in the new syntax. The surface property
can only be used once in each item and the lemma can only be used once in each
annotation (an annotation is represented between brackets). Notice that the
rules can be represented on a more compact way in the new version.

Fig. 6. Disambiguation rule with new syntax

4.2 Contexts

Many of disambiguation rules use variables to simulate contexts, such as the rule
shown in Figure 6. To avoid the use of variables for this purpose and to simplify
the writing of the rules, contexts (composed by items) were introduced in the
antecedent:

| left context | Item1 Item2 ... ItemN | right context |
Figure 7 contains the rule presented in Figure 6 rewritten with the new syntax.
The use of the contexts turns the rules less extensive since there is no need to
use variables to simulate contexts.

Fig. 7. Disambiguation rule with contexts

4.3 New Operators

In RuDriCo the negation operator has not been implemented, although it can
be simulated by rule replication (when the negation is applied to properties
with a finite set of possible values). For example, when the left context of the
rule presented in Figure 7 is a token with any category except determinant, in
RuDriCo it is necessary to spell out as many rules as the number of categories,
except the one related to the determinant category. In RuDriCo2, the negation

580 INForum 2010 Cláudio Diniz, Nuno Mamede, João D. Pereira

Fig. 8. Example of operator negation

operator (∼) has been introduced and it allows for the specification of this type
of condition with a single rule as shown in Figure 8.

The lack of a disjunction operator is a similar problem. If it is necessary
to make a disjunction between two values of a property, two rules have to be
written, one for each value. For instance, imagine that in the rule of Figure 7, it
is desired that the left context is a determinant or a preposition. In RuDriCo,
two almost identical rules had to be written (see Figure 9). But in RuDriCo2,
with the disjunction operator (;), this situation can be solved with a single rule,
as it is shown in Figure 10.

Fig. 9. Two rules to make a disjunction

Fig. 10. Example of disjunction

5 Evaluation

The evaluation of the syntax may be subjective, but Figure 11 shows that the
same rule can be written in a more compact way. In segmentation rules, the
number of characters in the new RuDriCo is 16% smaller than in the original
RuDriCo. In disambiguation rules, the number of characters is 76.1% smaller
than on the original. The improvement is much higher in disambiguation rules
since they use more contexts and the disjunction operator.

RuDriCo2 - a faster disambiguator and segmentation modifierINForum 2010 – 581

The performance can be measured running the original RuDriCo and RuDriCo2
with the same input (set of rules and text input files). The performance of XIP
was not compared with RuDriCo2’s because it is difficult to convert the rules
from one system to the other, and because some of the rules are not convertible
since both systems have different expressive sintaxes.

Fig. 11. Comparision between RuDriCo’s and RuDriCo2’s syntax

To test the performance, a set of 3096 rules was used with a set of text input
files from CETEMPúblico3, each one with a different size. The smallest file
has only one sentence and the largest one has 50.000 sentences. Since changes
were made incrementally, we have also evaluated an intermediate system, the
RuDriCo with layers to assess the impact resulting from the introduction of
layers.

The first performance evaluation aimed at discovering the optimal number
of rules per layer. This study was done right after the implementation of layers.
Since the disambiguation rules must remain on a single layer, only the other
rules are used in this evaluation. The remaining rules (2330 rules) are divided
into layers of equal size in order to find the optimal size of the layers. The tests
were performed using an input text file with 1000 sentences and the results are
shown in Table 2.

On one hand, when all rules (2330 rules) are kept in a single layer, which is the
behavior of the original RuDriCo, the new RuDriCo spends 15.232 CPU seconds
to process all the 1000 sentences. On the other hand, if there are 2330 layers,
one rule per layer, then the system takes much longer to process them because
the complexity of the algorithm for rule application depends on the number of
layers. Results show that the use of layers improves the performance if each layer
contains more than 32 rules. For the present set of rules and structure of the
algorithm the optimal number of rules per layer is 167.

To evaluate the impact of the new syntax, the performance is measured com-
paring RuDriCo (the original), with RuDriCo with layers and the RuDriCo with

3 Corpus with electronic extracts from the Público newspaper.

582 INForum 2010 Cláudio Diniz, Nuno Mamede, João D. Pereira

Rules/Layer 1 2 4 8 16 32 73 146 156 167 180 292 583 1165 2330

Time (s) 146 75.0 40.5 23.2 15.8 9.1 7.7 6.9 6.7 6.1 6.9 7.8 8.7 14.9 15.2

Table 2. Optimal number of rules per layer study

all features described in this paper, RuDriCo24. The comparison is presented in
Table 3.

The two smaller input files present only a small improvement because the
system spends more time loading the rules than processing the input. For a
text file with 1000 sentences, RuDriCo with layers needs 38,6% less time, and
RuDriCo2 only needs 19.6% of the original time. To conclude, the new RuDriCo2
is about five times faster than RuDriCo in most cases.

Sentences RuDriCo RuDriCo with layers RuDriCo2 % time of RuDriCo2
per file (comparing to RuDriCo)

1 0.15 0.19 0.11 73.3 %

10 0.20 0.74 0.18 91.8 %

100 8.33 3.36 1.69 20.0 %

500 38.00 15.37 7.83 20.1 %

1000 78.00 30.70 15.29 19.6 %

5000 392.00 152.19 76.80 19.6 %

10000 782.75 301.50 154.12 19.7 %

50000 can’t process 1546.70 791.00 -

Table 3. Performance comparision

6 Future work and Conclusion

The experiments made show that RuDriCo2 is five times faster than RuDriCo.
However, its efficiency can still be improved. The task that RuDriCo2 has to
perform more times is the comparison between items of the rules and segments
from the text input. This can be optimized using arrays of bits to represent the
segments and the text input restrictions. So to test if an item pairs with a seg-
ment, the system will only have to perform a logic operation. The representation
of items and segments in arrays of bits is the next scheduled improvement.

RuDriCo takes part of the L2F NLP chain, used to process text and it is
the bottleneck. Besides this performance problem, RuDriCo does not support
an expressive rule specification language. Is this paper we showed the changes
performed in RuDriCo to address these issues. The layers and contexts make
RuDriCo2 about five times faster than the original RuDriCo for the current set

4 The original rules were automatically converted to the new syntax and the results
are the same.

RuDriCo2 - a faster disambiguator and segmentation modifierINForum 2010 – 583

of rules. The addition of disjunction and negation operators makes the syntax of
RuDriCo2 more expressive than the RuDriCo. The addition of contexts and the
new node description allow RuDriCo2 rules to become more compact and easier
to write. To conclude, RuDriCo2 is a significant improvement over the original
module.

References

[Brill, 1992] Brill, E. (1992). A simple rule-based part of speech tagger. In Proc. of the
third conference on Applied natural language processing, pages 152–155, Morristown,
NJ, USA. Association for Computational Linguistics.

[Cole et al., 1995] Cole, R. A., Mariani, J., Uszkoreit, H., Zaenen, A., and Zue, V.
(1995). Survey of the State of the Art in Human Language Technology, Center for
Spoken Language Understanding CSLU, Carnegie Mellon University, Pittsburgh, PA.

[Greene and Rubin, 1962] Greene, B. B. and Rubin, G. M. (1962). Automatic Gram-
matical Tagging of English. Technical Report, Brown University, Providence, RI.

[Klein and Simmons, 1963] Klein, S. and Simmons, R. F. (1963). A Computational
Approach to Grammatical Coding of English Words. In Journal of the Association
for Computational MAchinery (10), pages 334–347.

[Medeiros, 1995] Medeiros, J. C. (1995). Processamento Morfológico e Correcção Or-
tográfica do Português. Master’s thesis, IST - Univ. Técnica de Lisboa, Portugal.

[Màrquez and Padró, 1997] Màrquez, L. and Padró, L. (1997). A Flexible POS Tagger
Using an Automaticalluy Acquired Language Model. In Proc. of the 35th Annual
Metting of the Association for Computational Linguistics, pages 238–245, Madrid.

[Pardal, 2007] Pardal, J. (2007). Manual do Utilizador do RuDriCo. Technical report,
Instituto Superior Técnico - Universidade Técnica de Lisboa, Portugal.

[Ribeiro et al., 2003] Ribeiro, R., Mamede, N. J., and Trancoso, I. (2003). Compu-
tational Proc. of the Portuguese Language: 6th Intern. Workshop, PROPOR 2003,
Faro, Portugal, June 26-27, 2003, volume 2721, Using Morphossyntactic Information
in TTS Systems: Comparing Strategies for European Portuguese. Springer.

[Schmid, 1994a] Schmid, H. (1994a). Part-of-Speech Tagging with Neural Networks.
In Proc. of the 15th Inter. Conf. on Computational Linguistics, Kyoto, Japão.

[Schmid, 1994b] Schmid, H. (1994b). Probabilistic Part-of-Speech Tagging using De-
cision Trees. In Proceedings of the 15th International Conference on new methods in
language processing, Manchester, Reino Unido.

[Schulze et al., 1994] Schulze, B. M., Heid, U., Schmid, H., Schiller, A., Rooth, M.,
Grefenstette, G., Gaschler, J., Zaenen, A., and Teufel, S. (1994). Decide. MLAP-
Project 93-19 D-1b I, STR and RXRC.

[Voutilainen, 1995a] Voutilainen, A. (1995a). Constraint Grammar: a Language-
Independent System for Parsing Unrestricted Text, chapter Morphological Disam-
biguation. Mouton de Gruyter.

[Voutilainen, 1995b] Voutilainen, A. (1995b). A systax-based par-of-speech analyser.
In Proceedings of 7th Conference of the European Chapter of The Association for
Computational Linguistics, Dublin.

[Xerox, 2003] Xerox (2003). Xerox Incremental parser – Reference Guide.

584 INForum 2010 Cláudio Diniz, Nuno Mamede, João D. Pereira

Internet das Coisas e Serviços

585

Bridging the Browser and the Server

Miguel Raposo and José Delgado,

Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Prof. Cavaco Silva, Porto

Salvo, Portugal

miguelfernandoraposo@gmail.com, jose.delgado@ist.utl.pt

Abstract. Web applications are now built on the principle that users interact

with them through a generic, universal browser. The paradigm, client-server, is

essentially limited to one-way interactions, with the client as the sole entity

with real initiative. Also, server-based applications often do not guarantee

information privacy, resulting in reluctance in its usage. This paper presents the

Browserver as a means to give users the ability to be service providers, not

mere consumers, and to avoid storing data at central servers. We describe an

architectural approach and a technological solution for the union of a browser

and a server for the development of a Browserver using existing technologies.

Keywords: Browser, Server, User Interface, Services, Peer-to-Peer

1 Introduction

In the early Internet days, applications were made with specific client and server side

components (Fig. 1) and specific protocols, with interactions limited by the existence

of the specific client on each user's machine. Nowadays, the browser constitutes a

generic, universal client component capable of accessing all of the ever-growing Web

applications (Fig. 2). Web users are seen as information generators, not merely as

consumers. Although services already constitute the main paradigm at enterprise

integration and the Internet of Services [17] is already a discussion subject, the Web is

still centered around content and not on services, with the client-server paradigm

limiting the interaction patterns with humans by requiring these to initiate the

interaction by navigating to some page through a URL. If a user is involved in some

business process, there is no direct way to interact with him through the browser so,

the email is now the most used tool to contact and request someone’s services, having

become a nightmare and not practical for many persons nowadays.

To reduce this limitation, AJAX, polling and long-lived HTTP connections

(Comet) [4] have been introduced to simulate server requests to the client, enabling

more dynamic processes. Web Sockets [1, 2] are promising real bi-directional

connections between the browser and the server, enabling better and faster

communication between browser and server than AJAX. Nevertheless, the browser

remains as a simple client, in the same paradigm, and business processes still depend

on user’s will to initiate the first interaction. This way, the email remains as an

indispensable tool to connect people.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 587–598

Fig. 1 A Specific client for each specific

application.

Fig. 2 The Web browser, a universal

client for Web applications.

Using the browser, interactions between people in the Web always have a server as

an intermediary, which offer the services that enable information sharing and

collaboration. These intermediaries can take the information and use it for their own

purposes. Users (or an agent on their behalf) should be able to provide electronic

services themselves and be first class peers in web interactions and business or

generic processes without the need for applicational intermediaries. We propose to

overcome the limitations of the client-server paradigm by endowing each user not

with a browser but with a Browserver (a browser (B) and a server (S)), as represented

in Fig. 3. Interactions can be made directly between peers (a, b, c) equipped with a

Browserver. Remote servers (S1, S2) can also be accessed as usual but are not as

crucial. Direct, P2P interactions now become the norm instead of having to resort to

centralized application servers for user interactions.

Fig. 3 The Browserver, the union of a universal client and a universal server on P2P

interactions.

This entails a paradigm change for web usage, from client-server to peer-to-peer,

and not just for file sharing. Applications such as email, instant messaging (IM),

social networks, collaborative document edition and workflow systems can be

implemented without necessarily depending on some central server system.

We conceptually present the Browserver in Sect. 2, a technological solution to it in

Sect. 3, the related work in Sect. 4 and draw some conclusions in Sect. 5.

2 The Browserver

We consider a service as a capacity exhibited by an entity (e.g. a user or system)

which can be offered by him, as provider and used by other(s), as consumer(s). The

588 INForum 2010 Miguel Raposo, José Delgado

Browserver provides a platform for service interactions involving users either as

providers and/or consumers, including both:

 A Web browser. A generic and universal browser (e.g. Internet Explorer,

Firefox, Chrome);

 A Web server. A generic and universal application server, enabling the user to

provide services to other entities (e.g. Sun Glassfish, Apache Tomcat).

Although each user is able to create content and resources [13] that others can use,

he is still positioned in the edge, and not in the center of the Web. Security issues

limit browser’s connections to be made only with the originating server of the Web

page that the user is navigating, making impossible to build applications for direct

collaboration through the browser. Each user acts as the ultimate consumer of services

made available by other users or organizations on remote servers, that act as

interaction intermediaries and have full access to information shared between peers

even if private. The Browserver sets P2P (Fig. 5), as its paradigm for interactions,

instead of the classic client-server model of the Web (Fig. 4).

Fig. 4 Client-server model. There is

always an intermediary offering services

to each entity.

Fig. 5 Peer-to-peer model. Entities can

interact directly, consuming each other's

services.

The Browserver aims at giving each user a really active role in the Web,

minimizing the need for intermediaries, and turning each user to be seen as an entity

fully capable of providing services, rather than a mere consumer of information and

services. The browser acts as a user interface for locally hosted services that can be

made available to the Web as well as to remote services that need to interact with the

user. Each public service of the user can be directly consumed (called, requested) by

the entity who needs to. Everyone becomes a service provider and the Web becomes

service centric instead of content centric.

To a business process, a person with a Browserver is seen as the set of invocable

services that he provides. Also, services otherwise located at centralized servers may

now exist in each user’s computer. This entails:

 More information privacy, by putting services locally to each Browserver and

directly consuming other’s services in a peer-to-peer fashion;

 A complete service paradigm on building applications from which enterprise

applications and customer relationship management can benefit from;

 New enterprise and personal relationships, and new tools for collaboration.

 Interactions with users can be proactive and not only reactive to user’s actions.

 The email and other communication platforms became accessory and not

mandatory for communications and interactions involving persons in the Web.

 Offline work, which can be granted by having the needed services and resources

for an application executing at the local server.

Bridging the Browser and the Server INForum 2010 – 589

3 A Technological Approach

In this section we present a high-level description of one solution for a technological

implementation of the Browserver which is part of a work in progress on the subject.

Although privacy requires security, that is not the focus of this article. The main focus

on this architectural design goes to the connection of a browser and a server and

automatic UI generation for services.

This approach intends to demonstrate the use of existing technologies to build a

Browserver. Given that services are the paradigm of the Browserver, Web Services

are chosen for its expressiveness and widespread use at organizational level and Java

is chosen for its full support on the technology. However, the Browserver is not

limited to a specific language or protocol.

3.1 Browser and Server

To unite a browser and a server some alternatives arise:

a) Develop from scratch a new fully integrated Web browser and server.

b) Develop a standards compliant browser frontend as an application running on

the server.

c) Connect a local browser to a local server using existing solutions.

In the solution presented in this article, we opt for the last option. This gives the

user the option to use the browser of its choice, while empowering him with the

features of a Browserver. It also allows normal Web navigation, making the

Browserver network a parallel Web to the existing one. Another advantage comes

with the possibility of physical separation of both components. On user’s will or

necessity, its private server could be located remotely (at his home or office) and the

browser could be on his mobile device (less computational capable).

The server must be compliant with Web Services [18] standards. Being Java the

programming language, Java Servlets are used in the implementation, therefore

Glassfish is the choice as it meets the requirements, with the integrated Metro web

service stack [10]. Tomcat or other compliant server could have also been chosen.

To actively make requests to the user, Comet and Reverse-Ajax [4] help to

overcome the limitations of the client-server model. Comet refers to long-lived HTTP

connections, enabling low-latency communication between browser and server.

Reverse-Ajax uses continuous polling from the client to the server for changes or

server pushing to the client using Comet connections enabling a server to send data to

the client without it without having been explicitly requested.

Direct Web Remoting [9], offers a framework for browser-server interaction based

on Reverse-Ajax. Complementing with a strong Javascript library, like JQuery [16]

full manipulation of a Web page displayed on the browser can be made. Fig. 6 shows:

 DWR Javascript library at the client side.

 DWR Java Servlet at the server side

 Browserver auxiliary and structural Javascript for UIs at the client side.

 Browserver Plain Old Java Classes (POJOs), Servlets and Beans, composing the

Browserver architecture at server side.

590 INForum 2010 Miguel Raposo, José Delgado

Fig. 6 Connecting browser (B) and server (S) through the DWR [9] framework.

The DWR framework exposes classes and methods on the Server that can be called

from the client, being reverse Ajax used to connect both ends (a) through pull and

push based techniques. At the client side, server methods are called (c) through the

DWR framework (b), being the returned result obtained through a callback function.

The server also acts as a proxy to the browser, allowing navigation on the Internet.

Fig. 7 shows a request (a) to a remote resource (a Web 2.0 site), going through a local

proxy at the server that executes the request (b) and sends the response to the client.

The response can be parsed, filtered and modified, if a service with such properties

exists in the server, enabling the system to act as in [8].

Fig. 7 The server (S) acting as a Web proxy to the browser (B).

3.2 Architectural Logical View

Fig. 8 presents a simplified logical view of the Browserver with two main parts: the

Browser (B) and the Server (S). In the context of this solution, the development leads

to a single application deployed and running on the server. The Browser part of the

system is responsible for creating and managing UIs for services and the connection

with the browser. The Server part of the system has responsibility of managing

services and the network of the Browserver. Each service has its own unique

identifier, compliant with the URI syntax [11]. In the Browser part:

 The BrowserManager, coordinates the creation of Containers and

ContainerUnits, and is responsible for sending the full container UI for the

specific browser that requires it through the Proxy, as well as creating new UI

units from UIData sent by the ServiceManager, using the UnitBuilder.

 A UnitBuilder takes the XML definition of an UI and builds a ContainerUnit

representing that UI. The BrowserManager can then add it to a Container.

Bridging the Browser and the Server INForum 2010 – 591

 There can be one or more Containers available and each holds multiple

ContainerUnits, being Portal,Portlets and ControlPanel realizations of these.

These elements produce code understandable by the browser like HTML and

Javascript. The Container also updates the UI at the browser through the DWR

whenever it changes internally.

 A DataHandler has the ability to handle user input from the browser. A

ContainerUnit must handle this data, sending it to the BrowserManager, who

forwards it to the ServiceManager.

 A Interface Unit can be:

o A SimpleUnit, which cannot hold any other units inside (e.g. a SimpleText is

used to present text without any special format).

o A ComplexUnit, which can hold other units (e.g. in HTML, a <div> element

plays this role).

o A DataUnit, which is a ComplexUnit and DataHandler that collects data

from the user (e.g. a <form> element in HTML corresponds to a DataUnit).

o A ContainerUnit, which is a DataUnit that holds the whole UI for a service

and handles input data from the browser, redirecting it to the corresponding

service at the Server part.

Different browsers are supported by Containers, ContainerUnits and UnitBuilders

that aim the specificities of each one. For a mobile device, a simple new Container

that extends an existing one and converts the output using XSLT could be a solution.

Fig. 8 Simplified logical view of the Browserver.

In the Server part:

 The Server part (S) is divided into the services part and the network (NW) part.

In the services part, are the externally accessible Web Services (WS).

592 INForum 2010 Miguel Raposo, José Delgado

 The ServicesManager is responsible to manage incoming requests and outgoing

responses for UI data.

 The Network consists of at least one Host (the local host) and all the known

remote Browserver hosts that can have any number of associated Services.

 The Network provides a means to remotely register local services. A remote

service directory is used to publicize the services of the Browserver.

 The UIWebService is an externally accessible Web Service for external entities

to request UIs to the local Browserver. SystemWebService is an externally

accessible Web Service for external entities to make system requests. Its

operations include deployment and undeployment of services. SOAP-based [22]

implementations of these services offer great interoperability with existing

systems.

3.3 Services

Services can be developed either to be local only or remotely accessible. The service

is deployed on the local application server and registered in the Browserver, through

the SystemWebService. The user has full control on whether the service is remotely

published or not. Services can be composed of other services, promoting reusability.

Asynchronous communication is a crucial requirement on processes involving

users so the Browserver UIWebService uses only one-way message exchange

patterns. This decision is due to the nature of the behavior of users. A reply might be

made immediately, or after weeks so, bidirectional communication channels can’t be

assured.

To receive replies to UI requests, the requester must provide a specific endpoint

that is able to receive, process and correctly deliver SOAP messages, using WS-

Addressing [22]. This is a limitation of existing communication channels, such as

HTTP, which is the basis of the Browserver communication, as it is application-

agnostic and can easily pass through firewalls.

Fig. 9 Services activity on user interface request.

Fig. 9 presents a simplified activity on UI creation from services point of view:

1) A local service X and a remote service Z, request a UI to the Browserver,

through the UIWebService, using SOAP messages (a1,b1) with UI definitions

Bridging the Browser and the Server INForum 2010 – 593

compliant with the schema presented in Fig. 10. The messages include WS-

Addresing headers indicating where to send the reply.

2) The UIWebService builds a UIRequest object with information provided by the

sender and a UIData object representing the UI definition, sending it to the

ServiceManager (a2,b2).

3) The ServiceManager dispatches requests, sending the UIData to the

BrowserManager, that will generate and present the UI to the user (a3, b3).

4) The data submitted by the user is forwarded (a4,b4) by the BrowserManager

to the ServiceManager, that builds a UIResponse with the data needed for the

reply.

5) The ServiceManager sends the data (a5,b5) to the endpoint previously

indicated by the requester.

6) The requester Service parses the data and act accordingly to its business rules.

To maintain context on successive service interactions, the messageId and

relatesTo elements of the WS-Addressing headers are used. A user data response

contains an ID that can be used on a later request, to indicate the relationship. To

make a service publicly available, the user can indicate the Browserver to publish it in

a service directory, like UDDI. A distributed solution for this is described in [21].

3.4 User Interface Generation and User Data Handling

Fig. 10 presents a simplified XML schema for UI definition for the Browserver. Upon

receive a request, the Browser object uses the UnitBuilder to get a new ContainerUnit

for that request. This ContainerUnit is then added to the Container, which has the

responsibility to update the UI view at the browser, through DWR and JQuery.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" >
 <xs:complexType name="interfaceType">
 <xs:group ref="iGroup" minOccurs="0" maxOccurs="unbounded"/>
 <xs:attribute name="title" type="xs:string"/>
 <xs:attribute name="id" type="xs:string"/>
 </xs:complexType>
 <xs:complexType name="formType">
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:choice>
 <xs:element name="inputText" type="inputTextType"/>
 <xs:element name="text" type="xs:string"/>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="inputTextType">
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:group name="iGroup">
 <xs:sequence>
 <xs:choice>
 <xs:element name="p" type="xs:string"/>
 <xs:element name="text" type="xs:string"/>
 <xs:element name="form" type="formType"/>
 <xs:element name="group">
 <xs:complexType>
 <xs:group ref="iGroup" minOccurs="0" maxOccurs="unbounded"/>

594 INForum 2010 Miguel Raposo, José Delgado

 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:sequence>
 </xs:group>
</xs:schema>

Fig. 10 Simplified user interface definition XML schema.

User input is gathered by Javascript (JQuery) and submitted to the Browser object

through DWR as a JSON string object. No POST or other HTTP actions are activated

at the browser. The JSON data is then converted to XML and sent to the DataHandler

associated with the UI unit. The DataHandler, primarily the ContainerUnit, parses

the data, deciding whether it will be redirected to a smaller unit to handle or to the

requesting service as a data response message, whose schema is simplified in Fig. 11.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" >
 <xs:element name="data">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="input" type="dType" minOccurs="0"
maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

Fig. 11 Simplified Data Response XML Schema.

3.5 Universal Service Identifier

The Universal Service Identifier (USI) is a Browserver approach that is not

mandatory for the Browserver, as it is possible to implement the Browserver with

other unique identifier scheme. We consider it to be a valuable means for unique

service identification. A USI is a subset of the URI [11], with the following syntax:

urn:bs:[Browserver][Service][Operation] (1)

[Browserver] = [name]@[subdomain].[domain] (2)

The Service and Operation parts (1) are optional. When consisting only of the

Browserver part (2), the it refers to the default Browserver service (the

UIWebService). The schema of the Browserver services URNs can be exemplified:

 bs:mike@ist.pt/

 bs:mike85@ist.pt/id/Accounting

 bs:john@chunk.us/MathService/squareOp

The Universal Service Identifier has no existing implementations, so, compliant

solutions would have to be developed. A solution comprising a distributed

hierarchical architecture, like the DNS (that could eventually be adapted), providing

services for naming and locating services, and Ad-UDDI [21] would fulfill the needs.

Bridging the Browser and the Server INForum 2010 – 595

The USI offers a naming schema that can be used to fully resolve a service

location, provided that the Web supports it with the necessary systems.

4 Related Work

There is currently no known work which is conceptually closely related to the

Browserver, although there are some attempts to give the user the ability to provide

services or resources using the browser.

Opera Unite [20] couples a browser and a server, giving the user the possibility of

providing some services and resources to other users, but not in a direct fashion.

Opera servers are always in the middle, and there is no continuous presence for

services or resources in the Web.

In [19], the author tries to get the browser to be seen as web services server, but the

method results in sending some notification (email, SMS) to the user with a URL to

follow, instead of making a direct request to the browser which the user can fulfill.

Smart Browser [8], intends to provide more processing power, enabling

background processing that can change the way things are presented, but doesn’t give

service provider capabilities to the user, who remains a mere consumer.

Most of current efforts to improve the Web are centered at the user experience as a

consumer. The HTML5 draft enables more interactive content, by extending the

dynamic UI creation to meet the standards. Anyhow, many capabilities it will bring to

the browsers can be done by the local server and, for greater user interaction, also

Flash can be used, so the choice isn’t limited.

Still in a draft state of a standard protocol [2] and API [1], Web Sockets promise to

enable seamless bi-directional communication and, consequently, much lower latency

in connections between browser and server, even through intermediary proxies and

firewalls (if encryption is used). The Browserver might eventually benefit from the

use of such technology for communication, although the direction the technology is

heading does not put the user in a provider position, as the services still remain at the

servers.

5 Rationale and Conclusions

This work intends to be a first approach to the development of the Browserver, and

instigate discussion over the best solutions to it as no system today implements its

features. An implementation of the Browserver is under development as a

demonstration of the concept, with the architectural design presented by this article

mostly implemented and functional.

The Browserver is intended to be a platform for the Internet of Services and can

change the way Web applications are designed. People, the leaves of the current Web,

can be invoked as if they were Web Services. Workflows can be implemented by

knowing that each participant is able to perform a task and to provide a service,

directly requested (as in a real business process) and not relying on the user's

willingness to follow an URL.

596 INForum 2010 Miguel Raposo, José Delgado

Nowadays, collaborative work is made mostly using central servers. Most

companies prefer using their own infrastructure as a security and privacy measure. As

in [15, 7], the Browserver eliminates the intermediaries in communication, therefore

providing a platform for more secure and private collaboration environments. The e-

mail is one of the applications that can be redesigned to send messages directly to the

addressee or to feed them through some trusted third-party with user defined

encryption mechanisms.

New and existing large-scale applications can be built or redesigned by knowing

that the client has the ability to perform server-side tasks, lowering the load on the

application servers. New P2P social networks are also a targeted application area. We

can maintain a social network by keeping the URNs of all our connections, instead of

having them all stored in some server.

Not all the current technologies are well suited for the Browserver. NAT

constitutes an obstacle to P2P networks like the one the Browserver intends to build,

and the existing solutions are not optimal. While Web Services are still the most used

standard technology to implement the service paradigm, their complexity and sluggish

performance constitute an opportunity for alternatives that best suit performance and

scalability, such as WOA and REST [14]. However, expressiveness is not the

strongest point in REST. The convergence of the two approaches is now the focus of

study and development [17]. Peer-to-Peer networks using Web Services have already

been addressed by [6, 3, 5, 12].

References

[1] The WebSocket API. W3C Working Draft, June 2010. http://dev.w3.org/html5/-

websockets/, last access on 2010-07-14.

[2] The WebSocket protocol. IEFT Draft, May 2010. http://tools.ietf.org/html/draft-

ietf-hybi-thewebsocketprotocol-00, last access on 2010-07-14.

[3] Conrad, M., Dinger, J., Hartenstein, H., Schöller, M., and Zitterbart, M.:

Combining service-orientation and peer-to-peer networks. In KiVS Kurzbeiträge

und Workshop, p. 181–184, 2005.

[4] Crane, D. and McCarthy, P.: Comet and Reverse Ajax: The Next-Generation

Ajax 2.0. Apress, Berkely, CA, USA, 2008.

[5] Galatopoullos, D.G., Kalofonos, D.N., and Manolakos, E.S.: A P2P SOA

enabling group collaboration through service composition. In ICPS ’08:

Proceedings of the 5th international conference on Pervasive services, pages

111–120, New York, NY, USA, 2008. ACM.

[6] Harrison, A., and Taylor, I.: Dynamic web service deployment using WSPeer. In

Proceedings of 13th Annual Mardi Gras Conference - Frontiers of Grid

Applications and Technologies, pages 11–16. Louisiana State University,

February 2005.

[7] Kortuem, G., Schneider, J., Preuitt, D., Thompson, T. G., Fickas, S., and Segall,

Z.:When peer-to-peer comes face-to-face: Collaborative peer-to-peer computing

in mobile ad hoc networks. Peer-to-Peer Computing, IEEE International

Conference on, 0:0075, 2001.

Bridging the Browser and the Server INForum 2010 – 597

[8] Lin, D., Jin, J., and Xiong, Y.. Smart Browser: A framework for bringing

intelligence into the browser. volume 7540, Tower A505 SP Tower, Tsinghua

Science Park, HaiDian District, Beijing, China, 100084, 2010.

[9] Marginian, D. and Walke, J.: Direct Web Remoting - easy Ajax for Java, 2010.

http://directwebremoting.org/, last access on 2010-06-07.

[10] Sun Microsystems. Metro, open source web service stack, 2009.

[11] T. Berners-Lee, Fielding, R., and Masinter, L.: RFC 3986, Uniform Resource

Identifier (URI): Generic syntax. Request For Comments (RFC), 2005.

[12] Mondejar, R., Garcia, P., Pairot, C., and Skarmeta, A.F.G.: Enabling wide-area

service oriented architecture through the p2pweb model. In WETICE ’06:

Proceedings of the 15th IEEE International Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises, pages 89–94,

Washington, DC, USA, 2006. IEEE Computer Society.

[13] Tim O’Reilly: What is web 2.0: Design patterns and business models for the

next generation of software. MPRA Paper 4578, University Library of Munich,

Germany, March 2007.

[14] Pautasso, C., Zimmermann, O., and Leymann, F.: Restful web services vs.

"big"’ web services: making the right architectural decision. In WWW ’08:

Proceeding of the 17th international conference on World Wide Web, pages

805–814, New York, NY, USA, 2008. ACM.

[15] Reif, G., Kirda, E., Gall, H., Picco, G.P, Cugola, G., and Fenkam, P.: A web-

based peer-to-peer architecture for collaborative nomadic working. In 10th IEEE

Workshops on Enabling Technologies: Infrastructures for Collaborative

Enterprises (Wetice), pages 334–339. IEEE Computer Society Press, 2001.

[16] John Resig. JQuery: The write less, do more, javascript library, 2010.

[17] Schroth, C. and Janner, T.: Web 2.0 and SOA: Converging concepts enabling

the internet of services. IT Professional, 9:36–41, 2007.

[18] W3C: Web services architecture, February 2004. http://www.w3.org/TR/ws-

arch/, last access on 2010-07-04.

[19] Waldorf, J.A., Lu, Y., and Demetriades, A.: Web browser as web service server

in interaction with business process engine. Patent US 2005/0182768 A1, Aug

2005.

[20] Opera: Opera Unite. http://unite.opera.com/, last access on 2010-07-14.

[21] Du, Z., Huai, J., and Liu, Y. Ad-UDDI: An active and distributed service

Registry. In C. Bussler and M.-C. Shan, editors, 6th VLDB Int’l Workshop on

Technologies for E-Services, volume 3811 of LNCS, pages 58–71. Springer,

2006.

[22] Weerawarana, S., Curbera, F., Leymann, F., Storey, T, and Ferguson, D.F.: Web

Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing,

WS-BPEL, WS-Reliable Messaging and More. Prentice Hall PTR, Upper Saddle

River, NJ, USA, 2005.

598 INForum 2010 Miguel Raposo, José Delgado

Execução de Fluxos de Trabalho com Simulação
de Redes de Sensores

Duarte Vieira e Francisco Martins

Faculdade de Ciências da Universidade de Lisboa
LaSIGE & Departamento de Informática

Edif́ıcio C6 Piso 3, Campo Grande
1749 - 016 Lisboa, Portugal

dvieira@lasige.di.fc.ul.pt, fmartins@di.fc.ul.pt

Resumo As redes de sensores têm ganho relevância nas mais variadas
áreas, com especial ênfase na monitorização ambiental e industrial e, mais
recentemente, na loǵıstica. A informação recolhida do meio ambiente (pe-
las redes de sensores) pode influenciar o decurso dos fluxos de trabalhos
destas áreas, pelo que, quando estes são representados em sistemas de
gestão de fluxos de trabalho, testar o sistema como um todo pode tornar-
se bastante complicado. Geralmente os testes efectuados nestes sistemas
fazem uso de informação de registos de execuções de fluxos de trabalho
anteriores. Alternativamente, os testes podem ser efectuados recorrendo
a simulações de aplicações de redes de sensores. Para além de cobrir as
situações descritas no caso anterior, esta abordagem permite testar novos
fluxos, bem como testar variações introduzidas nos fluxos de trabalho por
eventos do meio ambiente. Este artigo descreve uma forma de integrar
plataformas já existentes com o objectivo de introduzir a simulação de
redes de sensores nos testes de fluxos de trabalho.

1 Introdução

Uma rede de sensores sem fios é composta por uma colecção de dispositivos
capazes de medir um determinado campo escalar ou vectorial e cuja comunicação
entre os vários nós é feita sem fios. Numa rede de sensores podem existir nós
com a capacidade de actuar sobre o ambiente (actuadores), bem como uma (ou
mais) estação-base, responsável por processar os dados provenientes dos sensores
e, quando necessário, (re)configurar o comportamento da rede.

As redes de sensores são um tópico que no passado recente cresceu em atenção
quer por parte de empresas, quer por parte de grupos de investigação. Os de-
safios colocados ao ńıvel do hardware, como a miniaturização dos dispositivos
ou o aumento da capacidade da bateria e do alcance da comunicação sem fios,
ombreiam com os desafios colocados ao ńıvel do software, particularmente no
que concerne a sistemas operativos e a linguagens de programação para estes
dispositivos. Em ambas as áreas têm-se registado avanços importantes [3,13,20].

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 599–610

As aplicações das redes de sensores são inúmeras e abrangem, por exem-
plo, desde a leitura de sinais vitais do nosso organismo (body sensor networks),
passando por redes de monitorização de condições ambientais (e.g., medição da
qualidade do ar ou dos oceanos, detecção de fogos florestais), até a aplicações
espaciais [2]. Uma das áreas de aplicação mais recentes das redes de sensores
é a Internet das Coisas e Serviços (IoT), que consiste em integrar o estado do
mundo visto pelos olhos de sensores em aplicações de mais alto ńıvel, disponibi-
lizadas na Internet. Desta forma, as aplicações podem beneficiar de observações
realizadas no ambiente onde estão integradas e adequar o seu comportamento
de acordo com os valores lidos. Por exemplo, uma aplicação de domótica pode
estender o âmbito das suas funcionalidades se, para além de oferecer o tradi-
cional agendamento de tarefas (e.g., ligar ou desligar um dado dispositivo, ou
subir ou descer persianas de acordo com um plano pré-estabelecido), reagir em
função de condições ambientais ou de acordo com regras comportamentais dos
habitantes da casa. Outra área de aplicação é a loǵıstica, onde, por exemplo, se
pretende adequar um processo de entrega às condições da mercadoria que está
a ser transportada e às condições de trânsito no trajecto até ao destino. Neste
caso, as informações obtidas através dos sensores podem originar uma alteração
no processo de entrega, podendo resultar na alteração da ordem de entrega das
mercadorias.

Este tipo de aplicações que descrevem fluxos de trabalho são dif́ıceis de tes-
tar, pois baseiam o seu comportamento em acontecimentos externos (do mundo)
que são, no caso geral, não deterministas. A abordagem mais comum para testar
estas aplicações consiste em repetir a execução de fluxos de trabalho guardados.
Embora simples, esta abordagem padece de diversas enfermidades, a saber: (a)
só permite testar fluxos de trabalho que não sofreram alterações relativamente ao
traço que está guardado; (b) não permite testar novos fluxos de trabalho defini-
dos; e (c) não permite testar novas variantes de fluxos actuais. Outra abordagem
ao teste destas aplicações consiste em obter informação do ambiente através da
simulação das redes de sensores, permitindo a criação de ambientes virtuais onde
se pode estudar o comportamento dos sensores per se, da rede como um todo, e
da aplicação. Esta abordagem tem como desvantagem a construção de um mo-
delo para simular redes de sensores. À medida que o âmbito de aplicação das
redes de sensores se alarga é necessário recorrer a simuladores, que por si só cons-
tituem um desafio, pois simular uma rede de sensores com comportamentos não
triviais está longe de ser uma tarefa simples e rápida. Além disso, a integração
dos resultados destas simulações com o sistema de gestão de fluxos de trabalho
constitui outro problema a mitigar.

Em [19] descrevemos um processo que permite criar automaticamente um
modelo de simulação de uma rede de sensores a partir de especificações de alto
ńıvel. No presente artigo iremos focar na interacção da simulação de redes de
sensores com uma ferramenta de execução de fluxos de trabalho. Na secção
seguinte apresentamos um cenário na área da loǵıstica que ilustra a utilização
de sistemas de gestão de fluxos de trabalho integrados com redes de sensores

600 INForum 2010 Duarte Vieira, Francisco Martins

para avaliar as condições em que se processa uma entrega de matérias senśıveis
à temperatura.

A organização do artigo é a seguinte: a Secção 2 aborda a simulação de
redes de sensores, exemplificando com uma linguagem de programação e com um
simulador; a Secção 3 apresenta alguns sistemas de gestão de fluxos de trabalho e
elabora na integração da simulação de redes de sensores com a execução de fluxos
de trabalho; finalmente, na Secção 4 conclúımos o artigo e indicamos algumas
direcções para trabalho futuro.

2 Simulação de Redes de Sensores no Contexto dos
Fluxos de Trabalho

A simulação de redes de sensores permite testar não só aspectos como a trans-
missão de sinais, ou a medição de grandezas f́ısicas, mas também aspectos de
mais alto ńıvel, como protocolos de comunicação e execução de aplicações. A
simulação tem, portanto, grande interesse em qualquer área de actividade em
que as redes de sensores sejam utilizadas.

Consideremos o seguinte cenário que descreve um fluxo de trabalho integrado
com recolha de condições ambientais, obtida por sensores: um camião parte de
Lisboa com dois contentores de vacinas, cada um equipado com um sensor capaz
de medir a temperatura. Em ambos a temperatura não deve exceder os 10

oC,
sob pena de colocar em risco a qualidade das vacinas. O primeiro contentor a
ser entregue tem como destino Coimbra e o segundo o Porto. O camião está
equipado com uma estação-base que, periodicamente, pede a medição da tem-
peratura aos sensores presentes no camião e que informa o centro de controlo,
via GSM, caso alguma das leituras ultrapasse os 10

oC. No centro de controlo um
fluxo de trabalho é iniciado quando é recebida comunicação. Testar este fluxo
de trabalho obriga a que sejam simuladas comunicações do camião. Todavia, se
a simulação da rede de sensores estiver integrada com o fluxo de trabalho, tal
não será necessário. Mais, a integração pode permitir a utilização de dados de
simulação de redes de sensores com um grau de complexidade maior que o do
exemplo anterior.

Em [19] propusemos um gerador de modelos de simulação de aplicações para
redes de sensores, obtendo resultados encorajadores, tanto em tempo de si-
mulação como em utilização de memória, para aplicações que correm em várias
centenas de sensores. Nesta secção, apresentamos a linguagem para programar
redes de sensores Callas e o gerador de modelos de simulação.

2.1 Callas

Callas [14] é uma linguagem de programação que tem por objectivo estabelecer
uma base formal para o desenvolvimento de linguagens e sistemas de execução
para redes de sensores. Pode ser utilizada por si só para programar redes de
sensores ou como linguagem intermédia sobre a qual se possam compilar outras
linguagens, com maior grau de abstracção.

Execução de Fluxos de Trabalho com ... INForum 2010 – 601

A linguagem Callas é type-safe. Esta propriedade garante que programas
bem tipificados não produzem erros em tempo de execução, algo de extrema
importância no contexto das redes de sensores, em que os testes e a depuração
são dif́ıceis ou mesmo imposśıveis de se fazer após a sua instalação num ambiente
real.

Uma aplicação Callas é composta por interfaces (ficheiros .caltype), um
programa por tipo de sensor (ficheiros .callas) e uma descrição da rede (ficheiro
.calnet). Apresentamos agora uma aplicação Callas para a rede descrita acima.
A interface types . caltype define os dois tipos de módulos usados nesta rede: Nil,
o módulo vazio, e AlertTemp, um módulo com as funções sample, que não tem
parâmetros e que retorna Nil, e alert , com os parâmetros mac (endereço MAC,
string), time (tempo, long) e temp (temperatura, double) e que também retorna
Nil.

file: types.caltype

defmodule N i l : pass

defmodule AlertTemp :
N i l sample ()
N i l a l e r t (s t r i n g mac , l ong time , doub l e temp)

O ficheiro iface . caltype define a interface da rede. Todos os nós na rede serão do
tipo Sensor, que estende o tipo AlertTemp e acrescenta a função listen .

file: iface.caltype
from t yp e s import ∗

defmodule Senso r (AlertTemp) :
N i l l i s t e n ()

Embora toda a rede implemente a mesma interface (garantia verificada em
tempo de compilação), os sensores podem ter comportamentos diferentes, conso-
ante a implementação da interface. O ficheiro node. callas contém o programa para
os nós da rede, ou seja, para os sensores dos contentores. O programa importa
as interfaces de iface . caltype , define o módulo m, instala-o (store m) e escalona a
execução periódica da função listen . O módulo m implementa (a) a função listen ,
que consiste somente no comando receive, que lê mensagens da fila de entrada,
(b) a função sample, que envia para a rede a chamada a alert (mac, time, temp),
com os valores lidos e (c) a função alert , vazia.

file: node.callas
from i f a c e import ∗

module m of Senso r :
def l i s t e n (s e l f) :

r e ce i v e

602 INForum 2010 Duarte Vieira, Francisco Martins

def sample (s e l f) :
mac = extern macAddr ()
t ime = extern getTime ()
temp = extern getTemperature ()
send a l e r t (mac , t ime , temp)

def a l e r t (s e l f , mac , t ime , temp) :
pass

s to re m
l i s t e n () e v e r y 30000 e x p i r e 36000000

O programa em sink . callas implementa a mesma interface, mas com um com-
portamento diferente. Na estação-base a função sample apenas envia para a rede
a chamada a sample(). A função alert regista os valores recebidos e, caso a tempe-
ratura seja superior a 10

oC, transmite-os por GSM. Para além do escalonamento
periódico à função listen , faz um outro, à função sample, que por sua vez envia
para a rede o chamada a sample().

file: sink.callas
from i f a c e import ∗

module m of Senso r :
def l i s t e n (s e l f) :

r e ce i v e

def sample (s e l f) :
send sample ()

def a l e r t (s e l f , mac , t ime , temp) :
extern l o g S t r i n g (mac)
extern l ogLong (t ime)
extern l ogDoub le (temp)
extern l o g S t r i n g (” ”)
i f temp > 1 0 . 0 :

extern sendGSM(mac , t ime , temp)

s to re m
l i s t e n () e v e r y 30000 e x p i r e 36000000
sample () e v e r y 60000 e x p i r e 36000000

2.2 Simulação de Aplicações Callas

Podemos categorizar os simuladores de redes de sensores como espećıficos, caso
em que o simulador modela apenas uma arquitectura/sensor, ou como genéricos,

Execução de Fluxos de Trabalho com ... INForum 2010 – 603

caso em que o simulador permite a modelação dos próprios sensores. O Visual-
Sense [5] é um simulador genérico e de código fonte aberto baseado na plataforma
de modelação e simulação Ptolemy II [9], desenvolvida pela UC Berkeley. Per-
mite (a) simular todos os aspectos das redes de sensores referidos anteriormente,
(b) simular redes em que os nós podem correr código diferente entre si, uma
caracteŕıstica invulgar nos simuladores em geral [8] e (c) modelar e simular em
modo gráfico. No Ptolemy II a modelação é feita utilizando componentes (chama-
dos actores, seguindo o Modelo de Computação por Actores [1]) que interagem
apenas por troca de mensagens.

O gerador de modelos apresentado em [19] permite a parametrização do
número e disposição dos nós da rede de sensores, da aplicação que corre e dos
modelos dos sensores e de rede. A simulação dos modelos gerados obteve bons
resultados em termos de desempenho e escalabilidade, conforme se pode verificar
na Figura 1.

Figura 1. Duração da simulação e utilização da memória (abcissas) dado o número de
sensores na rede (ordenadas).

Figura 2. Rede de sensores no VisualSense.

604 INForum 2010 Duarte Vieira, Francisco Martins

O modelo de simulação para a aplicação definida na Secção 2.1 é gerado a
partir do ficheiro network. calnet que, em adição à informação necessária à com-
pilação do programa (interface a ser usada e o código de cada tipo de sensor),
especifica, por exemplo, o número de nós e respectivas posições, o modelo do
sensor (o formato persistente do Ptolemy II tem a extensão .moml) e o raio de
comunicação. Com esta informação o gerador produz um modelo da rede que
pode ainda ser editado no VisualSense, como se ilustra na Figura 2.

file: network.calnet
i n t e r f a c e = i f a c e . c a l t y p e

s e n s o r :
code = node . c a l l a s
s i z e = 2
range = 50
p o s i t i o n = random 0 , 0 to 10 , 10
temp la t e = con t a i n e r S e n s o r . moml

s e n s o r :
code= s i n k . c a l l a s
s i z e = 1
range = 50
p o s i t i o n = e x p l i c i t 0 , 0
t emp la t e = gsmSink . moml

t emp la t e = con ta i ne rNe two rk . model # modelo do ńıvel de rede

3 Execução de Fluxos de Trabalho em Kepler com
Integração de Simulação de Redes de Sensores em
VisualSense

Os sistemas de gestão de fluxos de trabalho, como o Sistema YAWL [18], são
habitualmente utilizados para analisar processos de negócio, sendo também uti-
lizados na validação dos processos de negócio em tempo de desenho [15].

Os sistemas de gestão de fluxos de trabalho cient́ıficos são uma especialização
do tipo mais geral que permite executar fluxos de trabalho cient́ıficos (por exem-
plo, um conjunto estruturado de operações sobre dados provenientes de medições
de grandezas f́ısicas). Entre os sistemas deste tipo estão o Taverna [10], o Tri-
ana [16] e o Kepler [4].

O Kepler suporta modelação e execução em modo gráfico, composição de
fluxos de trabalho, computação distribúıda e acesso a repositórios de dados e
serviços web. É um sistema baseado na plataforma Ptolemy II, tal como o Vi-
sualSense, mais propriamente, o Kepler e o VisualSense são especializações do
Ptolemy II. A execução dos fluxos de trabalho é determinada pelo domı́nio de
computação. Por exemplo, no domı́nio Synchronous Dataflow (SDF), a execução
decorre de uma forma śıncrona e numa sequência pré-calculada, enquanto que no

Execução de Fluxos de Trabalho com ... INForum 2010 – 605

domı́nio Process Networks (PN) a execução é paralela, em que um ou mais com-
ponentes correm em simultâneo. Já o domı́nio Discrete Event (DE) é indicado
para fluxos de trabalho com noção de tempo e eventos.

Uma vez que existe interoperabilidade de actores e directores (que imple-
mentam os domı́nios de computação) entre os dois sistemas, é posśıvel integrar
modelos de simulação de redes de sensores nos fluxos de trabalho definidos em
Kepler de forma bastante directa. Deste modo, obtém-se uma forma de incluir
informação proveniente da simulação de redes de sensores na simulação de pro-
cessos de negócio. Adicionalmente, se tirarmos partido da linguagem Callas e do
gerador de modelos de simulação, poderemos facilitar todo o trabalho relacio-
nado com a simulação de rede de sensores.

Figura 3. Modelo da rede de sensores para integração na execução do fluxo de trabalho

A Figura 3 apresenta o modelo de simulação da rede de sensores obtido
a partir da aplicação da Secção 2. Na figura é posśıvel identificar a azul os
dois sensores de temperatura denominados por Node1 e Node2. Estes sensores
executam o código designado na Secção 2.1 pelo ficheiro node. callas , que faz com
que enviem periodicamente o valor da temperatura de cada contentor para a
estação-base, representada na figura a verde. Por seu lado, a estação-base, que
executa o código do ficheiro sink . callas , notifica uma entidade central sempre que
a temperatura em alguns dos contentores excede 10 graus cent́ıgrados. O modelo
apresentado é gerado automaticamente em função da informação definida no
ficheiro network. calnet . É posśıvel observar o raio de alcance da comunicação dos
sensores, bem como a sua posição relativa.

A comunicação entre os sensores e a estação-base ocorre através do canal
CalasPowerLossChannel, que simula a comunicação sem fios entre os sensores no
contentor. Este canal simula um meio de comunicação com perda de sinal e evita
a não transmissão de mensagens repetidas. As portas in/out de todos os nós re-
presentados recebem/enviam mensagens utilizando o canal CalasPowerLossChannel.
A comunicação da estação-base com um sistema central fora do camião é simu-

606 INForum 2010 Duarte Vieira, Francisco Martins

lada pelo canal GSMChannel. Este canal é o responsável pela ligação da simulação
de sensores com a execução de fluxos de trabalho. A estação-base é a única que
pode enviar mensagens no canal GSMChannel.

O fluxo de trabalho descrito pela Figura 4 calcula a melhor trajectória para
as entregas, tendo em conta a temperatura do contentor e a localização do
camião. A integração faz-se encapsulando o modelo da rede num actor do Kepler
(TruckNetwork), que funciona como uma fonte de dados. A execução do fluxo de
trabalho é, neste caso, despoletada por uma mensagem recebida do TruckNetwork.
Num fluxo de trabalho diferente, a execução poderia decorrer iniciar-se por um
outro evento, sendo alterada ao dar-se o evento proveniente da rede de sensores.
No canto superior direito da Figura 3 encontra-se o actor WirelessToWired, que
recebe as comunicações enviadas através do canal GSMChannel e as disponibi-
liza sob a forma de uma mensagem enviada para a porta de sáıda outPort do
actor TruckNetwork representado na Figura 4. A mensagem da porta outPort do
TruckNetwork é enviada para o actor MessageDisassembler, que dela extrai os valo-
res de containerID e truckPosition , dados de entrada do fluxo de trabalho contido
em CalculateBestPath, que calcula o melhor caminho a percorrer. Observe-se que
o actor WirelessToWired (que liga a rede de sensores sem fios ao fluxo de trabalho)
não está dependente da rede de sensores, nem do fluxo de trabalho; ele é somente
um meio de transporte da mensagem.

Figura 4. Fluxo de trabalho no Kepler. O actor TruckNetwork encapsula o modelo da
rede da Figura 3. O actor CalculateBestPath encapsula o fluxo de trabalho de cálculo
da trajectória.

As dificuldades da integração da simulação da rede de sensores no Kepler
prendem-se com a (eventual) heterogeneidade dos domı́nios de computação. A
simulação de aplicações Callas faz-se no domı́nio Wireless, uma extensão do
Discrete Event, nem sempre adequado para a execução de fluxos de trabalho.
Todavia, não deverão surgir dificuldades nos processos de negócio que estamos
interessados em simular (empresariais), uma vez que são habitualmente orienta-
dos a eventos.

4 Conclusão e Trabalho Futuro

Execução de Fluxos de Trabalho com ... INForum 2010 – 607

Neste artigo apresentamos uma forma de integrar a simulação de redes de sen-
sores na execução de fluxos de trabalho, o que permite testar aplicações de mais
alto ńıvel baseadas em informação das coisas. A nossa proposta pretende integrar
a simulação de redes de sensores da plataforma VisualSense [5] no sistema de
gestão de fluxos de trabalho Kepler [4], tirando partido da interoperabilidade de
componentes (actores) entre os dois sistemas, fruto de serem ambos extensões
da plataforma Ptolemy II [9]. Para a criação de modelos de simulação de re-
des de sensores propriamente ditas, fazemos uso de um gerador (de modelos de
simulação) que apresentámos anteriormente [19]. Pensamos que a nossa abor-
dagem será uma mais valia na área de testes de aplicações (não só as baseadas
de fluxos de trabalho) que dependam de valores recolhidos do ambiente porque
permite validar fluxos de trabalho novos ou em que pretendemos experimen-
tar novas variantes. Em contraste, o teste de fluxos de trabalho baseados em
informação sobre execuções anteriores de fluxos de trabalho não se afigura tão
flex́ıvel e completa como a que propomos.

Como trabalho futuro, identificamos desde logo a validação deste modelo de
execução de fluxos de trabalho, bem como a obtenção de resultados que nos per-
mitam avaliar a solução que propomos. Um ponto interessante que nos merece
atenção no futuro é a interoperabilidade de fluxos de trabalho, isto é, a possi-
bilidade de executar fluxos de trabalho, de uma forma distribúıda, em dois ou
mais sistemas de gestão de fluxos de trabalho distintos. A variedade de sistemas
de gestão de fluxos de trabalho, motores e linguagens de descrição, dificulta a
interoperabilidade dos fluxos de trabalho. Por exemplo, o Taverna [10] interpreta
a linguagem Simple Conceptual Unified Flow Language [10] (SCUFL), o Kepler
interpreta Modeling Markup Language [6] (MoML), o sistema YAWL [18] usa a
linguagem Yet Another Workflow Language [17] (YAWL) e o Triana [16] inter-
preta, além do seu próprio formato, Business Process Execution Language [11]
(BPEL). A acrescer à dificuldade decorrente da variedade de linguagens de des-
crição e de plataformas de execução, frequentemente as linguagens têm expres-
sividades diferentes, pelo que a tradução entre elas nem sempre é posśıvel, o que
compromete a interoperabilidade por via da tradução de linguagens.

A interoperabilidade de fluxos de trabalho poderia ser conseguida através da
padronização da linguagem de descrição/execução. Tem havido tentativas nesse
sentido, por exemplo, o Workflow Management Coalition criou o XPDL [11]
e a Microsoft e a IBM criaram o BPEL, ambos com o intuito de se tornarem
padrão. Um outro caminho para a interoperabilidade de fluxos de trabalho é o da
integração de motores de fluxos de trabalho de tal forma que seja posśıvel correr
cada fluxo no seu ambiente de execução, mas podendo interagir com outros,
a correr noutros ambientes. Uma abordagem nesse sentido é apresentada por
Kukla et al. [12]. Os autores vêem os sistemas de gestão de fluxos de trabalho
como aplicações legacy embebidas num ambiente de Grid Computing, no caso,
no GEMLCA [7] (Grid Execution Management for Legacy Code Applications).

Embora não tivéssemos abordado a disponibilização da informação de senso-
res via web, tal não se afigura complicado e vislumbramos que poderá ser feito
facilmente com recurso a serviços web: teria de se criar uma interface que expu-

608 INForum 2010 Duarte Vieira, Francisco Martins

sesse o simulador VisualSense como serviço web de forma a poder ser acedido
remotamente.

Agradecimentos

Os autores são parcialmente suportados pelo projecto CALLAS da Fundação
para a Ciência e Tecnologia (PTDC/EIA/71462/2006).

Referências

1. G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

2. I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor
networks. IEEE Communications Magazine, 40(8):102–114, 2002.

3. I. F. Akyildiz, M. C. Vurany, B. Ozgur, and A. Weilian Su. Wireless Sensor
Networks: A Survey Revisited . Computer Networks, 2005.

4. I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock. Kepler: An
extensible system for design and execution of scientific workflows. In SSDBM’04:
Proceedings of the 16th International Conference on Scientific and Statistical Da-
tabase Management, pages 423–424. IEEE Computer Society, 2004.

5. P. Baldwin, S. Kohli, E. A. Lee, X. Liu, and Y. Zhao. Modelling of sensor nets in
Ptolemy II. In Proceedings of IPSN’04, pages 359–368. ACM Press, 2004.

6. Christopher Brooks, Edward A. Lee, Xiaojun Liu, Stephen Neuendorffer, Yang
Zhao, and Haiyang Zheng. Heterogeneous concurrent modeling and design in java
(volume 1: Introduction to ptolemy ii). Technical Report UCB/EECS-2008-28,
Electrical Engineering and Computer Sciences University of California at Berkeley,
2008.

7. T. Delaitre, A. Goyeneche, P. Kacsuk, T. Kiss, G. Terstyanszky, and S. Winter.
Gemlca: Grid execution management for legacy code architecture design. In EU-
ROMICRO’04: Proceedings of the 30th EUROMICRO Conference, pages 477–483.
IEEE Computer Society, 2004.

8. E. Egea-Lopez, J. Vales-Alonso, A. Martinez-Sala, P. Pavon-Mariño, and J. Garcia-
Haro. Simulation Scalability Issues in Wireless Sensor Networks. IEEE Commu-
nications Magazine, 44(7):64–73, 2006.

9. J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong. Taming heterogeneity - the ptolemy approach. Proceedings
of IEEE, 91(2):127–144, Jan 2003.

10. D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li, and T. Oinn.
Taverna: a tool for building and running workflows of services. Nucleic Acids
Research, 34(Web Server issue):729–732, 2006.

11. R. Ko, S. Lee, and E. Lee. Business process management (bpm) standards: A
survey. Business Process Management journal, 15(5), 2009.

12. T. Kukla, T. Kiss, G. Terstyanszky, and P. Kacsuk. A general and scalable solution
for heterogeneous workflow invocation and nesting. In WORKS 2008: Proceedings
of the Workflows in Support of Large-Scale Science, Third Workshop, pages 1–8.
Springer-Verlag, 2008.

13. L. Lopes, F. Martins, and J. Barros. Middleware for Network Eccentric and Mobile
Applications, chapter 2, pages 25–41. Springer-Verlag, 2009.

Execução de Fluxos de Trabalho com ... INForum 2010 – 609

14. F. Martins, L. Lopes, and J. Barros. Towards the safe programming of wireless
sensor networks. In Proceedings of ETAPS’09, 2009.

15. A. Rozinat, M. T. Wynn, W. M. P. van der Aalst, A. H. M. ter Hofstede, and C. J.
Fidge. Workflow simulation for operational decision support. Data Knowl. Eng.,
68(9):834–850, 2009.

16. I. J. Taylor and B. F. Schutz. Triana - A Quicklook Data Analysis System for
Gravitational Wave Detectors. In Second Workshop on Gravitational Wave Data
Analysis, pages 229–237. Editions Frontières, 1998.

17. W. van der Aalst. Yawl: yet another workflow language. Information Systems,
30(4):245–275, June 2005.

18. W. M. P. van der Aalst, L. Aldred, M. Dumas, and A. H. M. Ter Hofstede. Design
and implementation of the yawl system. In CAiSE’2004. Springer-Verlag, 2004.

19. D. Vieira and F. Martins. Automatic generation of WSN simulations: From Callas
applications to VisualSense models. In Proceedings of SENSORCOMM’2010, 2010
(to appear).

20. E. Yoneki and J. Bacon. A survey of wireless sensor network technologies: Research
trends and middleware’s role. Technical Report UCAM-CL-TR646, University of
Cambridge, 2005.

610 INForum 2010 Duarte Vieira, Francisco Martins

IoT-aware business processes for logistics: limitations

of current approaches

Pedro Ferreira
1
, Ricardo Martinho

1
, Dulce Domingos

2

1
 School of Technology and Management, Polytechnic Institute of Leiria, Portugal

2
 Faculty of Science, University of Lisboa, Portugal

{pedro.ferreira, ricardo.martinho}@ipleiria.pt ; dulce@di.fc.ul.pt

Abstract. The Internet of Things (IoT) aims at bridging the gap between real-

world business processes and information systems. Supply chain management

is one of the major application areas that can benefit from the IoT. When

attached to physical items, the IoT technologies such as RFID and sensor

networks transform objects of the supply chain into smart items. These items

have the ability to capture context data and provide information systems with a

representation of ‗things‘. This allows information systems to monitor the

supply chain processes through process aware information systems. Smart items

can also execute parts of the business processes. In distributed environments,

they can exchange data among them and make decisions based on business

logic. However, this logic only acts according to pre-planned behaviour.

Unpredicted exceptions based on real life events require dynamic process

adaption in process definitions and corresponding instances. In this paper we

review the main technologies of the IoT associated with automated support of

business processes in logistics. We also identify the main limitations in the

Business Process Execution Language (BPEL), regarding the support of design

and runtime changes in these processes with smart items.

Keywords: The Internet of Things, smart items, logistics, business process,

flexibility, BPEL.

1 Introduction

In the last decade, the term Internet of Things (IoT) has been raising interest on the

enterprise world, mostly due to a growing web-based service economy [1]. The IoT

provides a key role for the future Internet by bridging the gap between the physical

world and its representation in information systems.

From an enterprise point of view, manufacturing, supply chain integrity, energy,

health and automotive are some of the major application areas of the IoT. Despite the

benefits, major technical issues such as internet scalability, identification and

addressing, heterogeneity and service paradigms are prominent areas of research in

recent years [2].

The supply chain is a network of organisations and business processes for

procuring raw materials, transforming them into products and distributing these to

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 611–622

customers. There are five major supply chain processes: plan, source, make, deliver

and return [3]. Logistics plays an important role in these processes, dealing with the

control and planning of all the factors that will have an impact on transporting [3].

Technologies, such as RFID and sensors, provide context data to support decision

making at high management level. The introduction of sensors with the ability to

execute business logic at the item level, i.e., smart items [4], allows local decision-

making and therefore reduces centralised processing and the amount of exchanged

data. The decomposition of business processes through distributed environments

creates a paradigm shift and challenges for business process modelling.

The Business Process Execution Language for Web-Services (WS-BPEL) has

emerged as the standard reference to model the behaviour of Executable and Abstract

business processes on Web Services [5]. It defines an interoperable integration model,

extending the Web Services interaction model and enabling it to support business

transactions.

So far it is possible to use information provided by the IoT to support static

business processes, i.e., processes defined at design time that do not foresee

deviations. However, the use of smart items often requires dynamic business

processes that are able to accommodate adaptations, according to changes verified in

the execution context or behaviour of smart items.

In this paper, we present the limitations of BPEL to define business processes that

support this dynamic behaviour. We also address how this ability can dictate the way

business process logic is distributed between smart items and standard process

support. We focus on logistics and supply chain-related business processes, which

make use of smart items.

The remainder of this paper is organized as follows: section 2 describes the

influence of smart items at supply chain; section 3 analyses the impact of business

logic at smart items; section 4 discusses the limitations of modelling business

processes with BPEL and section 5 concludes this paper.

2 Smart items in logistics

The main purpose of the IoT is to fill in the gap that usually exists between real-world

business processes and their representation within information systems. Therefore,

technologies such as RFID and wireless sensor networks capture accurate context

data. These data can then be used in real-time representations of business processes

and involved objects within information systems. For these purposes, the technologies

and related devices are commonly referred to as smart items.

2.1 Smart items types

Three main technologies are commonly used by smart items in business processes

related with logistics. They are barcodes, RFID and sensor networks. Barcodes are a

standard technology for electronic identification of products. A barcode is attached on

the product and optically detected by a barcode reader. The reader acknowledges the

printed identification and provides acquired data to the information system, which

612 INForum 2010 Pedro Ferreira, Ricardo Martinho, Dulce Domingos

updates the product‘s state. This solution provides limited information due to line-of-

sight requirement. For instance, it is impossible to detect a single item within a closed

container of products. The acquisition of product‘s data during transportation requires

a more complex infrastructure. Therefore barcodes are only useful in load and unload

processes within the logistics of the supply chain.

Radio Frequency Identification (RFID) devices [6] can be identified through radio-

based frequency handling technologies. Unlike barcodes, they do not require line-of-

sight to be identified. Location tracking is available including products in

transportation, depending on RFID readers deployed. They also have the ability to

acquire products sensor data (such as temperature) and provide it to the information

system. These sensing capabilities are usually very limited [7]. Accordingly to their

behaviour, barcodes and RFID can be referred to as passive devices [8].

Wireless sensor networks are the most promising approach for logistics processes.

The sensor nodes are electronic devices with embedded sensing and computing

systems that collaborate within a network. In addition, they are extremely small and

can be specifically designed to meet the requirements of the transported products.

Unlike RFID, sensor networks can execute parts of the processes from an information

system directly on the items. Products become embedded logistics information

systems [7]. Sensor networks cover identification, tracing, location tracking,

monitoring and real-time responsiveness. For instance, CoBIs [9] presents a sensor

network that covers all these aspects.

2.2 Logistic functions, information systems and smart items

Logistic functions can be associated with a set of features commonly supported by IS

and smart items‘ technologies, as illustrated in Table 1. The basic logistics functions

are to transport ―the right goods and the right quantity and right quality at the right

time to the right place for the right price‖ [7]. To address each of these functions,

information systems must have specific features, such as identification, tracing,

location tracking, monitoring, real-time responsiveness and optimisation. Product

identification informs the system about the right goods. Tracing allows the system to

detect when items are lost. Therefore, it guarantees the right quantity. The right place

is monitored by the information system through location tracking. It keeps track of the

transport itself. Monitoring the product‘s state ensures the product‘s right quality.

With all these data within the information system, the overall logistics process can be

observed with detail. Therefore, responsiveness to unforeseen events and other

actions can be achieved at the right time. In addition, these data provide the basis for

optimisation affecting the product‘s right price. Smart items play an important role in

supporting all of these features. Moreover, the kind of support provided to these

features can be directly correlated with the types of smart items referred in previous

section.

IoT-aware business processes for logistics INForum 2010 – 613

Table 1. Logistic functions and information systems features to implement them. It also

displays the smart items capabilities towards logistic functions.

Functions Features Barcode RFID Sensor

Networks

right goods Identification Full Full Full

right amount Tracing Partial Full Full

right place Location Tracking Full Full

right quality Monitoring Partial Full

right time Real-time responsiveness Full

right price Optimisation Full

2.3 The role of smart items in supply chain integrity

The information generated by smart items allows the monitoring and control of

products, along the entire logistics process. For instance, tracking their location can be

used to detect if the associated products have been detoured from a pre-planned route.

Tracking their state can be used to realise if the products‘ condition has changed and

whether they are still useful or not. This denotes three types of integrity that can be

compromised: (1) product integrity, (2) components integrity, (3) route integrity.

For instance, a product‘s physical integrity can be monitored through sensors that

keep status during its life-cycle within the logistics process. As an example, we can

consider that a product starts the process tagged with the status closed. If this status

changes during the process (to opened or tampered), the product‘s integrity might

have been compromised. For perishable products, sensors with the ability to measure

temperature can be used to monitor the product‘s condition. For example, a truck

loaded with fruit starts the process tagged with the status good. If the temperature

rises above a pre-planned threshold value, the fruit‘s quality may be affected [8].

Regarding transportation routes integrity, these can be monitored through

technologies that provide products location. Transporting these products requires pre-

planned routes. However, there may be detours from the original route due to

environment changes. For example, when dealing with hazardous products, some

restrictions can apply to available routes and they can even be unauthorized.

Unpredicted events such as traffic, weather conditions or road blocks might

compromise the products route integrity during transportation.

Integrity of components requires the most complex monitoring. It consists on

controlling every component of the product during its production and transportation.

It ensures that the product keeps its intended use and does not break established rules

regarding legal issues or environmental compliance along the logistics process.

In addition, breaking one of these integrity types can result in also affecting the

other remaining ones. For instance, the fruit truck may have to detour due to a product

integrity breach. Conversely, the product‘s integrity can be affected due to a forced

detour.

614 INForum 2010 Pedro Ferreira, Ricardo Martinho, Dulce Domingos

3 Business process logic within smart items

Smart items provide new opportunities and challenges in the system design and

electronics integration. Based on their potential and collaboration with external

services, they are able to do more than providing real-time data. They also process

data and make decisions based on it, including exchanging data among smart items

that do not depend on a centralised model. In this section, we refer to the software

architectures commonly used to address these issues. We also present relevant factors

that affect the amount of business logic that is distributed between a central system

and cooperative smart items.

3.1 Architectural evolution

The Internet of Things is a concept constantly evolving mostly due to its young

existence. It first appeared with the use of RFID and evolved through related

technologies such as sensor networks and smart embedded devices. The introduction

of smart items at the supply chain logistics processes requires constant optimisation

and innovation, in order to enhance enterprises‘ competitiveness and quality of

service.

Architectures used to accommodate interactions between smart items and

information systems have also been evolving at a similar pace.

For instance, client-server architectures still play a major role regarding these

interactions. Nevertheless, Service Oriented Architectures (SOA) is becoming the

preferred approach regarding interactions of information systems with more powerful

smart items. Moreover, this is indicated as the dominant architectural approach for

these kinds of devices in the future [12].

The integration of smart items into business processes through SOA allows

information systems to interact with physical objects and create the Internet of

Services (IoS). This integration is possible by running instances of web services on

these devices. Such architectural change provides an outnumbered set of opportunities

and challenges in achieving efficient collaboration between the services and

centralised information systems. In order to overcome these challenge, middleware

approaches have been a reliable solution to integrate back end applications and

services offered by the devices, service-mediators and gateways [12].

The SIRENA (Service Infrastructure for Real-time Embedded Networked

Applications) [10] project was developed to leverage SOA architectures to seamlessly

connect embedded devices within different domains. This project presents proof-of-

concepts that illustrate the feasibility and benefits of embedding web services at

devices. However, these pioneer efforts lacked attention to issues such as device

supervision, device life cycle management or maintaining the status of discovered

devices. SIRENA was also used as a foundation for SODA [11] and SOCRADES

[12] projects. The purpose of SODA was to create a comprehensive, scalable, easy to

deploy, service-oriented ecosystem built on top of foundations laid by SIRENA. This

project led to significant reduction of time to market for innovative services. The

purpose of SOCRADES was to develop a design, execution and management

platform, exploiting the SOA paradigm at device and application level. The

IoT-aware business processes for logistics INForum 2010 – 615

SOCRADES middleware is an architecture that provides web service enabled devices

for business integration with information systems such as ERPs for the manufacturing

area.

3.2 Delegating business logic to smart items

As described in section 2, there are different types of smart items according to their

behaviour and characteristics. Therefore, some authors fit smart items in two different

groups: passive and active. Passive technologies such as RFID and barcodes can

identify products at transhipment points. Semi-passive RFID data loggers allow

temperature recording at affordable costs. Active technologies such as wireless sensor

networks can communicate among all participants in a supply chain‘s logistic process

(freight, containers, warehouses and vehicles).

Böse and Windt presented a catalogue of thirteen criteria to characterise logistic

systems regarding autonomy [13]. The location of the decision making is considered

the most important criterion concerning autonomous control. Despite of having an

essential role on monitoring the process, smart items have been mostly used as

information providers instead of participants in decision making or business process

planning. The idea of delegating some business logic to smart items shifts the

decision making from centralised, server-based solutions to a network of distributed

processing devices. This creates an autonomous cooperation within the logistics

business processes. Each smart item has its own piece of software, which can

autonomously search for a partial solution when dealing with process-related issues.

In transportation scenarios, this software collects information, makes decisions and

negotiates with other entities to fulfil their goal. For instance, a truck loaded with

several pallets of fruit can have each one equipped with a smart item. These can

monitor a physical dimension such as temperature, which in turn will dictate the truck

route in order to deliver all products at the minimal costs [8].

In controlled transportation scenarios, i.e., not subjected to unforeseen

circumstances, everything is determined before the process begins. Therefore, there is

no need for delegating new behaviour to the smart item level. However, changes in

traffic, new incoming orders, lack of communications with the central system or any

other kind of unforeseen events might require a detour to a pre-planned route. To

support these unexpected scenarios, it is necessary to use smart items with embedded

intelligence enough to provide for dynamic planning.

This approach may require a shift of the business logic and associated control from

the central system level to the smart item level. From this point of view, decisions are

made in real-time by smart items on the field using their interaction abilities and

intelligence, without human direct intervention. Therefore, in order to keep the system

running, the implementation of software to be embedded into the smart item must

provide robustness, flexibility, privacy, low communication costs and low

computation time.

Supply chain management systems equipped with these smart items must have

flexibility to react immediately to sudden changes. For instance, if a road block

happens in a transportation scenario, the best alternative route must be searched

immediately. This route must be in accordance with the logistic functions and keep

616 INForum 2010 Pedro Ferreira, Ricardo Martinho, Dulce Domingos

supply chain integrity (referred above in section 2). The need of fast responsiveness

requires low computation time.

However, a thorough search for optimal route in a complex scenario could take too

much time depending on the smart items processing capabilities. If a communication

failure occurs in the network, system should be robust enough to continue its work.

Internal planning strategies and other sensitive data must be kept confidential. For

instance, if a route change is necessary, the delivery time for several customers will

most likely change. Despite of being aware of this change, each customer must not

have access to other customer‘s changes [2].

In a central based approach, objects in the logistics process are simply information

providers. Therefore they only execute atomic activities defined in a business process

running on a central system [12]. Smart items with embedded intelligence handle

incoming data, observe and evaluate surrounding conditions and make decisions

based on acquired information. However, these depend on the objects decision

freedom within the process and, consequently, their ability for process dynamic

changes [8].

4 Dynamic changes to business processes with BPEL

Changing business processes dynamically involves altering the process‘s control

flow, data or resource perspectives at runtime. Examples include adding, skipping,

updating or deleting an activity, changing the data objects associated with an activity,

or even altering its role-assignment. However, these changes must assure the

correctness (syntax) of process definitions and process instances, and consistency

among concurrently executed process instances [14]. Therefore, flexibility has been an

issue concerning the business process management and workflow research areas.

4.1 Process flexibility types

After several case studies and years of research, consensus was obtained concerning

the flexibility required to deal with exceptions. Eder and Liebhart [17] grouped

exceptions into two groups: predicted and unpredicted. Predicted exceptions represent

the unusual but foreseen behaviour of a process. These exceptions can be modelled in

the process definition as alternative paths to normal behaviour. The unpredicted

exceptions represent the unforeseen behaviour of a real world business process

regarding the process definition. To address these unpredicted exceptions, systems

need to update the process definition and the corresponding process instances.

In a sequence of also recent contributions, Schonenberg et al. present a taxonomy

of process flexibility [15]. Four distinct types to process flexibility are identified, each

having its own application area. We enumerate them below, referring a simple

transportation process scenario for each one of them:

 Design: for handling anticipated changes in the operating environment,

where supporting strategies can be defined at design-time;

IoT-aware business processes for logistics INForum 2010 – 617

 Deviation: for handling occasional unforeseen behaviour, where differences

with the expected behaviour are minimal;

 Underspecification: for handling anticipated changes in the operating

environment, where strategies cannot be defined at design-time, because the

final strategy is not known in advance or is not generally applicable;

 Change: either for handling occasional unforeseen behaviour, where

differences require process adaptations, or for handling permanent

unforeseen behaviour.

Each of the flexibility types operates in different ways. Figure 1 provides an

illustration of the distinction between each of the flexibility types in isolation, in

terms of the time that specific flexibility options need to be configured - at design

time, as part of the process definition or at runtime via facilities in the process

execution environment. It also shows the anticipated completeness of the process

definition for each flexibility type.

Fig. 1. Taxonomy of process flexibility according to Schonenberg et al. (adapted from [15]).

4.2 BPEL limitations to process flexibility

So far we have described the types of smart items and how they can benefit business

processes in logistics. We have also observed the delegation of business logic to smart

items due to architectural evolution. This evolution also allows the decomposition of

business processes through distributed networks instead of central based solutions.

However, none of these approaches supports flexibility in process that also includes

smart items. This means that these business processes do not foresee either predicted

or unpredicted changes that may force updates in the business logic running on both

central system and smart items.

618 INForum 2010 Pedro Ferreira, Ricardo Martinho, Dulce Domingos

As referred above, WS-BPEL has emerged as a standard reference language for

modelling and executing business processes. A WS-BPEL process definition includes

partner links that define the relationships with other business partners, declarations of

process data, handlers for various purposes and the activities. Basic activities only

perform their intended purpose, such as receiving a message from a partner, or

manipulating data. Structured activities can contain other activities and define the

control flow business logic (see [5] for further details).

We foresee its application also in business processes for logistics that use smart

items. However, and as we already referred, this kind of processes can be subjected to

many predicted and unpredicted changes. For this matter, WS-BPEL has some

limitations, and we will classify them according with the flexibility types illustrated in

Figure 1.

Regarding flexibility in design time, we can identify the following limitations when

dealing with WS-BPEL:

 The definition of alternative flows is possible but limited concerning the

number of paths – WS-BPEL allows the handling of predicted exceptions

with exception handlers, as well as alternative flows through the use of

if/else control structures (flexibility by design). However, WS-BPEL fails in

allowing for a compact process definition for a larger number of exceptions

and alternative paths, which cannot be foreseen or practically defined. In the

IoT context, business processes definitions that rely on smart items‘

collected data may imply a large number of exception handlers or alternative

paths;

 All process perspectives (control flow, data types and handlers) must be

defined in a static way and a priori – WS-BPEL does not allow for

flexibility by underspecification, meaning that process definitions cannot be

partially defined or incomplete, or even dynamically specified (e.g., it is not

possible to provide a partner link‘s name later on when the process as

already began to execute);

 The definition of business logic that is to be run in smart items is not possible

with WS-BPEL. It would be valuable to access and specify all sub-process

definitions that compose a business process model together. This may

include definitions of the business process logic to be executed either

centrally or on the smart items. WS-BPEL provides extension mechanisms

that can be used to define additional language constructs, in order to model

the business logic to be loaded into the smart items;

 WS-BPEL does not foresee the distribution of business logic between a

central system and smart items, according to smart items properties. We

must keep in mind that smart items are electronic devices. Therefore, they

have physical properties such as power (batteries) and computation speed

that limit their autonomy. When delegating business logic into smart items,

processing is required. As more of the business process is delegated, the

more processing will be necessary. Therefore, power consumption will

slightly increase. On the other hand, the less of the business process is

delegated to smart items, the more communication will be required, highly

increasing power consumption. In addition, smart items can have different

IoT-aware business processes for logistics INForum 2010 – 619

capabilities. Therefore they can support distinct amounts and types of

business process logic;

 WS-BPEL does not allow controlling which, how and by whom parts of a

process definition can be changed. This controlled flexibility [20] can be

useful for our context, specifically for clarifying which parts of a process can

be changed, when the process is distributed between the central system and

the smart items;

As for flexibility in runtime, the major limitations that we can identify in WS-

BPEL are:

 The lack of support for changes of business process instances, due to

unpredicted, ad-hoc circumstances. Logistics with smart items are subjected

to a plethora of these circumstances, which generate events that must be

immediately reflected in changes in the governing business processes.

 The lack of support in migrating instances from old process definitions to

new ones, when a redefinition of the business process occurs. Some works

have already addressed these challenges in WS-BPEL, including correctness

and compliance issues (e.g., see [14], [18]), but out of the context of the IoT.

However, it is possible to redefine smart items behaviour in runtime, for

example using the Callas language presented in [19].

Moreover, combining these types of flexibility adds specific challenges, also not

addressed by WS-BPEL. These include the use of runtime ad-hoc changes and design

changes together. Reichert et al. allow changes to be propagated to the process

instances, which were already subjected to ad-hoc changes [16]. Also, the use of

design changes together with underspecification flexibility in runtime (late binding)

raise additional challenges regarding correctness and compliance between process

definitions and underspecified process running instances.

5 Conclusions

The IoT is a concept raising interest in logistics business processes, mostly due to use

of technology commonly referred to as smart items. These items provide accurate

context data to information systems, which they use in real-time representations of

business processes. Smart items like wireless sensor networks with embedded

computing systems can do more than just providing data. They can execute parts of

business processes and cover the basic logistics functions.

Central based solutions still play an important role in logistics processes; however

distributed solutions are becoming the preferred approach. The introduction of sensors

with the ability to execute business logic at the item level allows local decision-

making and therefore reduces centralised processing and the amount of exchanged

data. However, none of these approaches supports predicted or unpredicted changes

that can occur in real world business processes. These changes require business

processes to be redefined or process instances to be changed handled dynamically,

including changes in the process control flow, data and resources at runtime, such as

reprogramming the smart items.

620 INForum 2010 Pedro Ferreira, Ricardo Martinho, Dulce Domingos

Summing up, we stressed WS-BPEL‘s limitations on process flexibility and

classified them according to the taxonomy types defined in Section 4.1. These

limitations shed some light on future topics that we intent to explore on WS-BPEL,

namely allowing for the definition and distribution of business process logic between

central systems and smart items. Also, we are already addressing some of these

challenges through an extension language for WS-BPEL regarding the definition of

smart items business logic. For this we are taking advantage on the native extension

mechanisms on WS-BPEL, specifically through the <extensionActivity>

element.

Acknowledgments

This work was supported by FCT through project PATI (PTDC/EIA-

EIA/103751/2008) and through LASIGE Multiannual Funding Programme.

References

1. ISTAG Working Group Report on ―Web-based Service Industry‖, February 2008,

ftp://ftp.cordis.europa.eu/pub/ist/docs/web-based-service-industry-istag_en.pdf

2. Haller, S., Karnouskos, S., Schroth, C.: The Internet of Things in an Enterprise Context. In

Future Internet — FIS 2008: First Future Internet Symposium, FIS 2008 Vienna, Austria,

September 29-30, 2008 Revised Selected Papers, pages 14–28, Berlin, Heidelberg, 2009.

Springer-Verlag.

3. Laudon, K.C., Laudon, J. P.: Management Information Systems. New Jersey: Pearson

Prentice Hall, 385--389 (2006).

4. Uckelmann D.: A Definition Approach to Smart Logistics. S. Balandin et al. (Eds.): Next

Generation Teletraffic and Wired/Wireless Advanced Networking (NEW2AN 2008),

number 5174 in LNCS, pages 273-284, Springer-Verlag, 2008

5. OASIS. Web Services Business Process Execution Language (WS-BPEL), Version 2.0.

Technical report, Organization for the Advancement of Structured Information Strandards,

2007.

6. Finkenzeller, K.: RFID Handbook: Fundamentals and Applications in Contactless Smart

Cards and Identification (2003)

7. Decker, C., Berchtold, M., Chaves, L., Beigl, M., Roehr, D., Reidel, T., Beuster, M.,

Herzog, T., Herzig, D.: Cost-Benefit Model for Smart Items in the Supply Chain. In C.

Floerkemeier and et Al., editors, Proceedings of The Internet of Things. First International

Conference (IOT 2008), number 4952 in LNCS, pages 155-172. Springer-Verlag, 2008.

8. Jedermann, R., Lang, W.: The benefits of embedded intelligence - tasks and applications for

ubiquitous computing in logistics. In C. Floerkemeier and et Al., editors, Proceedings of The

Internet of Things. First International Conference (IOT 2008), number 4952 in LNCS, pages

105–122. Springer-Verlag, 2008.

9. Decker, C.,Reidel, T., Beigl, M., sa de Souza, L.M., Spiess, P., Mueller, J., Haller, S.:

Collaborative Business Items. In 3rd International Conference on Intelligent Environments

(2007)

10.Bohn, H., Bobek, A., Golatowski, F.: SIRENA - Service Infrastructure for Real-time

Embedded Networked Devices: A service oriented framework for different domains,

icniconsmcl, pp.43, International Conference on Networking, International Conference on

IoT-aware business processes for logistics INForum 2010 – 621

Systems and International Conference on Mobile Communications and Learning

Technologies (ICNICONSMCL'06), 2006

11.Deugd, S., Carroll, R., Kelly, K., Millett, B., Ricker, J.: SODA: Service Oriented Device

Architecture, IEEE Pervasive Computing, vol. 5, no. 3, pp. 94-96, c3, July-Sept. 2006

12. Souza, L., Spiess, P., Guinard, D., Köhler, M. Karnouskos, S., Savio, D.: SOCRADES: A

Web Service based Shop Floor Integration Infrastructure. In C. Floerkemeier and et Al.,

editors, Proceedings of The Internet of Things. First International Conference (IOT 2008),

number 4952 in LNCS, pages 50–67. Springer-Verlag, 2008.

13. Böse, F., Windt, K.: Catalogue of Criteria for Autonomous Control. In: Hülsmann, M.,

Windt, K. (eds.) Understanding Autonomous Cooperation and Control in Logistics – The

Impact on Management, Information and Communication and Material Flow, pp. 57–72.

Springer, Berlin (2007)

14. Reichert, M., Rinderle, S.: On design principles for realizing adaptive service flows with

bpel. In Proceedings of International Conference on Conceptual Modeling (EMISA 2006),

pages 133–146. Lectures Notes in Informatics, 2006

15.Schonenberg, H.; Mans, R.; Russell, N.; Mulyar, N. & van der Aalst, W. M. P. Towards a

Taxonomy of Process Flexibility Proceedings of the Forum held at the 20th Conference on

Advanced Information Systems Engineering (CAiSE'08), 2008

16.Reichert, M., Hensinger, C., & Dadam, P. (1998). Supporting Adaptive Workflows in

Advanced Application Environments. In Proceedings of the EDBT Workshop on Workflow

Management Systems. Valencia, Spain.

17. Eder, J., Liebhart, W.: The workflow activity model WAMO. In: Proceedings of the 3rd

International Conference on Cooperative Information Systems (CoopIS‘95), Vienna,

Austria, May 1995, pp. 87–98

18.Fang, R., Zou, Z. L., Stratan, C., Fong, L., Marston, D., Lam, L., Frank, D.: Dynamic

Support for BPEL Process Instance Adaptation. In Proceeding of the 2088 IEE International

Conference on Services Computing, 2008, pp. 327–334

19.Martins, F., Lopes, L., Barros, J.: Towards Safe Programming of Wireless Sensor Networks.

In Proceedings of Programming Language Approaches to Concurrency and

Communication-cEntric Software (PLACES), 2010

20.Martinho, R.; Varajão, J. & Domingos, D.: Modelling and Learning Controlled Flexibility in

Software Processes. International Journal on Knowledge and Learning, 2009, 5, 423-442

622 INForum 2010 Pedro Ferreira, Ricardo Martinho, Dulce Domingos

Segurança de Sistemas de Computadores e
Comunicações

623

Melhorando a Fiabilidade e Segurança do
Armazenamento em Clouds

Bruno Quaresma, Alysson Bessani, and Paulo Sousa

Laboratório de Sistemas Informáticos de Grande Escala,
Faculdade de Ciências da Universidade de Lisboa,

Lisboa, Portugal

Abstract. With the increasing popularity of cloud storage services, companies
that deal with critical data start thinking of using these services to store med-
ical records databases, historical data of critical infrastructures, financial data,
among others. However, many people believe that information stored that way
is vulnerable, despite the guarantees given by providers, which makes reliability
and security the major concerns about cloud storaging. In this work we present
DEPSKY, a system that improves the availability, integrity and confidentiality of
information stored in the cloud.

Resumo. Com a crescente popularidade das clouds de armazenamento, empre-
sas que lidam com dados críticos começam a pensar em usar estes serviços para
armazenar bases de dados de registos médicos, históricos de infra-estruturas críti-
cas, dados financeiros, entre outros. No entanto, muitas pessoas acreditam que
informação armazenada num sistema deste tipo é vulnerável, apesar de todas as
garantias dadas pelos fornecedores, o que faz da fiabilidade e da segurança as
maiores preocupações sobre o armazenamento em clouds. Neste trabalho apre-
sentamos o DEPSKY, um sistema que melhora a disponibilidade, integridade e
confidencialidade de informação armazenada na cloud.

1 Introdução
Actualmente, muitas organizações começam a optar de forma progressiva pelo uso

de clouds de armazenamento. Exemplos recentes são serviços como o Twitter e o Face-
book que até há bem pouco tempo tinham os seus próprios data centers de armazena-
mento e hoje terceirizam parte deste serviço para a Amazon e o seu Simple Storage
Service (Amazon S3) [1]. Esta tendência pode ser definida como o armazenamento de
informação num sistema de armazenamento remoto mantido por terceiros. A Internet
fornece a ligação entre o computador e esse sistema.

O armazenamento em clouds tem algumas vantagens sobre o armazenamento tradi-
cional. Por exemplo, se se armazenar informação numa cloud, esta estará acessível a
partir de qualquer local com acesso à Internet e evita a necessidade da manutenção de
uma infra-estrutura de armazenamento (e.g., uma rede de discos) na organização. Além
disso, o modelo de cobrança das clouds de armazenamento incorpora o conceito de elas-
ticidade de recursos: paga-se apenas pelo uso e o serviço pode crescer arbitrariamente
para tolerar altos picos de carga esporádicos.

À medida que as clouds de armazenamento se tornam mais e mais populares, em-
presas que lidam com dados críticos começam a pensar em usar estes serviços para

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 625–636

armazenar bases de dados de registos médicos, históricos de infra-estruturas críticas, da-
dos financeiros, entre outros. No entanto, um perigo muitas vezes ignorado está no facto
dos sistemas de armazenamento remoto estarem fora do controlo dos donos dos dados,
apesar das garantias dadas pelos fornecedores (e.g., SLAs de serviço), o que faz da fia-
bilidade e da segurança as maiores preocupações sobre o armazenamento em clouds.
Neste trabalho apresentamos o DEPSKY, um sistema que garante disponibilidade, inte-
gridade e confidencialidade de informação armazenada na cloud. A ideia fundamental
deste sistema é replicar a informação por várias clouds de armazenamento, utilizando
algoritmos para armazenamento fiável e partilha de segredo. Além disso, apresentamos
resultados experimentais que demonstram a viabilidade económica (especialmente para
cargas de trabalho com bastantes mais leituras que escritas) e os benefícios em termos
de desempenho e disponibilidade do sistema.

2 Clouds de Armazenamento

Existem diversos sistemas de armazenamento em clouds, uns possuem um foco
muito específico, como armazenar apenas mensagens de e-mail ou imagens digitais,
outros podem armazenar todo o tipo de dados. O seu funcionamento pode ser descrito
da seguinte forma: um cliente envia ficheiros através da Internet para os servidores que
guardam a informação. O acesso aos servidores pelo cliente é efectuado através de inter-
faces web ou serviços web (usualmente baseados no modelo REST - REpresentational
State Transfer), que permitem o acesso e manipulação dos dados armazenados.

Nem todos os clientes estão preocupados apenas com a falta de espaço, alguns usam
sistemas de armazenamento em clouds para backup de informação, o que garante que,
caso haja algum problema na infra-estrutura computacional do cliente, a informação
estará intacta na cloud de armazenamento.

Existem fornecedores de armazenamento em clouds que cobram uma quantia fixa
por uma quota de espaço e largura de banda de entrada e saída de dados (ex., DivShare
[3], DocStoc [4] e Box.net [2]), enquanto outros usam um modelo pay-per-use e co-
bram quantias variáveis consoante o espaço ocupado e a largura de banda utilizada pelo
cliente (ex., Amazon S3 [1], Nirvanix [7], Windows Azure [6] e RackSpace [8]). Em
geral, o preço do armazenamento online tem vindo baixar devido à entrada de cada vez
mais empresas neste negócio.

As duas maiores preocupações acerca do armazenamento em clouds são a fiabili-
dade e a segurança. É improvável que uma organização confie os seus dados críticos a
outra entidade sem a garantia que terá acesso a estes dados sempre que quiser (disponi-
bilidade), que estes não serão corrompidos (integridade) e que mais ninguém terá acesso
a eles sem a sua autorização (confidencialidade). Para garantir a segurança da informa-
ção, a maioria dos sistemas usa uma combinação de técnicas, incluindo:

– Criptografia: algoritmos criptográficos são usados para codificar a informação tor-
nando-a ininteligível e quase impossível de decifrar sem a chave usada para cifrar
a informação, normalmente uma chave secreta partilhada entre cliente e o serviço;

– Autenticação: é necessário o registo de um cliente através da criação de credenciais
de acesso (ex., username e password);

– Autorização: o cliente define quem pode aceder à sua informação.

626 INForum 2010 Bruno Quaresma, Alysson Bessani, Paulo Sousa

Mesmo com estas medidas de protecção, muitas pessoas acreditam que a informa-
ção armazenada num sistema de armazenamento remoto é vulnerável. Existe sempre a
possibilidade de um hacker malicioso, de alguma maneira, ganhar acesso à informação
do sistema, por exemplo, devido a vulnerabilidades existentes neste. Além disso, há
sempre a preocupação de colocar os dados críticos (e muitas vezes confidenciais) nas
mãos de terceiros, que terão acesso às informações neles contidos.

Finalmente, há também a questão da fiabilidade e disponibilidade dos serviços
de armazenamento. Armazenar informação num sistema remoto acedido via Internet
coloca a organização vulnerável a todos os problemas de conectividade e indisponi-
bilidade temporária da Internet. Além disso, praticamente todos os grandes fornece-
dores de serviços de armazenamento já sofreram problemas de disponibilidade e/ou
corromperam dados de clientes, mesmo com a redundância interna de seus sistemas (os
dados são tipicamente armazenados em diferentes data centers do fornecedor).

3 DEPSKY

Nesta secção é apresentado o DEPSKY, um sistema para replicação de dados que
melhora a fiabilidade e segurança da informação armazenada em clouds.

Os blocos atómicos de dados no DEPSKY designam-se por unidades de dados (data
units), que podem ser actualizadas pelos seus donos e acedidas por um conjunto arbi-
trário de leitores. A disponibilidade destas unidades é garantida mesmo em caso de
falhas devido ao uso de algoritmos de replicação para sistemas de quóruns bizantinos
de disseminação [14], onde os dados armazenados em cada servidor (i.e., que neste
caso são clouds de armazenamentos) são auto-verificáveis graças ao uso de assinaturas
digitais e resumos criptográficos (i.e., se um servidor alterar o conteúdo dos dados, o
leitor descobre e ignora os dados corrompidos).

O DEPSKY oferece também a possibilidade da informação mais sensível ser pro-
tegida através de um esquema de partilha de segredos [16], introduzindo garantias de
confidencialidade: nenhuma cloud, individualmente, tem acesso à informação contida
nos dados.

3.1 Modelo de Sistema

O modelo de sistema utilizado no DEPSKY segue uma série de hipóteses pragmáti-
cas tidas em conta no desenho dos protocolos de replicação em clouds.

Cada cloud é representada por um servidor passivo (não executa nenhum código
dos protocolos) que oferece operações de leitura e escrita de dados com semântica de
consistência regular [12]: uma operação de leitura executada concorrentemente com
uma operação de escrita retorna o valor da unidade de dados antes da escrita ou o valor
que está a ser escrito.

Assumimos também que para cada unidade de dados há apenas um escritor, e este
escritor só sofre falhas por paragem. Isto significa que cada bloco de dados é escrito
por uma única entidade1, o que simplifica os protocolos (que não têm de lidar com es-
critas concorrentes). Além disso, escritores maliciosos não são considerados pois estes

1 Na prática pode existir mais de um escritor para uma unidade de dados desde que os acessos
de escrita sejam feitos isoladamente (o que pode requerer algum controlo de concorrência).

Melhorando a Fiabilidade e Segurança ... INForum 2010 – 627

poderiam escrever dados sem sentido do ponto de vista da aplicação de qualquer forma.
Finalmente, estas duas hipóteses permitem a concretização de protocolos de leitura e
escrita em sistemas onde os servidores são apenas discos passivos, como as clouds de
armazenamento.

Os servidores (clouds) e leitores estão sujeitos a faltas arbitrárias ou bizantinas
[13]. Da mesma forma, como são suportados múltiplos leitores para cada unidade de
dados, é conveniente também assumir que estes podem ter qualquer comportamento.
Devido ao uso de sistemas de quóruns bizantinos de disseminação [14], o sistema re-
quer n ≥ 3f + 1 servidores para tolerar até f servidores faltosos. O uso de sistemas
de quóruns bizantinos também permite que o sistema tolere um número ilimitado de
leitores faltosos.

Finalmente, assumimos a ausência de um sistema de distribuição de chaves entre os
clientes. Os leitores apenas sabem como aceder ao sistema para ler dados e para isso
possuem a chave pública do escritor para verificação e validação de dados.

3.2 Modelo de Dados

A figura 1 apresenta o modelo de dados do DEPSKY em três níveis. Num nível con-
ceptual temos os blocos representados por unidades de dados (data units) que contêm,
além do seu valor, um número de versão e informações de verificação que tornam os
dados auto-verificáveis. Genericamente, uma unidade de dados do DEPSKY é represen-
tada em cada cloud por dois ficheiros: um contendo os metadados e o outro com o valor
mais recente armazenando na unidade. Estes dois ficheiros estão sempre dentro de um
container. O container de uma unidade de dados, para além de conter os metadados
e o valor actual, pode conter também versões anteriores do valor desta unidade. Cada
unidade de dados tem um nome único que é o seu identificador. Este é usado para obter
referências para o container e metadados dessas unidades nos protocolos definidos.

X Amazon S3

Bucket X

Container X

Metadata

Metadata

Generic Data Unit Data Unit Implementation

Data

Version Number

Verification Data

Data

Data Pointer

Conceptual Data Unit

Verification Data

Version Number

Data

Nirvanix SDN

Folder X

Metadata

Data

Windows Azure

BlobContainer X

Metadata

Data

DivShare

Folder X

Metadata

Data

Figura 1. Decomposição do Data Unit X do DEPSKY, do conceito à concretização.

628 INForum 2010 Bruno Quaresma, Alysson Bessani, Paulo Sousa

Os ficheiros de metadados são os mais importantes pois é sempre necessário um
quórum destes nos protocolos definidos. Os metadados consistem na seguinte informa-
ção: um número de versão (Version Number), uma referência para o ficheiro com o
valor desta versão (Data Pointer) e informação de verificação (Verification Data), que
inclui um resumo criptográfico do valor para verificação de integridade deste e, no caso
de ser uma unidade de dados com confidencialidade, dados públicos necessários para a
leitura do valor. Para escrever ou ler uma unidade de dados é sempre necessário efectuar
o download do ficheiro de metadados associado a esta em primeiro lugar.

3.3 ADS - Available DEPSKY

Esta secção apresenta o algoritmo ADS que promove uma melhoria da disponibili-
dade de dados na cloud através da replicação das unidades de dados por várias clouds
de armazenamento.

Algoritmo de escrita.

1. Um cliente escritor começa por enviar um pedido de leitura dos metadados a todas
as clouds. O escritor espera n− f ficheiros de metadados correctamente assinados
por ele e lidos de diferentes clouds para então obter o número de versão máximo
dentre os contidos nestes ficheiros.

2. O número de versão lido no passo anterior é incrementado em uma unidade, dando
origem ao número de versão dos dados a serem escritos nesta operação. Um ficheiro
a conter os dados a serem escritos e cujo nome corresponde ao nome da unidade de
dados concatenado com o número de versão é criado em todas as clouds. O escritor
espera confirmação da escrita deste ficheiro de n− f clouds.

3. Após conclusão da escrita da nova versão, são actualizados os metadados para
a nova versão sendo enviados pedidos de escrita para este efeito. Neste passo o
ficheiro de metadados é actualizado (ficheiro com metadados anterior é sobres-
crito), ao contrário do passo 2 em que é escrita uma nova versão dos dados num
ficheiro diferente do da versão anterior. A operação de escrita termina quando se
recebe confirmação da actualização de metadados de n− f clouds.

É importante referir que o algoritmo de escrita preserva as versões anteriores da
unidade de dados. Estas versões podem ser apagadas quando o escritor achar conve-
niente através de um procedimento de garbage collection que envia pedidos de remoção
suportados por todas as clouds estudadas.

Algoritmo de leitura.

1. Um cliente leitor começa por efectuar pedidos pelos metadados a todas as clouds e
esperar por n− f ficheiros de metadados correctamente assinados pelo escritor. O
leitor obtém o número de versão máximo reportado nestes ficheiros.

2. Após obter o número de versão mais actual da unidade de dados, o cliente envia
pedidos de leitura para esta versão a todas as clouds e espera a recepção de um
valor cujo seu resumo criptográfico seja igual ao resumo criptográfico contido nos
metadados, sendo então a operação terminada e este valor retornado.

Melhorando a Fiabilidade e Segurança ... INForum 2010 – 629

Optimização de leitura. Uma optimização importante para diminuir os custos monetá-
rios do protocolo de leitura (ver secção 5.1) é enviar o pedido de leitura da versão mais
actual do valor da unidade de dados apenas à cloud que responde mais rapidamente à
requisição de metadados e reportar a versão mais actual dos dados. Desta forma, no me-
lhor caso (sem falhas), apenas uma das clouds será lida. Caso esta cloud não responda
atempadamente, outras clouds são acedidas até que se obtenha a informação desejada.

3.4 CADS - Confidential & Available DEPSKY

O ADS garante a integridade e disponibilidade dos dados em clouds de armazena-
mento. No entanto, um dos problemas fundamentais neste tipo de solução é evitar que
entidades não autorizadas tenham acesso aos dados armazenados na cloud.

Esta secção apresenta o algoritmo CADS, que integra um algoritmo criptográfico
de partilha de segredos de tal forma que os dados armazenados em cada cloud indi-
vidualmente sejam de pouca utilidade para um terceiro que intercepte ou obtenha a
informação.

Um esquema de partilha de segredos [16] é o método para dividir um segredo entre
um grupo de n participantes, em que a cada um deles é atribuída uma parte do segredo
(que tem o mesmo tamanho do segredo original). O segredo pode ser reconstruído ape-
nas quando f +1 dessas partes são recombinadas e qualquer combinação de até f partes
individuais não revelam nenhuma informação sobre o segredo.

A diferença fundamental entre os protocolos de escrita do ADS e do CADS é que
neste último introduzimos o algoritmo de partilha de segredos no passo 2 do ADS, de
tal forma a produzir tantas partes do segredo (valor a ser escrito na unidade de dados)
quanto o número de clouds. Cada uma destas partes é depois enviada para a sua res-
pectiva cloud.

O algoritmo de leitura do CADS funciona de forma bastante similar ao ADS, porém,
ao invés de aguardar apenas uma resposta com a versão mais actual dos dados (ADS
- passo 2), esperam-se f + 1 partes de diferentes clouds para combiná-las usando o
algoritmo de partilha de segredos, obtendo assim o valor originalmente escrito.

4 Concretização
O DepSky e todos os seus componentes foram concretizados na linguagem de

programação Java. Em primeiro lugar foram concretizados alguns controladores, que
são responsáveis pela comunicação com os diferentes sistemas de armazenamento em
clouds. Cada controlador comunica com a respectiva cloud através de seus serviços web
disponibilizados, utilizando uma interface REST. Toda a comunicação é efectuada sobre
HTTP (ADS) ou HTTPS (CADS2). Os controladores foram os componentes que mais
tempo consumiram em termos de concretização dada a variedade no funcionamento dos
diferentes serviços web de cada cloud.

Foram concretizados controladores (com seus respectivos números de linhas de có-
digo) para os seguintes serviços: Amazon Simple Storage Service (175 LOC), Microsoft
Windows Azure Platform (200 LOC), Nirvanix Storage Delivery Network (280 LOC),

2 Requer canais confidenciais para garantir que as partes do segredo gerado são obtidas apenas
pelas clouds a que se destinam.

630 INForum 2010 Bruno Quaresma, Alysson Bessani, Paulo Sousa

DivShare (350 LOC), DocStoc (350 LOC) e Box.net (380 LOC). Os controladores do
Amazon S3 e do Windows Azure foram concretizados sobre bibliotecas fornecidas pe-
los fornecedores do serviço ligeiramente modificadas para suportarem proxies. Após
a conclusão de um número suficiente de controladores iniciou-se o desenvolvimento
do componente responsável pelos protocolos (600 LOC), e de outro responsável pela
verificação, validação e criação de metadados do sistema (250 LOC). Foi também con-
cretizado um wrapper para controladores que efectua a gestão dos retries e timeouts dos
pedidos HTTP (150 LOC), para garantir fiabilidade fim-a-fim. Finalmente, utilizou-se
a biblioteca JSS (Java Secret Sharing) [5] para concretizar o esquema de partilha de
segredos.

5 Avaliação
Nesta secção apresentamos uma avaliação do DepSky que tenta responder a três

perguntas: Qual o custo adicional da utilização de replicação em clouds de armazena-
mento? Qual o ganho de desempenho e de disponibilidade na utilização de clouds repli-
cadas para armazenar dados? Qual o custo relativo das diferentes versões (ADS, ADS
com leitura optimizada e CADS) do DEPSKY?

5.1 Custo do Armazenamento Replicado
As clouds de armazenamento usualmente cobram pela quantidade de dados que

entram, saem e ficam armazenados nos seus data centers. A tabela 1 apresenta os custos
da utilização do modelo de unidade de dados apresentado neste artigo em diversas
configurações do DEPSKY e em diferentes clouds individualmente3. A tabela mostra
o custo em USD da realização de 10.000 operações de leitura e escrita para diferentes
tamanhos de blocos de dados.

Operação Tamanho DEPSKY
DEPSKY opt.
(melhor caso)

Amazon
S3 (EU)

RackSpace
Windows

Azure Nirvanix

10k Leituras
100 kb 0,69 0,12 0,11 0,22 0,16 0,18
1 Mb 6,54 1,02 1,01 2,20 1,51 1,80

10 Mb 65,04 10,02 10,01 22,0 15,01 18,0

10k Escritas
100 kb 1,10 1,10 0,20 0,28 0,11 0,18
1 Mb 4,84 4,84 1,10 0,80 1,01 1,80

10 Mb 46,24 46,24 10,10 8,00 10,01 18,0

Tabela 1. Custo estimado, em USD, de 10.000 operações de leitura e escrita de dados com
100KB, 1MB e 10MB. É de salientar que os protocolos de leitura do DEPSKY efectuam 2 pedi-
dos de leitura a cada cloud, e também, que os protocolos de escrita efectuam um pedido de leitura
e 2 pedidos de escrita a cada cloud.

A coluna “DEPSKY” apresenta os custos do uso dos protocolos ADS e CADS pro-
postos no artigo. É importante referir que o uso de confidencialidade (protocolo CADS)

3 Nesta tabela apresentam-se os custos do RackSpace ao invés do Divshare (usado nas experi-
ências de latência) devido ao facto do primeiro cobrar por uso, enquanto o segundo oferece
apenas pacotes fixos.

Melhorando a Fiabilidade e Segurança ... INForum 2010 – 631

não apresenta acréscimo representativo de custo uma vez que os seus metadados ocu-
pam 500 bytes enquanto os metadados para unidades de dados sem confidencialidade
ocupam cerca de 250 bytes.
A coluna “DEPSKY opt. (melhor caso)” apresenta os custos quando a optimização de
leitura para o protocolo ADS é empregue. Neste caso, a política de escolha da cloud de
leitura tem em conta não a que retornou os metadados mais rapidamente mas sim a que
apresenta menor custo de leitura.

Custo de leitura. Este custo corresponde apenas ao custo de se ler os metadados da
unidade de dados e os dados propriamente ditos. O custo de leitura do DEPSKY é similar
à soma dos custos de leitura em cada uma das quatro clouds individualmente, enquanto
que na versão optimizada temos o custo similar à Amazon S3, com um acréscimo de
poucos cêntimos devido ao acesso dos metadados em todas as clouds.

Custo de escrita. O custo da escrita considera o custo de se ler os metadados, escrever
uma nova versão destes e escrever a nova versão dos dados. Além disso, neste custo
incluímos os custos de armazenamento dos dados, o que significa que estamos a con-
siderar um sistema onde nenhuma versão de uma unidade de dados será apagada (i.e.,
escritas apenas criam novas versões). Conforme já referido, esta funcionalidade é im-
portante para dados críticos na medida em que permite recuperar versões anteriores das
unidades de dados armazenadas. No entanto, na prática esse custo pode ser amortizado
apagando-se versões antigas.

Os resultados da tabela mostram que o custo apresentado para as versões do DEP-
SKY correspondem à soma dos custos de escrita nas clouds. Estes custos, assim como
na leitura não-optimizada, advêem do modelo de replicação utilizado onde armazen-
amos o bloco de dados em todas as clouds. Se aplicássemos técnicas similares ao RAID
nível 5 [15], esses custos cairiam pela metade, já que os dados armazenados em cada
cloud teriam aproximadamente metade do tamanho da unidade de dados.

5.2 Desempenho e Disponibilidade

O DEPSKY foi desenhado tendo em conta cargas de trabalho em que leituras são
muito mais frequentes que escritas, como é observado em praticamente todos os sis-
temas de armazenamento [10]. Assim, a nossa avaliação concentrou-se na latência das
operações de leitura em diferentes configurações. No entanto, são reportados alguns va-
lores de latência do protocolo de escrita no fim desta secção para fins de completude do
estudo.

Metodologia. As medidas de latência de leitura foram obtidas através de uma apli-
cação que acede aos dados de 7 formas diferentes (configurações): às 4 clouds de ar-
mazenamento individualmente (Amazon S3, Windows Azure, Nirvanix e Divshare) e
às 3 versões do protocolo de leitura do DEPSKY (ADS, ADS com leituras optimizadas
e CADS). Todas as versões do DEPSKY usam as quatro clouds mencionadas para ar-
mazenar dados, e portanto toleram uma falha.

Foram medidos tempos de leitura para unidades de dados de três tamanhos: 100K,
1M e 10M bytes. A aplicação executou todas estas leituras periodicamente - de um
em um minuto (10K e 1M) ou de cinco em cinco minutos (10M) - e armazenou os

632 INForum 2010 Bruno Quaresma, Alysson Bessani, Paulo Sousa

tempos obtidos em ficheiros de log. O objectivo foi ler os dados através das diferentes
configurações num intervalo de tempo o mais curto possível tentando minimizar as
variações de desempenho da Internet.

As experiências foram realizadas entre 31 de Maio e 14 de Junho de 2010, com o
cliente a executar numa máquina do Departamento de Informática da FCUL e a aceder
às quatro clouds de armazenamento. Foram efectuadas 99.414 medidas de latência,
correspondento a 14.202 medidas por cada uma das 7 configurações.

Em todos os testes do DEPSKY, o custo dos algoritmos de criptografia (assinatura,
verificação e partilha de segredos) foi inferior a 20 ms, o que corresponde a menos de
2% da menor latência observada nos protocolos. Isto era esperado uma vez que a latên-
cia de comunicação da Internet e o processamento adicional para acesso de serviços
web tende a dominar o tempo de execução de qualquer aplicação neste ambiente.

Latência de leitura. A figura 2 apresenta a função de distribuição cumulativa das latên-
cias medidas na leitura dos diversos tamanhos dos dados nas diversas clouds indivi-
dualmente e utilizando as diferentes versões do DEPSKY. São apresentados resultados
relativos ao acesso às clouds individualmente (figuras 2(a), 2(c) e 2(e)) e utilizando dife-
rentes versões do DEPSKY (com os resultados da Amazon S3, para fins de comparação
- figuras 2(b), 2(d) e 2(f)).

Nas unidades de dados de 100K podemos observar que as distribuições de latências
para todas as configurações são bastante semelhantes. Já nas experiências com unidades
de dados de 1M, podemos observar alguma discrepância entre os desempenhos da Ama-
zon S3 e da Nirvanix. Além disso, com este tamanho de blocos já se percebe a diferença
entre o uso de replicação de dados em clouds e uma única cloud: 90% das leituras op-
timizadas com o DEPSKY estão abaixo de 3,2 segundos, enquanto na S3 este valor
aproxima-se dos 8 segundos.

As experiências com unidades de dados de 10M já demonstram as dificuldades em
lidar-se com o armazenamento de dados na Internet. Na figura 2(e) observa-se uma
larga discrepância entre os resultados observados para a Nirvanix e a Divshare quando
comparados com os resultados da Azure e da S3. Em particular, no decorrer destas
experiências observou-se um largo período de indisponibilidade da Azure (ver a seguir),
o que é representado no gráfico pelos 20% dos resultados de latência que não aparecem
na figura.

No que diz respeito às diversas versões do DEPSKY, a figura 2(f) mostra que neste
caso a replicação dos dados em diversas clouds diminui de forma significativa a latência
de leitura, mesmo na versão optimizada em que não se tenta ler de várias clouds mas
apenas da que retornou os metadados mais rapidamente. De notar também que o uso
da primitiva de partilha de segredos para confidencialidade (protocolo CADS), torna
o DEPSKY muito menos eficiente já que é necessário obter os dados de duas clouds
diferentes, ao invés de uma (como acontece nas outras versões).

Falhas. Durante as experiências foram observadas várias falhas no acesso aos sistemas
de armazenamento, conforme reportado na tabela 2.

Durante os testes observámos um período de instabilidade e indisponibilidade na
cloud Azure entre as 11h e as 21h do dia 10 de Junho (GMT+1, fuso horário de verão
de Portugal continental). Neste período mais de 95% dos pedidos de leitura dos dados
foram rejeitados com a mensagem de erro “Unable to read complete data from server”.

Melhorando a Fiabilidade e Segurança ... INForum 2010 – 633

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n
 (

C
D

F
)

Latency (miliseconds)

Legend
Nirvanix
Divshare
Azure
Amazon S3

(a) Clouds - Unidades de dados de 100K.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n
 (

C
D

F
)

Latency (miliseconds)

Legend
DepSky−ADS
DepSky−ADSopt
DepSky−CADS
Amazon S3

(b) DEPSKY - Unidades de dados de 100K.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n
 (

C
D

F
)

Latency (miliseconds)

Legend
Nirvanix
Divshare
Azure
Amazon S3

(c) Clouds - Unidades de dados de 1M.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n
 (

C
D

F
)

Latency (miliseconds)

Legend
DepSky−ADS
DepSky−ADSopt
DepSky−CADS
Amazon S3

(d) DEPSKY - Unidades de dados de 1M.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n
 (

C
D

F
)

Latency (miliseconds)

Legend
Nirvanix
Divshare
Azure
Amazon S3

(e) Clouds - Unidades de dados de 10M.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n
 (

C
D

F
)

Latency (miliseconds)

Legend
DepSky−ADS
DepSky−ADSopt
DepSky−CADS
Amazon S3

(f) DEPSKY - Unidades de dados de 10M.

Figura 2. Função de distribuição cumulativa para as latências de leitura observadas em quatro
diferentes clouds (Amazon S3, Windows Azure, Nirvanix e DivShare) e nas três versões do DEP-
SKY replicando dados nas mesmas clouds.

Experiência Todas Amazon S3 Azure Nirvanix
100K 1 0 0 1
1M 1 9 13 2
10M 0 0 10+10hs 7

Tabela 2. Número de falhas observadas durante as experiências de leitura. O “10+10hs” para a
Azure na unidade de dados de 10M significa que para além das 10 falhas reportadas houve um
período de 10 horas onde mais de 95% dos acessos individuais a este sistema falharam.

634 INForum 2010 Bruno Quaresma, Alysson Bessani, Paulo Sousa

Para além deste evento, o número de operações mal sucedidas é bastante pequeno
se tivermos em conta a quantidade total de operações executadas. É de salientar que
o DEPSKY falhou apenas duas vezes, quando todas as clouds estavam indisponíveis.
Estas falhas aconteceram possivelmente devido a problemas de conectividade na saída
da rede do DI/FCUL.

Latência de escrita. Para fins de completude da nossa avaliação reportamos na tabela 3
os tempos médios de escrita para diferentes configurações (obtidos a partir de um con-
junto de 1000 escritas para cada tamanho de unidade de dados, executadas no dia 14 de
Junho).

Dados DEPSKY-ADS DEPSKY-CADS Amazon S3 DivShare Azure Nirvanix
100K 1767 2790 2336 3287 2801 2802
1M 4376 4928 5640 4684 3823 2626
10M 20315 24012 32204 8298 20017 4816

Tabela 3. Latência média (ms) de escrita para diferentes tamanhos de unidades de dados, confi-
gurações do DEPSKY e clouds de armazenamento.

Estes resultados mostram que algumas clouds (Divshare e Nirvanix) apresentam
pouco aumento de latência quando passamos a escrever altos volumes de dados, en-
quanto outras (Azure e S3), apresentam uma perda de desempenho proporcional ao
tamanho dos dados a serem escritos. O desempenho das versões do DEPSKY é similar
a estas versões mais lentas na medida que os protocolos de escrita requerem a confir-
mação de escrita em 3 das 4 clouds utilizadas.

6 Trabalhos Relacionados

Até onde sabemos, existem apenas dois trabalhos bastante recentes que tentam fazer
algo similar ao DEPSKY para melhorar a confiabilidade e segurança dos dados ar-
mazenados nas clouds, tendo sido ambos desenvolvidos em paralelo com o trabalho
aqui reportado.

O HAIL (High-Availability Integrity Layer) [9] consiste num conjunto de protoco-
los criptográficos que juntam códigos de apagamento com provas de recuperação que
permitem a concretização de uma camada de software para proteger a integridade dos
dados armazenados em clouds, mesmo que estas sejam invadidas e corrompidas por um
adversário móvel. Quando comparado ao DEPSKY, o HAIL apresenta pelo menos três
limitações: só lida com dados estáticos (i.e., os algoritmos não suportam actualizações
e múltiplas versões dos dados), requer que os servidores executem código (ao contrário
do DEPSKY, que considera as clouds de armazenamento como discos passivos) e não
usa nenhum mecanismo para protecção da confidencialidade dos dados armazenados.

O sistema RACS (Redundant Array of Cloud Storage) [11] utiliza técnicas similares
às utilizadas nos sistemas RAID nível 5 [15] para concretizar replicação de dados em
diversas clouds. Diferentemente do DEPSKY, o RACS não se preocupa com problemas
de segurança, mas sim com possíveis “falhas económicas”, onde uma cloud aumenta
o custo do seu serviço de tal forma que torna inviável o acesso aos dados. Além de

Melhorando a Fiabilidade e Segurança ... INForum 2010 – 635

não proteger contra corrupção de dados e violações de confidencialidade, o RACS tam-
bém não suporta actualizações dos dados armazenados. Todas estas limitações tornam
o RACS menos abrangente do que o DEPSKY.

Além das diferenças entre os sistemas, os trabalhos sobre o HAIL e RACS não
apresentam nenhum tipo de medida que utiliza diversidade de clouds.

7 Conclusão
Neste trabalho foi apresentado o DEPSKY, um sistema que fornece disponibilidade,

integridade e confidencialidade de informação armazenada na cloud. Na avaliação ex-
perimental demonstrou-se que o DEPSKY não fica muito aquém, em termos de desem-
penho, dos serviços testados. Podemos afirmar que com o DEPSKY temos sempre o
melhor serviço independentemente das condições de cada cloud.

Os trabalhos actuais e futuros deverão concentrar-se na inclusão de códigos de
apagamento para diminuir o tamanho dos blocos de dados armazenados (de forma si-
milar ao RAID [15]) e numa avaliação da disponibilidade e desempenho das clouds a
partir de diferentes localizações na Internet.

Agradecimentos. Este trabalho foi suportado pela FCT através de seu programa mul-
tianual (LaSIGE) e do projecto CloudFIT (PTDC/EIA-CCO/108299/2008).

Referências

1. Amazon Simple Storage Service (https://s3.amazonaws.com), June 2010.
2. Box.net (http://www.box.net), June 2010.
3. Divshare (http://www.divshare.com), June 2010.
4. Docstoc (http://www.docstoc.com), June 2010.
5. Java secret sharing (http://www.navigators.di.fc.ul.pt/software/jitt/

jss.html), June 2010.
6. Microsoft Windows Azure Platform (http://www.windowsazure.com), June 2010.
7. Nirvanix Storage Delivery Network (http://www.nirvanix.com), June 2010.
8. Rackspace (http://www.rackspace.com), June 2010.
9. Kevin D. Bowers, Ari Juels, and Alina Oprea. HAIL: a high-availability and integrity layer

for cloud storage. In CCS ’09: Proceedings of the 16th ACM conference on Computer and
communications security, pages 187–198, New York, NY, USA, 2009. ACM.

10. Gregory Chockler, Rachid Guerraoui, Idit Keidar, and Marko Vukolić. Reliable Distributed
Storage. IEEE Computer, 42(4):60–67, 2009.

11. L. Princehouse H. Abu-Libdeh and H. Weatherspoon. RACS: A case for cloud storage
diversity. ACM Symposium on Cloud Computing (SOCC), June 2010.

12. Leslie Lamport. On Interprocess Communication. Part I: Basic Formalism. Distributed
Computing, 1(2):77–85, 1986.

13. Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals Problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

14. Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distributed Computing,
11(4):203–213, October 1998.

15. David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant arrays of inex-
pensive disks (raid). In SIGMOD ’88: Proceedings of the 1988 ACM SIGMOD international
conference on Management of data, pages 109–116, New York, NY, USA, 1988. ACM.

16. Adi Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, 1979.

636 INForum 2010 Bruno Quaresma, Alysson Bessani, Paulo Sousa

On using Constraints for Network Intrusion
Detection

Pedro Salgueiro and Salvador Abreu

Departamento de Informática, Universidade de Évora
and CENTRIA FCT/UNL, Portugal

{pds,spa}@di.uevora.pt

Abstract. In this work we present a domain specific language for net-
work intrusion detection that allows to describe network intrusions com-
posed by several network packets, using a declarative approach to de-
scribe the desirable network situations, and based on that description,
a set of parameterizations for network intrusion detection mechanisms
based on Constraint Programming(CP) will execute to find those intru-
sions.

Keywords: Constraint Programming, Intrusion Detection Systems, Do-
main Specific Languages

Resumo Neste trabalho apresentamos uma linguagem espećıfica de do-
mı́nio para descrever intrusões de rede, capaz de descrever ataques com-
postos por vários pacotes de rede, e a partir de uma descrição declarativa
da intrusão, criar um conjunto de ferramentas capaz de detectar a in-
trusão desejada, tendo como base a Programação por Restrições(CP).

Palavras Chave: Programação por restrições, Sistemas de detecção de
Intrusões, Linguagens Espećıficas de Domı́nio

1 Introduction

Computer networks are composed of numerous complex and heterogeneous sys-
tems, hosts and services. Maintaining the security of the networks is crucial to
keep the users data safe, which may be accomplished by an Intrusion Detection
System (IDS) e.g. Snort [1,2]

To maintain the quality and integrity of the services provided by a computer
network, some aspects must be verified in order to maintain the security of
the users data. The description of those conditions, together with a verification
that they are met can be seen as an Intrusion Detection task. These conditions,
specified in terms of properties of parts of the (observed) network traffic, will
amount to a specification of a desired or an unwanted state of the network, such
as that brought about by a system intrusion or another form of malicious access.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 637–648

Those conditions can naturally be described using a declarative program-
ming approach, such as Constraint Programming [3] or Constraint Based Local
Search Programming (CBLS) [4], enabling the description of these situations
in a declarative and expressive way. To help the description of those network
situations, we created NeMODe, a Domain Specific Language (DSL) [5], which
enables an easy description of intrusion signatures that spread across several
network packets, which will then translate the program into constraints that will
be solved by more than one constraint solving techniques, including Constraint
Based Local Search and Propagation-based systems such as Gecode [6]. It will
also have the capabilities of running several solvers in parallel, in order to benefit
from the earliest possible solution.

Throughout this paper, we mention technical terms pertaining to TCP/IP
and UDP/IP network packets, such as packet flags, ACK, SYN, RST, acknowl-
edgment, source port, destination port, source address, destination address, pay-
load, which are described in [7].

1.1 Intrusion Detection Systems

Intrusion Detection Systems(IDS) play an important role in computer network
security, which focus on traffic monitoring trying to inspect traffic to look for
anomalies or undesirable communications in order to keep the network a safe
place. There are two major methods to detect intrusions in computer networks;
1) based on the network intrusion signatures, and 2) based on the detection of
anomalies on the network [8]. In this work, we adopted an approach based on
signatures.

Snort is a widely used Intrusion Detection System that relies on pattern-
matching techniques to detect the network attacks [9]. Snort is a very efficient
Intrusion Detection System but is primarily designed to detect network attacks
which have a signature that can be identified in a single network packet. Although
it provides some basic mechanisms to write rules that spread across several
network packets, the relations between those network packets are very simple
and limited, such as the Stream4 and Flow pre-processor.

Most of the recent work in intrusion detection systems has been focused on
the performance [10], but there has been also some work [10,11] that focus on the
method used to match the network packet signatures and the type of signatures
that can be detected, using alternative search methods that allows the search of
signatures that spreads across several packets, which is one of the limitations of
Snort and most other intrusion detection systems.

1.2 Constraint Programming

Constraint Programming (CP) is a declarative programming paradigm which
consists in the formulation of a solution to a problem as a Constraint Satisfaction
Problem (CSP) [3], in which a number of variables are introduced, with well-
specified domains and which describe the state of the system. A set of relations,
called constraints, is then imposed on the variables which make up the problem.
These constraints are understood to have to hold true for a particular set of
bindings for the variables, resulting in a solution to the CSP.

638 INForum 2010 Pedro Salgueiro, Salvador Abreu

Adaptive Search Adaptive Search (AS) [12] is a Constraint Based Local
Search [4] algorithm, taking into account the structure of the problem and us-
ing variable-based information to design general heuristics which help solve the
problem. AS has an adaptive memory similar to TabuSearch [13] in order to
prevent stagnation while solving the problem. The solving method of AS relies
on iterative repairs based on variable and constraint error information that seeks
to reduce errors on the used variables, in order to reach a valid solution, i.e. a
solution with error value of zero. Adaptive Search has recently been ported to
Cell/BE, presented in [14].

Gecode Gecode [15] is a constraint solver library implemented in C++, de-
signed to be interfaced with other systems or programming languages. Gecode
is a Propagation-based [3] constraint solver system, involving variables ranging
over some finite set of integers to solve the problems, being described by stating
constraints over each variable of the problem, which states the allowed values
for each variable , then, the constraint solver propagates all the constraints and
reduce the domain of each network variables in order to satisfy all the constraints
and instantiate the variables with valid values, thus reaching a solution to the
initial problem.

2 Network Monitoring with Constraints

Our approach to intrusion detection relies on being able to describe the desired
signatures through the use of constraints and then identify the set of packets
that match the target network situation in the network traffic window, which is
a log of the network traffic in a given time interval.

The problem needs to be modeled as a Constraint Satisfaction Problem (CSP)
in order to use the constraint programming mechanisms. Such a CSP will be com-
posed by a set of variables, V , representing the network packets, their associated
domains, D, and a set of constraints, C that relates the variables in order to
describe the network situation. On such a CSP, each network packet variable is
a tuple of integer variables, 19 for TCP/IP 1 packets and 12 for UDP packets 2,
which represent the significant fields of a network packet necessary to model the
intrusion signatures that we have used in our experiments, such as the time-
stamp, source/destination addresses, source/destination ports and packet data,
which are used in both TCP and UDP packets, the extra TCP flags and packet
sequence number fields are used with TCP packets. The number of fields may
increase over time with the evolution of the work and the use of more complex
intrusions. The domain of the network packet variables, D, are the values actu-
ally seen on the network traffic window, which is a set of tuples of 19 integer
values, each tuple representing a network packet actually observed on the traffic

1 Here, we are only considering the “interesting” fields in TCP/IP packets, from an
IDS point-of-view.

2 Here, we are only considering the “interesting” fields in UDP packets, from an IDS
point-of-view.

On using Constraints for Network Intrusion Detection INForum 2010 – 639

window and each integer value represents the fields that are relevant to network
monitoring. The packets payload is stored separately in an array containing the
payload of all packets seen on the traffic window. A solution to such a CSP, if it
exists, is the set of packets that correspond to the network intrusion described
by the CSP. Listing 1 shows a representation of such CSP, where P represents
a set of network packet variables, D, a set of network packets representing the
network traffic window, DP the payloads of all packets and ∀Pi ∈ P ⇒ Pi ∈ D
the associated domains of each variable. The payload of packet i would be DP [i].
Performing Network Monitoring with constraints is explained in more detail on
the work presented in [16].

Listing 1 Representation of a network CSP

P = {(P1,1, . . . , P1,19), . . . , (Pn,1, . . . , Pn,19)}
D = {(V1,1, . . . , V1,19), . . . , (Vm,1, . . . , Vm,19)}
DP = {DP1, . . . , DPm}
∀Pi ∈ P ⇒ Pi ∈ D

3 NeMODe - A DSL to describe network signatures

In this work we present a simple, declarative, intuitive domain-specific program-
ming language for the Network Intrusion Detection [5] domain called NeMODe.
NeMODe language talks about network entities, network entity properties and
relations between network entities and network entity properties, which allows to
describe network intrusion signatures, and with base on those description, gen-
erate Intrusion Detection mechanisms. A more complete description of this DSL
as well as other examples are presented in [16], which is an extended description
of the work described in this paper.

The key characteristic of NeMODe is to ease the way how network attack sig-
natures are described using constraint programming, hiding from the user all the
constraint programing aspects and complexity of modeling network signatures
in a Constraint Satisfaction Problem(CSP), but still using the methodologies of
CP to describe the problem at a much higher level, describing how the network
entities should relate among each other and what properties they should ver-
ify. Maintaining the declaritivity and expressiveness of the CP allows an easy
and intuitive way of describing the network attack signatures, by describing the
properties that must or must not be seen on the individual network packets,
as well as the relationships that should or should not exist between each of the
network packets.

NeMODe is a front-end to several back-ends, one to each intrusion detection
mechanism, allowing to generate several detection mechanisms from a single de-
scription. Having a single specification to several constraint solvers allows the

640 INForum 2010 Pedro Salgueiro, Salvador Abreu

search of a solution using different methods of search, allowing to run each of
those methods in parallel, which allows to obtain different results from each
solver. Depending on the characteristics of the problem, some solvers could pro-
duce a better and faster solution that others, allowing to choose the first solution
to be produced.

NeMODe presents five groups of statements: (1) the primitives of the lan-
guage, (2) the connectives, (3) definitions, (4) the use of such definitions and
(5) macro statements. The primitives are the basic statements of the language,
which state simple properties that each network variable should verify. The con-
nectives are statements that relate two or more network variables, forcing them
to verify some relations. The definition is a simple way of storing primitives or
connectives under a variable to be used later. The use of definitions, forces a pre-
vious definition to used. Finally, the macro statements, are helpers that avoid
unnecessary code repetition and ease the description of the signature.

The following list presents the set of primitives (predicates) available in the
current implementation of NeMODe which allows to state properties of network
packets that should be verified.

– Force a variable to be a network packet.
– Force a variable to be a TCP or UDP packet.
– Force a packet to have specific a TCP flag set.
– Force a packet not to acknowledge any packet.
– Force a packet to contain a string.

Follows a list of the connective statements, which are used to relate several
network entities.

– Force a packet to acknowledge other packet.
– Restrict the temporal distance between packets.
– Force two packets to be related.
– Force the source/destination port of a packet.
– Force the source/destination address of a packet.
– Force two packet to contain the same piece of data in a given position and

size on their payload.

NeMODe provides a special type of statements to help users specify network
signatures with minimum work, the definition statements. These statements
allows to store a set of properties over a set of network entities and give it a name
and using them later on the program. Listing 2 shows an example of a simple
definition where some properties over two network packets are stated, in this
particular case, the variable A should be a TCP/IP packet, and have its syn flag
set. These set of properties are stored in variable C, which can later be used.
Those definitions by them self don’t have any effect, they are only applied when
used or referred. In order to use those definitions, simply refer the variable to
which the set of properties was assigned or use it in a macro statement, explained
next.

The macro statements provide mechanisms to help the user describe the
situation, by avoiding unnecessary code repetition. This macro statements can

On using Constraints for Network Intrusion Detection INForum 2010 – 641

Listing 2 Example of a definition
1: C = { packet(A),
2: tcp(A), syn(A) }

Listing 3 Example of macro function
1: C = { packet(A), syn(A) },
2: R:=repeat(3,C),
3: max_duration(R) < secs(60)

be used to repeat a set of properties assigned to a variable, and give a name to
that repetition, allowing future references to each property of each instance of the
repetition i.e. R:=repeat(3,C). Other type of macro statements are the ones that
are applied to the repetitions stored in a variable, such as state the maximum
or minimum allowable time interval between each instance of the repetition,
i.e. max_duration(R) < secs(60) or the maximum/minimum overall interval
time that a repetition can take, i.e. max_interval(R) < secs(60). Listing 3
illustrates a simple use of this macro functions.

Listing 4 Accessing a variable
1: C = { packet(A), syn(A)},
2: R := repeat(3,C),
3: nak(R[1]:A)

When using the repeat statement, as in line 2 of Listing 4, each instance
of the repetition as well as its variables keeps accessible, referring it as the nth
instance and then referring the variables name, i.e. R[1]:A. Listing 4 shows an
example, where the statement nak is applied to variable A of the first instance
of the repetition R.

3.1 Available back-ends

NeMODe provides two back-end detection mechanisms; (1) based on the Gecode
constraint solver and (2) based on the Adaptive Search algorithm.

Each of these detection mechanisms are based on Constraint Programming
techniques, but they are completely different in the way they perform the de-
tection, and also the way the signatures are described. In Sec. 1.2 each of these
approaches are explained.

3.2 Examples

So far, we have worked with some simple network intrusion signatures: (1) a
DHCP spoofing, (2) a DNS spoofing and (3) a SYN flood attack. All of these
intrusion patterns can be described using NeMODe and the generated code was

642 INForum 2010 Pedro Salgueiro, Salvador Abreu

successful in finding the desired situations in the network traffic logs. A Portscan
attack and an SSH Password brute-force attack are further explained in [16].

DHCP spoofing DHCP Spoofing is a Man in The Middle(MITM) attack,
where the attacker tries to reply to a DHCP request faster than the legit DHCP
server of the local network, allowing the attacker to provide false network con-
figurations to the target host, such as the default gateway, forcing all traffic
from/to the target to pass though an attacker controlled machine, allowing it to
capture or modify the important data. This kind of intrusion can be detected
by looking for several answers to a single DHCP request, originated in different
machines. If this situation is found in the traffic of some network, there is a great
probability that someone is performing this kind of attack. A NeMODe program
to model a DHCP spoofing is shown in Listing 5. Lines 2 and 3 describes the
packet that initiates a requests a DHCP, lines 5 and 6 the first reply to the
request and lines 8 and 9 the second reply the DHCP request. Finally, on line 11
is stated that packets B and C(the first and second reply) should have different
source addresses.

Listing 5 A DHCP Spoofing attack programmed in NeMODe
1: dhcp_spoofing {
2: packet(A), udp(A),
3: dst_port(A)==67,
4:
5: packet(B), udp(B),
6: dst_port(B)==68,
7:
8: packet(C), udp(C),
9 dst_port(C)==68,
10:
11: src(B) != src(C)
12: } => {
13: alert(’DHCP Spoofing attempt’)
14: };

DNS spoofing DNS Spoofing is also a Man in The Middle (MITM) attack. In
this attack, the attacker tries to provide a false DNS query posted by the victim,
if succeeded the victim could access a machine under the control of the attacker,
thinking that it is accessing the legit machine, allowing the attacker to obtain
crucial data from the victim. In order to arrange this attack, the attacker tries
to respond with a false DNS query faster than the legit DNS server, providing
a false IP address to the name that the victim was looking for. This kind of
attacks is possible to detect by looking for several replies to the same DNS
query. Listing 6 shows how this attack can be programmed using NeMODe. Line
2 and 3 describes the packet that makes the DNS request. Lines 5-8, describes a
first reply to the DNS request and lines 10-13 describes the second reply. Lines
15-17 states that packets B and C should be different and that the DNS id of the

On using Constraints for Network Intrusion Detection INForum 2010 – 643

replies should be the equal to the DNS request, which is the first two bytes of
the packets data.

Listing 6 A DNS Spoofing attack programmed in NeMODe
1: dns_spoofing {
2: packet(A), udp(A),
3: dst_port(A)==53,
4:
5: packet(B), udp(B),
6: dst(B)==src(A),
7: src_port(B)==53,
8: dst_port(B)==src_port(A),
9:
10: packet(C), udp(C),
11: dst(C) == src(A),
12: src_port(C) == 53,
13: dst_port(C) == src_port(A),
14:
15: B != C,
16: data(B,0,2) == data(A,0,2),
17: data(C,0,2) == data(A,0,2)
18:} => {
19: alert(’DNS Spoofing attempt’)
20:};

SYN flood attack A SYN flood attack happens when the attacker initiates
more TCP/IP connections than the server can handle and then ignoring the
replies from the server, forcing the server to have a large number of half open
connections in standby, which leads the service to stop when this number reach
the limit of number of connections. This attack can be detected if a large number
of connections is made from a single machine to other in a very short time inter-
val. Listing 7 shows how a SYN flood attack can be described using NeMODe.
Line 2-5 describes a TCP/IP packet with the SYN flag and assigns those prop-
erties to variable C. In line 7, the macro statement repeat is used to repeat the
properties of definition C 30 times, and assign it to variable R. Line 8 states
that the time interval between each repetition of C should be less than to 500
micro-seconds.

Listing 7 A SYN flood attack programmed with NeMODe
1: syn_flood {
2: C = {
3: packet(A), tcp(A),
4: syn(A), nak(A)
5: },
6:
7: R := repeat(30,C),
8: max_interval(R) < usecs(500)
9: } => {
10: alert(’SYN flood attack attempt’)
11: };

644 INForum 2010 Pedro Salgueiro, Salvador Abreu

3.3 Code Generation

The current implementation of NeMODe is able to generate code for the Gecode
solver and for the Adaptive Search algorithm. These two approaches to constraint
solving are completely different as well as the description of the problems, forcing
us to have several code generators for each of back-end available. We were able
to minimize this difference by creating custom libraries for each constraint solver
so that the code generation process is not completely different for each back-end.

Generating an A.S. program The task of generating Adaptive Search re-
sumes to create the proper error functions so that Adaptive Search be able to
solve the problem; the cost_of_solution and cost_on_variable. To ease the
generation of this functions, a small library was created which implements small
error functions, specific to the network intrusion detection domain, which are
then used to generate the code for the error functions.

Generating a Gecode program This goal is achieved by generating code
based on Gecode constraint propagators that describe the desired network sig-
natures. We created a custom library that defines functions that combine several
stock Gecode constraints to define custom, network related “macro” constraints.
The same library includes definitions for a few network-related constraint propa-
gators, useful to implement some of the constraints needed to describe and solve
IDS problems.

4 Experimental Results

While developing this work, several experiments were done. We have tested the
examples of Sect. 3.2, a DHCP Spoofing attack, a DNS Spoofing attack and a
SYN flood attack. All these network intrusions were successfully described using
NeMODe and valid Gecode and Adaptive Search code were produced for all
network signatures. The code generated by NeMODe was then executed in order
to validate the code and ensure that it could indeed find the desired network
intrusions.

The code generated for Gecode was run on a dedicated computer, an HP
Proliant DL380 G4 with two Intel(R) Xeon(TM) CPU 3.40GHz and with 4 GB
of memory, running Debian GNU/Linux 4.0 with Linux kernel version 2.6.18-5.
As for the Adaptive Search code, it run on an IBM BladeCenter H equipped
with QS21 dual-Cell/BE blades, each with two 3.2 GHz processors, 2GB of
RAM, running RHEL Server release 5.2.

The reason to run both detection mechanisms in different machines with a
completely different architecture is because Adaptive Search has recently been
ported to Cell/BE, and we choose this version of Adaptive Search to run our
experiments, forcing us to use the QS21 dual-Cell/BE blades, which is incom-
patible with the implementation of Gecode, forcing us to use a machine with x86
architecture to run Gecode.

On using Constraints for Network Intrusion Detection INForum 2010 – 645

Table 1. Average time(in seconds) necessary to detect the intrusions using Gecode
and Adaptive Search

Intrusion to detect Gecode (seconds) A.S (seconds)
DHCP Spoofing 0.0082 0.3924
DNS Spoofing 0.0069 0.3512

SYN flood 0.0566 0.0466

In all the experiments we used log files representing network traffic which
contains the desired signatures to be detected. These log files were created with
the help of tcpdump [17], which is a packet sniffer, during an actual attack to a
computer, which was induced to simulate the real attacks described in this work.

DHCP spoofing and DNS spoofing attacks For the DHCP spoofing and
DNS spoofing attack, we used tcpdump to capture a log file, composed of 400
network packets, while a computer was under an actual attack. We used Et-
tercap to perform the DHCP spoofing and DNS spoofing attacks. The attack
was programmed in NeMODe, which successfully generated code for Adaptive
Search as well as for Gecode and successfully detected the intrusions.

SYN flood attack In the SYN flood attack a log file of 100 network packets
was created with the help of tcpdump while a computer was under a SYN flood
attack. The attack was programmed in NeMODe which in turn generated code
for Adaptive Search and Gecode. This code was then used to successfully detect
the intrusion.

4.1 Results

Table 1 presents the time(user time, in seconds) required to find the desired
network situation for each of the attacks presented in the present work, using
both detection mechanisms, Gecode and Adaptive Search. The execution times
presented in Table 1 are the average times of 128 runs.

5 Evaluation

The performance of the prototypes described in Sec. 4 shows a multitude of
performance numbers relative to the intrusion detection mechanisms used for
each network signature. Looking closely at the results in Table 1, it is possible
to see that Gecode usually performs better than Adaptive Search, except in the
SYN flood attack. This difference is explained by the fact that Adaptive Search
needs a very good heuristic functions to improve its performance. We created
some heuristics based on the network situations we are studying which improved
the performance of Adaptive Search, but still can’t reach the performance of
Gecode. The SYN flood attack performed better in Adaptive Search due to the

646 INForum 2010 Pedro Salgueiro, Salvador Abreu

fact that the network packets of the attack are close together and there aren’t
almost any other packets between the packets of the attack.

Even without a perfect heuristic of Adaptive Search, the results obtained
are quite encouraging. As for Gecode, the results obtained are quite good. With
these results, we are now ready to start the detection of intrusions in real network
traffic instead of log files.

As for NeMODe, it turns out to be a success, since it was possible to easily
describe all the three network intrusions and generate valid code that could
detect the desired network situation. Although other intrusion detection systems
like Snort could detect the attacks presented in this work, they can not describe
the problems with the expressiveness used by NeMODe or even relate the several
packets that make part of the attack.

6 Conclusions and Future Work

The work presented in this paper presents NeMODe, a Domain Specific Language
to describe network intrusion signatures that generates intrusion detection rec-
ognizers based on Constraint Programming, more specifically, using Gecode and
Adaptive Search.

The results obtained in this work show that it’s possible to transform the
description of a network situation using several intrusion detection mechanisms,
based on Constraint Programming, from a single description and then use those
recognizers detect the desired intrusion using the generated code, demonstrating
the viability of using Constraint Programming in network monitoring tasks.

Also, we showed that we can easily describe network signature attacks that
spread across several network packets, which is somewhat tricky or even im-
possible to make using systems like Snort. Although the intrusion mentioned in
this work can be detected with other intrusion detection systems, they are mod-
eled/described with out relating the several network packets of the intrusion,
much of the times using a single network packet to describe the intrusion, which
could in some situations produce a large number of false positives.

This work is still at an early stage of development, we expect there to be
plenty of room for improvement: we have reached an efficiency level that may
be suitable to start performing network monitoring tasks on live network traffic
link, meaning that and important step will be to apply this method in a real
network to assess its performance.

A very important future work is to model more network situations as a CSP
in order to evaluate the performance of the system while working with a larger
diversity of problems.

NeMODe will be extended to be more flexible, allowing to describe other
network properties and a broader range of attack signatures and also include
more back-ends, allowing the detection of intrusions using several methods using
a single description.

On using Constraints for Network Intrusion Detection INForum 2010 – 647

Acknowledgments

Pedro Salgueiro acknowledges FCT –Fundação para a Ciência e a Tecnologia–
for supporting him with scholarship SFRH/BD/35581/2007. The IBM QS21
dual-Cell/BE blades used in this work were donated by IBM Corporation, in the
context of a SUR (Shared University Research) grant awarded to Universidade
de Évora and CENTRIA.

References

1. Martin Roesch. Snort - lightweight intrusion detection for networks. In LISA
’99: Proceedings of the 13th USENIX conference on System administration, pages
229–238, Berkeley, CA, USA, 1999. USENIX Association.

2. Jay Beale. Snort 2.1 Intrusion Detection, Second Edition. Syngress Publishing,
2004.

3. F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint programming. Elsevier
Science, 2006.

4. P. Van Hentenryck and L. Michel. Constraint-based local search. MIT Press, 2005.
5. A. Van Deursen and J. Visser. Domain-specific languages: An annotated bibliog-

raphy. ACM Sigplan Notices, 35(6):26–36, 2000.
6. Gecode Team. Gecode: Generic constraint development environment, 2008. Avail-

able from http://www.gecode.org.
7. Douglas Comer. Internetworking With TCP/IP Volume 1: Principles Protocols,

and Architecture, 5th edition. Prentice Hall, 2006.
8. Y. Zhang and W. Lee. Intrusion detection in wireless ad-hoc networks. In Pro-

ceedings of the 6th annual international conference on Mobile computing and net-
working, page 283. ACM, 2000.

9. H. Song and J.W. Lockwood. Efficient packet classification for network intrusion
detection using FPGA. In Proceedings of the 2005 ACM/SIGDA 13th international
symposium on Field-programmable gate arrays, pages 238–245. ACM New York,
NY, USA, 2005.

10. K.S.P. Arun. Flow-aware cross packet inspection using bloom filters for high speed
data-path content matching. In Advance Computing Conference, 2009. IACC 2009.
IEEE International, pages 1230 –1234, 6-7 2009.

11. S. Kumar and E.H. Spafford. A software architecture to support misuse intrusion
detection. In Proceedings of the 18th national information security conference,
pages 194–204, 1995.

12. P. Codognet and D. Diaz. Yet another local search method for constraint solving.
Lecture Notes in Computer Science, 2264:73–90, 2001.

13. F. Glover, M. Laguna, et al. Tabu search. Springer, 1997.
14. Salvador Abreu, Daniel Diaz, and Philippe Codognet. Parallel local search for

solving constraint problems on the cell broadband engine (preliminary results).
CoRR, abs/0910.1264, 2009.

15. C. Schulte and P.J. Stuckey. Speeding up constraint propagation. Lecture Notes
in Computer Science, 3258:619–633, 2004.

16. Pedro Salgueiro and Salvador Abreu. A DSL for Intrusion Detection based on Con-
straint Programming. In SIN 2010: Proceedings of the 3rd International Conference
on Security of Information and Networks, New York, NY, USA, 2010. ACM.

17. tcpdump web page at http://www.tcpdump.org/, April, 2009.

648 INForum 2010 Pedro Salgueiro, Salvador Abreu

TYPHON: Um Serviço de Autenticação e Autorização
Tolerante a Intrusões

João Sousa, Alysson Bessani, and Paulo Sousa

Laboratório de Sistemas Informáticos de Grande Escala,
Faculdade de Ciências da Universidade de Lisboa

Lisboa, Portugal

Resumo A norma Kerberos v5 especifica como é que clientes e serviços de um
sistema distribuído podem autenticar-se mutuamente usando um serviço de auten-
ticação centralizado. Se este serviço falhar, por paragem ou de forma arbitrária
(e.g., bug de software, problema de hardware, intrusão), os clientes e serviços que
dependem dele deixam de poder autenticar-se. Este artigo apresenta um serviço
de autenticação e autorização que respeita a especificação do Kerberos v5 tal
como é descrita no RFC 4120, fazendo uso da técnica da replicação da máquina
de estados e de componentes seguros para tornar o serviço mais resiliente. A
técnica da replicação da máquina de estados utilizada oferece tolerância a fal-
tas arbitrárias, enquanto os componentes seguros garantem que as chaves dos
clientes e dos serviços são mantidas secretas mesmo na presença de intrusões. Os
resultados de avaliação mostram que a latência e débito do serviço proposto são
similares aos de uma concretização de Kerberos bem conhecida.

Abstract. The Kerberos v5 standard specifies how the clients and services of
a distributed system may mutually authenticate through the use of a centralized
authentication service. If this service fails, by crash or in an arbitrary way (e.g.,
software bug, hardware problem, intrusion), the clients and services that depend
on it are not able to authenticate between themselves. This paper presents an
authentication and authorization service that complies with RFC 4120, and that
uses Byzantine-fault-tolerant state machine replication and secure components to
make the service more resilient. These secure components guarantee that clients’
and services’ secret keys are kept private even in the presence of intrusions. The
evaluation results show that the proposed service has similar latency and through-
put values to the ones of a well known Kerberos implementation.

1 Introdução

Hoje em dia, os sistemas informáticos da maioria das organizações utilizam algum tipo
de serviço de autenticação e autorização de forma a impôr politicas de controlo de
acesso a diferentes tipos de dados e/ou serviços. A norma Kerberos v5 propõe uma
especificação para um serviço de autenticação (Kerberos) com duas características in-
teressantes: faz uso de autenticação mediada, sendo portanto escalável do ponto de vista
do número de chaves que cada entidade do sistema tem de armazenar, e apenas utiliza
criptografia simétrica que é, como se sabe, mais rápida do que criptografia assimétrica.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 649–660

No entanto, o serviço de autenticação Kerberos é centralizado e concretizações co-
muns deste serviço tendem a residir apenas em um processo e em uma máquina. Basta
que esse processo ou máquina falhe para que o serviço de autenticação se torne in-
disponível (falha por paragem) ou errático (falha arbitrária). Também basta a um intruso
comprometer esse mesmo processo ou máquina para obter todas as chaves de todos os
clientes e serviços do sistema. A falha do serviço de autenticação pode forçar todo o
sistema informático que depende dele a parar, ou até mesmo permitir a utilização do
sistema sem autenticação, dependendo de como o sistema foi concretizado e do tipo de
falha do serviço de autenticação. Para além disto, a norma Kerberos v5 só especifica
um serviço de autenticação, não fazendo qualquer referência à forma como o controlo
de acesso/autorização é efectuado. Na prática, os serviços que concretizam esta norma
(e.g., Apache DS, Microsoft Active Directory) combinam o serviço de autenticação
Kerberos com um serviço de nomes e directorias (e.g., LDAP) onde é armazenada a
política de controlo de acesso.

Este artigo apresenta o serviço de autenticação e autorização TYPHON1, um serviço
que obedece à especificação Kerberos v5, mas que é construído de forma a tolerar in-
trusões, fazendo uso da técnica de replicação da máquina de estados - para tolerar faltas
arbitrárias - e de um componente seguro - para assegurar a confidencialidade das chaves
no caso de acontecerem intrusões.

2 A Especificação Kerberos v5

O Kerberos v5 [8] é uma norma especificada no RFC 4120 [9]. Esta por sua vez é con-
cretizada por várias aplicações, como o ApacheDS [1] e o Microsoft Active Directory2.

Esta norma permite comunicações seguras e identificadas entre duas entidades por
cima de uma rede insegura - como é o caso da Internet - e possibilita que duas entidades
(tipicamente cliente e serviço) que à partida não têm nada que prove que podem confiar
uma na outra, consigam autenticar-se mutuamente.

Para assegurar a confidencialidade dos dados e a autenticidade de clientes e serviços,
é usada criptografia simétrica. Todos as entidades partilham uma chave secreta com o
Kerberos e este faz de mediador entre as duas entidades que se pretendem autenticar.

A autenticação de uma entidade perante outra é conseguida por intermédio de es-
truturas de dados produzidas pelo Kerberos, denominadas de tickets. Os tickets provam
que o Kerberos autenticou a entidade que pretende comunicar com outrem.

O Kerberos está dividido em dois componentes lógicos: o Authentication Service
(AS) e o Ticket Granting Service (TGS). O primeiro permite a autenticação de uma
entidade perante o Kerberos. O segundo destina-se a mediar a autenticação entre duas
entidades após ambas estarem autenticadas perante o Kerberos (AS).

1 Na mitologia grega, TYPHON é o pai de Cerberos (ou Kerberos).
2 De notar que o ApacheDS e o Microsoft Active Directory são servidores LDAP que disponi-

bilizam igualmente um serviço de autenticação Kerberos v5.

650 INForum 2010 João Sousa, Alysson Bessani, Paulo Sousa

2.1 Interacções

A figura 1 ilustra3 as interacções entre um cliente C, os componentes AS e TGS do
Kerberos, e um serviço S.

S

AS TGSC

1. IDC, IDTGS, N1

2. IDC, TicketTGS, EC[KC_TGS, N1, IDTGS]

3. IDC, IDV, N2, TicketTGS, AuthenticatorTGS

4. IDC, TicketS, EC_TGS[KC_S, N2, IDS]

5. TicketS,
AuthenticatorC

6. EC_S[TS1, Subkey]

TicketTGS = ETGS[KC_TGS, IDC]

TicketV = EV[KC_V, IDC]

AuthenticatorTGS=EC_TGS[IDC, Digest]

AuthenticatorC=EC_V[IDC, TS1, Subkey]

IDx: Identificador de x

N: Nonce

Ex: Cifra com a chave x

Kx: Chave de x

TS: Estampilha temporal

Figura 1. Ilustração simplificada das interacções das entidades presentes no Kerberos v5.

O objectivo das interacções ilustradas na figura 1 é autenticar o cliente C perante
o serviço S. No passo 1 o cliente C requisita ao AS um ticket granting ticket (TGT).
Esse TGT só poderá ser decifrado pelo Kerberos. No passo 2, o cliente obtém o TGT
(TicketTGS) mais a chave de sessão contida nele (KC_TGS) e produz um authenticator cifrado
com essa mesma chave (AuthenticatorTGS).

No passo 3, o cliente C envia TicketTGS e AuthenticatorTGS ao TGS, de forma a provar a
sua identidade. Também indica o serviço com o qual se pretende autenticar, neste caso
S. No passo 4, se o TGS conseguir decifrar AuthenticatorTGS com a chave contida em
TicketTGS e encontrar S na sua base de dados, gera um ticket para S (TicketS) contendo
uma chave de sessão a ser usada entre C e S (KC_S). Por fim, no passo 5 e 6 o cliente C
autentica-se perante o serviço S de forma semelhante à que se autenticou ao TGS.

3 Desafios na Concretização de um Kerberos Tolerante a Intrusões

A norma Kerberos foi criada com um pressuposto muito forte: o processo que con-
cretiza a norma e a máquina que o executa nunca são comprometidos. O único perigo
está na rede, que não assegura por si só a confidencialidade das mensagens. Mas tal as-
sumpção não pode ser dada como garantida na prática. Isso dá origem a um ponto fraco
nesta arquitectura: se o processo que executa o AS/TGS falhar por paragem, torna-se
impossível realizar autenticação a partir do momento em que a falha ocorre. Os clientes
que já tenham adquirido tickets para serviços ainda conseguem dialogar com os serviços
para os quais esses tickets foram gerados4, mas não é possível fazer novas autenticações.

3 Esta ilustração é muito simplificada. Para facilitar a compreensão do protocolo, omitimos de-
talhes como o uso de realms, flags e o tempo de validade e renovação dos tickets.

4 Mas não eternamente, porque os tickets têm um prazo de validade.

TYPHON INForum 2010 – 651

Também é possível que ocorram falhas arbitrárias, como por exemplo falhas de
hardware, bugs e intrusões. No caso das intrusões, as chaves secretas podem ser obtidas,
e quem se apoderar delas pode vir a personificar clientes e serviços.

O desafio neste trabalho é tornar mais robustas as quatro propriedades de segurança
de um serviço Kerberos v5: autenticidade, integridade, confidencialidade e disponibi-
lidade. A propriedade de autenticidade já é oferecida à partida pelo serviço Kerberos
v5, uma vez que o seu objectivo é precisamente garantir a autenticidade dos clientes e
serviços que o usam. Para garantir as três propriedades de segurança restantes, usamos
a técnica de replicação de máquina de estados combinada com um componente seguro
local em cada réplica.

4 Técnica de replicação de máquina de estados

Consideremos uma aplicação cliente/servidor, onde o servidor possui um estado, que
evolui consoante os comandos enviados pelo cliente. A técnica da replicação da máquina
de estados tem por objectivo replicar esse estado em vários servidores [11]. Esses servi-
dores são considerados réplicas.

Os clientes enviam os seus comandos para essas réplicas, e o estado das mesmas
deverá evoluir exactamente da mesma forma. Para isso cada réplica tem que começar
a sua execução no mesmo estado, executar sobre ele apenas operações deterministas
(e.g., não é possível gerar valores aleatórios, nem usar estampilhas temporais) e todos os
comandos devem ser entregues na mesma ordem às réplicas - para este último requisito,
é necessário uma primitiva de difusão atómica [6].

No entanto, é preciso notar que esta técnica de replicação, apesar de reforçar as
propriedades de integridade e disponibilidade, não assegura confidencialidade e auten-
ticidade. Pelo contrário, torna estas propriedades mais fracas. Isto porque ao tornarmos
o sistema replicado, aumentamos a probabilidade de algum servidor ser corrompido.
Como o estado está replicado em todos os servidores e, no caso do Kerberos o estado
corresponde às chaves, basta uma intrusão para que estas sejam obtidas.

5 Protecção das Chaves

Para evitarmos o problema que acabámos de descrever, é necessário garantir que as
chaves armazenadas por cada réplica não fiquem acessíveis mesmo quando a réplica
for comprometida. No nosso sistema, a protecção das chaves é efectuada através da
utilização de um componente seguro [5]. Um componente seguro consiste numa parte
do sistema que se assume ser imune a intrusões, mesmo que o resto do sistema seja
comprometido. Deverá ter uma especificação curta, de maneira a que a sua concretiza-
ção seja simples, para ser exequível verificar as suas propriedades funcionais e não
funcionais.

O componente seguro permite-nos obter a propriedade de confidencialidade, uma
vez que armazena todos os dados confidenciais, i.e., as chaves. Também se delegam
a este as operações que processam esses dados. A ideia é guardar os dados confiden-
ciais no componente e executar operações sobre eles sem que estes sejam expostos ao

652 INForum 2010 João Sousa, Alysson Bessani, Paulo Sousa

resto do sistema. Na secção 6.3 será explicado como é que este componente assegura a
autenticidade.

6 O Serviço TYPHON

Nesta secção descrevemos em detalhe o serviço TYPHON, um serviço de autentica-
ção e autorização tolerante a intrusões. Este serviço foi construído usando a primitiva
de difusão atómica oferecida pela biblioteca BFT-SMaRt [2] e um conjunto de fun-
cionalidades disponibilizadas por um componente seguro designado κ. De notar que
conseguimos conceber este serviço sem subverter a especificação do Kerberos v5 tal
como é apresentada no RFC 4120.

6.1 Modelo de Sistema

Assumimos um modelo e arquitectura de sistema híbridos em que o sistema é com-
posto por duas partes, com propriedades e pressupostos distintos [12]. Estas duas partes
designam-se tipicamente por payload e wormhole. Assume-se que a parte payload é
composta por um conjunto de n ≥ 3f + 1 réplicas e que um máximo de f réplicas
podem falhar de forma arbitrária. Na parte wormhole executa um componente seguro
com as funcionalidades que descreveremos mais à frente. Assume-se que esta parte do
sistema é segura por construção, i. e., não pode ser comprometido por intrusos - desde
que não exista acesso físico à máquina em que esse componente executa. assumesse
que este componente pode falhar por paragem, mas se é só se a réplica associada ao
componente estiver comprometida.

A biblioteca BFT-SMaRt executa na parte payload, assim como os componentes
AS e TGS do serviço TYPHON. Assumimos que esta parte executa sob um modelo de
sistema eventualmente síncrono semelhante ao definido em [4] uma vez que a primitiva
de difusão atómica oferecida pela biblioteca BFT-SMaRt necessita deste pressuposto.
Assumimos também sincronia local, i.e., o tempo máximo de processamento local e a
taxa de desvio de cada relógio local são limitados e conhecidos. Estes pressupostos são
requeridos pelo serviço de estampilhas temporais do BFT-SMaRt. Este serviço é usado
pelo TYPHON tal como será explicado mais à frente.

6.2 Descrição Geral

O AS e o TGS apesar de serem componentes lógicos distintos são executados pelo
mesmo processo. Por sua vez este processo é replicado em várias máquinas, e estas
fazem uso da técnica da replicação da máquina de estados concretizada pelo BFT-
SMaRt.

Se considerarmos que as chaves armazenadas pelo AS e TGS nunca são alteradas,
o Kerberos v5 torna-se num sistema stateless (i.e., o estado nunca é modificado), e
portanto poderia ser concretizado sem o uso da técnica de replicação de máquina de
estados. Mas o TYPHON não tem esta característica e requer a manutenção de estado
consistente nas suas réplicas por pelo menos três razões: (1) o serviço de autorização
pode ser stateful na medida em que pode ter em conta autorizações prévias de um cliente

TYPHON INForum 2010 – 653

para decidir se este deve ou não aceder um novo serviço; (2) por razões de contabiliza-
ção (accountability) e não-repudiação, o TYPHON armazena um histórico de todos os
pedidos recebidos e respectivos resultados, e tal histórico precisa de ser consistente
nas diversas réplicas; e (3) como foi mencionado na secção 4, a geração de estampil-
has temporais não é uma operação determinista, e existe necessidade de estampilhas
consistentes entre as réplicas. Para isso é necessário executar um acordo sobre o valor
de cada estampilha que se queira gerar. A biblioteca BFT-SMaRt já disponibiliza essa
funcionalidade.

Cada réplica tem acesso a um componente seguro. Esse componente guarda dentro
de si as chaves dos clientes e dos serviços e oferece todas as operações essenciais para
realizar operações com elas. Cada componente seguro possui ainda uma chave secreta
que é usada para cifrar dados, gerar chaves de sessão e criar MACs para uma estrutura
de dados especial que são os ticket-approvals (TAs).

TAs são estruturas de dados geradas pelo componente seguro de cada réplica para
garantir que a geração, renovação e validação de um ticket para um serviço é permitida
segundo a politica de autorização definida no TYPHON5. Quando os componentes TGS
das várias réplicas do TYPHON recebem um pedido de ticket de serviço, cada réplica
pede ao seu componente seguro a geração de um TA e envia esse TA para todas as outras
réplicas. Posto isto, cada réplica espera a recepão de 2f + 1 TAs, incluindo o TA dela
própria. Se de entre 2f + 1 TAs existirem pelo menos f + 1 válidos, significa que pelo
menos uma réplica correcta está a autorizar a geração do ticket para esse serviço, logo
o componente seguro de cada réplica pode também gerá-lo. Só são necessários f + 1
TAs válidos porque este passo de validação não é mais do que uma operação de leitura,
logo, de entre esses f + 1 TAs válidos pelo menos um foi necessariamente gerado por
uma réplica correcta, o que significa que a politica de autorização permite a geração do
ticket de serviço.

Para assegurar a sua autenticidade, os TAs incluem um MAC gerado com a chave
secreta dos componentes seguros - que é a mesma para todos. Também incluem dentro
de si um resumo criptográfico dos parâmetros a serem passados ao componente seguro
para a geração do ticket de serviço, de forma a assegurar que um conjunto de f + 1
TAs válidos só pode ser usado para gerar o ticket de serviço a que estão associados.
Dentro de cada TA também está incluído uma estampilha temporal que evita ataques
por repetição.

As chaves de sessão geradas por κ são aleatórias na medida em que são usadas as
estampilhas temporais dos TAs e o valor da chave secreta de κ para criar essas chaves.
As estampilhas garantem que o valor gerado é sempre diferente do anterior - isto é
importante para não se gerar duas chaves com o mesmo valor. A chave de κ garante
que esse valor não se consegue prever, pois a chave está dentro de κ e é secreta, logo,
tornasse inexequível prever que valores vão ser gerados.

Todas as funcionalidades que não necessitem de realizar operações com/ou sobre
as chaves são delegadas ao AS e TGS, como por exemplo definição de flags, verifi-
cação de realms, cálculo da validade dos tickets a serem emitidos, e outras operações
semelhantes.

5 Tal politica pode consistir simplesmente numa matriz de acesso que associa a cada cliente
quais os serviços que este tem autorização para aceder.

654 INForum 2010 João Sousa, Alysson Bessani, Paulo Sousa

Finalmente, existem três alternativas para integrar autorização num serviço ker-
beros, tal como especificado em [7]: no TGS, num serviço à parte, ou nos serviços
destino. A terceira alternativa oferece mais flexibilidade, permitindo que cada serviço
tenha a sua forma de controlo de acesso. Esta alternativa é de facto mais atraente num
sistema super-distribuído com serviços de vários tipos e com diferentes níveis de criti-
cidade. Mas no TYPHON estamos a assumir a primeira alternativa, que fará sentido num
sistema distribuído homogéneo, e é esse tipo de sistema que estamos a assumir. Além
disso, o controlo centralizado facilita a gestão da política de segurança do sistema.

6.3 Componente Seguro κ

Na concepção de um componente seguro é necessário ter em consideração o seguinte:
(1) a quantidade de código no componente (é mais fácil verificar a sua correcção); (2)
a interface do componente (é mais fácil usar e verificar que essa interface não pode
ser usada para fazer acções erradas); e (3) a quantidade de vezes que o componente é
acedido (porque como reside numa máquina separada, é tipicamente lento acedê-lo).

Tendo estas regras em consideração, concretizámos o componente seguro κ, que o
AS e TGS devem utilizar sempre que precisarem de fazer operações que envolvam as
chaves dos clientes e/ou serviços. Existe uma instância de κ por cada réplica do sistema.
κ foi concebido para oferecer as operações mínimas necessárias a executar sobre tickets
que envolvam as chaves. κ também tem uma chave secreta - guardada dentro de κ e só
conhecida por ele - que usa para cifrar chaves de sessão quando são devolvidas para o
resto do sistema. Desta maneira não é necessário guardá-las em κ para preservar a sua
confidencialidade. Essa chave secreta também é usada para gerar os MACs dos TAs.
Como tal chave está armazenada dentro de κ e este não pode ser comprometido, essa
chave mantém-se segura. As operações de κ estão expostas na tabela 1.

Método Argumentos Retorno Sumário
makeTicketApproval timestamp,

client_name,
server_name,
hash_request

ticket_approval Gera ticket-approvals.

encryptParts enc_sessionKey,
ticket_data, reply_data,
ticket_approvals

ticket, reply_enc_part Gera o ticket e a parte
cifrada da resposta do
kerberos.

decryptParts ticket, authenticator,
server_name

ticket_data, auth_data,
enc_sessionKey

Decifra o ticket e o
authenticator enviados
pelo cliente.

decryptPreAuth PrincipalName,
pa_data

byte_array Decifra a pré-auten-
ticaçao do cliente.

Tabela 1. Operações disponibilizadas por κ em cada réplica.

A operação makeTicketApproval gera um ticket-approval (TA) contendo a estampilha
temporal, nome de cliente que requisita o ticket, nome de serviço ao qual o ticket se
destina, e o resumo criptográfico passados à função. Estas estruturas de dados foram

TYPHON INForum 2010 – 655

explicadas na secção 6.2. Nesta função é usada a chave secreta de κ para produzir o
MAC de cada TA emitido.

A operação encryptParts é usado na geração de tickets e na renovação/validação
dos mesmos. Também precisa de receber 2f + 1 TAs gerados pelos componentes κ das
outras réplicas, e pelo menos f + 1 desses TAs precisam de ser válidos para se poder
gerar o ticket.

A operação decryptParts é essencial para decifrar tickets e authenticators. A chave
de sessão contida no ticket passado como argumento é devolvida cifrada com a chave
secreta de κ, de forma a evitar que seja guardada dentro dele.

Finalmente, a operação decryptPreAuth serve para verificar a pré-autenticação do
cliente.

6.4 Interacções

O algoritmo do TYPHON cumpre a especificação do Kerberos v5 e define um con-
junto de interacções adicionais com um componente seguro. Ou seja, as interacções
entre clientes e serviços, assim como as interacções entre clientes e AS/TGS continuam
iguais ao Kerberos v5. No entanto, AS e TGS têm de contactar κ sempre que efectuem
operações relacionadas com as chaves (confidenciais) de clientes e serviços. A figura 2
ilustra estas interacções.

AS TGSC
1. IDC, IDTGS, N1

4. IDC, TicketTGS, EC[KC_TGS, N1, IDTGS]

5. IDC, IDS, N2, TicketTGS,
AuthenticatorTGS

10. IDC, TicketS, EC_TGS[KC_S, N2, IDS]

TicketTGS = ETGS[KC_TGS, IDC]

TicketV = EV[KC_V, IDC]

AuthenticatorTGS=EC_TGS[IDC, Digest]

K

2. IDTGS, IDC, N1

3. TicketTGS, EC[KC_TGS,
N1, IDTGS]

6. IDC, TicketTGS,
AuthenticatorTGS

7. IDC,Checksum, EK[KC_TGS]

8. IDV, IDC, EK[KC_TGS], N2,
ticket_approvals

9. TicketV, EC_TGS[KC_V,N2,IDv]

Resto do SistemaComponente Seguro

Figura 2. Ilustração simplificada das interacções das entidades presentes no TYPHON. A inte-
racção com o serviço foi omitida desta figura porque é igual à da figura 1. A pré-autenticação
também foi omitida por se tratar de um passo opcional segundo o RFC 4120.

No passo 1, C envia um pedido ao AS para obter um TGT. No passo 2, o AS re-
envia os parâmetros desse mesmo pedido para κ, para que este crie um TGT e o tuplo
cifrado a enviar a C.

656 INForum 2010 João Sousa, Alysson Bessani, Paulo Sousa

No passo 3, após criar a chave de sessão (KC_TGS), κ devolve ao AS o TGT (TicketTGS)
e o tuplo cifrado (EC [KC_TGS , N1, IDTGS]). No passo 4, o AS devolve a C o TGT e o tuplo.

No passo 5, C envia um pedido ao TGS para obter um ticket para S. No passo 6,
o TGS re-envia para κ o ID de C (IDC), o TGT (TicketTGS) e o authenticator (Authenti-
catorTGS). No passo 7, κ decifra estas duas estruturas e devolve o seu conteúdo ao TGS,
com o cuidado de cifrar a chave de sessão contida no TGT com a sua própria chave
secreta (EK[KC_TGS]) - pois se o TGS for comprometido por um agente malicioso, este
teria acesso a essa chave.

Após o TGS terminar as operações sobre os dados do TGT/authenticator e calcular
novos dados de acordo com o RFC 4120, irá invocar κ para este criar um ticket para S.
Esta interacção está representada nos passos 8 e é semelhante àquela que cria o TGT,
com a diferença de que é especificado o identificador de S em vez do identificador do
TGS, e também é fornecido EK[KC_TGS] de forma a que κ consiga criar EC_TGS [KC_V , N2,
IDV]. Também é neste passo que todas as réplicas do sistema geram ticket-approvals e
os enviam para as outras, para provar a κ que C tem autorização para interagir com S e
por isso o ticket pode ser gerado.

No passo 9, κ devolve ao TGS o ticket para S (IDS) e o tuplo cifrado que contém
a chave de sessão entre C e S (EC_TGS [KC_S , N2, IDS]). No passo 10, estes são finalmente
entregues pelo TGS a C. A partir daqui, a interacção entre C e S é igual à do Kerberos
normal.

As interacções apresentadas aqui visam preservar a confidencialidade das chaves.
Como κ é um componente seguro, as chaves nunca serão reveladas ao exterior, mesmo
que no limite todas as réplicas sejam comprometidas. Isto porque κ não tem nenhuma
operação que devolva as chaves. Os únicos dados confidenciais que o κ devolve são
chaves de sessão, que vêm cifradas com a chave secreta deste. Se o tempo de utilidade
dessas chaves (de sessão) for mais curto que o tempo que é necessário para quebrar
a sua cifra através de um ataque de força bruta, também não é possível que intrusos
consigam obter essas chaves em tempo útil. Também não se consegue gerar tickets
para serviços arbitrariamente se o sistema for comprometido, devido ao uso de ticket-
approvals, tal como explicado nas secções 6.2 e 6.3. Desta forma, conseguimos reforçar
as propriedades de confidencialidade e autenticidade.

Note-se que os TAs não seriam necessários se estivéssemos a assumir que o TY-
PHON seria apenas um serviço de autenticação, deixando de lado a autorização. Os TAs
servem para provar que existe pelo menos uma réplica correcta a fabricar esses tickets,
o que significa que o cliente que requisitou esse ticket tem permissão para contactar
o serviço que deseja. Mesmo que um intruso invadisse uma réplica e usasse κ para
produzir tickets falsos em nome de outro cliente, este não conseguiria obter a chave
de sessão que deve ser usada para fabricar o authenticator que deverá ser apresentado
ao serviço para o qual se quer autenticar. Como não teria um authenticator para apre-
sentar, não conseguiria fazer-se passar pelo cliente legítimo. Também não conseguiria
usar ataques de repetição, pois a própria especificação do Kerberos está feita para se
defender disso.

TYPHON INForum 2010 – 657

7 Avaliação

Nesta secção comparamos a latência e o débito de TYPHON e ApacheDS. O ApacheDS
é um serviço de nomes e directorias, mantido pela Apache, que concretiza especifi-
cações como LDAP e Kerberos v5.

O TYPHON e o ApacheDS estão ambos escritos na linguagem Java. Como já foi
referido, o TYPHON usa a bibliteca BFT-SMaRt, que também está escrita em Java.
O TYPHON tem 2943 linhas de código (não contando as 7557 linhas de código da
biblioteca BFT-SMaRt) e apenas 8,7% são executadas pelo componente seguro.

O nosso ambiente de testes consistiu em um conjunto de 5 máquinas interligadas por
um switch gigabit. Para avaliar o TYPHON, replicá-mo-lo em quatro máquinas (n = 4)
de forma a tolerar uma falta (f = 1) em alguma dessas 4 máquinas. A restante máquina
executa todos os processos cliente, que estão constantemente a pedir um TGT seguido
de um ticket de serviço. O ApacheDS foi avaliado de forma semelhante, com apenas
numa máquina a executar o serviço e tendo um cliente noutra máquina a enviar-lhe
pedidos da mesma forma que no caso do TYPHON.

Efectuámos dois tipos de experiências. Na primeira avaliámos a latência fim-a-fim
da geração de um TGT seguido da geração de um ticket de serviço. Na segunda exper-
iência medimos a quantidade de TGTs e tickets de serviço que se conseguem gerar por
segundo. Estas experiências foram efectuadas em ambos os sistemas e os resultados são
descritos na próxima secção.

7.1 Latência

Os resultados dos testes de latência são exibidos na tabela 2. Para cada sistema, foram
efectuados 20.000 pedidos de TGTs e tickets de serviço, tendo-se calculado a média
da latência dos últimos 10.000 pedidos. Os primeiros 10.000 pedidos foram utilizados
para forçar a máquina virtual Java a fazer uso do compilador JIT (Just-In-Time) para
transformar em código máquina as instruções do ApacheDS e TYPHON que tratam dos
pedidos de TGTs e tickets de serviço.

TYPHON ApacheDS
TGT Ticket de serviço TGT Ticket de serviço
4.6 5.7 26.3 3.0

Tabela 2. Resultados dos testes de latência para ambos os sistemas (em milisegundos).

Os resultados da latência dos tickets de serviço mostram que o TYPHON é mais
lento a realizar essa operação do que o ApacheDS. Por outro lado, podemos observar
que o ApacheDS é bastante mais lento do que o TYPHON na geração de TGTs. Este
resultado é inesperado, mas sabemos que enquanto o TYPHON guarda todos os seus
dados em memória depois de ser inicializado, o ApacheDS vai buscá-los ao disco. Isto
explica que a latência do ApacheDS seja maior que a do TYPHON6.

6 No entanto, após contactar a equipa de desenvolvimento do ApacheDS, ficámos a saber que
este devia guardar essa informação numa cache em memória. Eles próprios fizeram os seus
testes de latência e confirmaram os nossos resultados, mas ainda precisam de investigar o que
está a acontecer que explique este fenómeno.

658 INForum 2010 João Sousa, Alysson Bessani, Paulo Sousa

A diferença entre os valores de latência do TYPHON para TGTs e tickets de serviço
é explicada pelo facto dos TGTs não requererem a utilização de TAs, enquanto que os
tickets de serviço requerem. A latência média do envio e recepção de TAs corresponde
portanto a 1.1 ms, a diferença entre a latência dos tickets de serviço (5.7 ms) e a latência
dos TGTs (4.6 ms). No entanto é necessário ter em consideração que numa situação
real o TYPHON teria que gerar mais tickets de serviços do que TGTs, e o ideal seria que
fossem os tickets de serviço a ter uma latência menor.

7.2 Débito

Para computar o débito, calculámos o número de pedidos por segundo processados por
ambos os sistemas em intervalos de 1000 pedidos. Como a escalabilidade pretendida é
em termos de clientes, aumentámos progressivamente o número de clientes de forma a
observar o ponto de saturação de cada sistema. A figura 3 reporta os resultados.

TGT's

Page 1

Clientes Débito (Typhon)Débito (ApacheDS)Débito (Typhon sem TAs)

2 119,86 63,54 141,92

4 166,83 126,79 213,04

6 183,32 151,22 260,28

8 197,63 188,82 311,43

10 208,77 222,77 306

12 225,43 255,43 318,98

14 229,2 288,85 320,92

16 245,88 324,46 356,38

18 259,27 329,71 372,44

20 263,64 329,06 377,64

2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

Débito dos TGTs

Débito
(Typhon)

Débito
(ApacheDS)

Débito (Typhon
sem TAs)

Número de Clientes

P
e
d
id

o
s
/S

e
g
u

n
d
o

(a) Débito da geração de TGTs.

Tickets

Page 2

Clientes Débito (Typhon)Débito (ApacheDS)Débito (Typhon sem TAs)

2 119,86 63,43 144,22

4 166,83 127,16 212,9

6 184,33 145,84 260,35

8 197,71 178,64 307,6

10 208,81 210,04 305,9

12 227,17 231,32 318,67

14 230,89 258,33 320,82

16 245,94 287,85 356,63

18 258,8 282,49 372,44

20 263,23 289,44 375,66

2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

Débito dos Tickets de Serviço

Débito
(Typhon)

Débito
(ApacheDS)

Débito (Typhon
sem TAs)

Número de Clientes

P
e
d
id

o
s
/S

e
g
u

n
d
o

(b) Débito da geração de tickets de serviço.

Figura 3. Resultados dos testes de débito para os serviços ApacheDS e TYPHON (com e sem
ticket-approvals).

Os gráficos mostram um comportamento semelhante tanto no caso de TGTs como
de tickets de serviço, e sugerem que quando se trata de poucos clientes a enviar em si-
multâneo, o TYPHON mostra melhor comportamento que o ApacheDS. Mas a partir de
10 clientes, o TYPHON estagna, e o ApacheDS passa a apresentar melhores resultados.
No entanto, a partir de 20 clientes também o ApacheDS estagna, apesar de se manter
mais eficiente que o TYPHON.

Finalmente, fizemos um último teste retirando o uso de TAs da concretização do TY-
PHON, tornando-o somente num serviço de autenticação. Observámos que a remoção
deste passo faz com que o sistema se torne mais eficiente a processar pedidos, chegando
ao ponto de mostrar melhores desempenhos que o ApacheDS.

8 Trabalhos Relacionados

No passado foram propostos alguns serviços de segurança tolerantes a intrusões (e.g.,
autoridade de certificação COCA [13], serviço de gestão de chaves Ω [10], firewall
aplicacional CIS [3]). No entanto, tanto quanto é do nosso conhecimento, este trabalho
é o primeiro a apresentar um serviço de autenticação e autorização tolerante a intrusões
que cumpre a norma Kerberos v5.

TYPHON INForum 2010 – 659

9 Conclusão

O Kerberos v5 é uma norma que especifica como clientes e serviços se devem autenticar
mutuamente por intermédio de uma entidade centralizada que guarda as chaves de todos
os participantes. O problema reside na possibilidade dessa entidade centralizada falhar,
quer seja por paragem, arbitrariamente ou até por intrusão. Se isso acontecer não é
possível fazer mais autenticações de clientes ou serviços.

Neste artigo apresentámos o serviço TYPHON, um serviço de autenticação e autori-
zação que segue a especificação do Kerberos v5 ao mesmo tempo que introduz na sua
concretização mecanismos para tolerar intrusões. Por um lado, usa a técnica de repli-
cação da máquina de estados para oferecer tolerância a faltas arbitrárias. Por outro lado,
faz uso de componentes seguros para guardar as chaves dos clientes e dos serviços de
forma a assegurar que estes não são expostos na eventualidade de intrusões.

Finalmente, os resultados da avaliação do serviço TYPHON mostram que o seu de-
sempenho é similar ao do ApacheDS, um serviço de autenticação e autorização não
replicado que concretiza a norma Kerberos v5.

Agradecimentos. Este trabalho é suportado pela FCT através de seu programa multi-
anual (LaSIGE) e através dos projectos PTDC/EIA-EIA/100581/2008 (REGENESYS)
e CMU-Portugal (CMU-PT/0002/2007).

Referências
1. ApacheDS - An embeddable directory server entirely written in Java. http://

directory.apache.org/.
2. BFT-SMART - High-performance Byzantine fault-tolerant State Machine Replication.

http://code.google.com/p/bft-smart/.
3. A. Bessani, P. Sousa, M. Correia, N. F. Neves, and P. Verissimo. The CRUTIAL way of

critical infrastructure protection. IEEE Security & Privacy, 6(6):44–51, Nov-Dec 2008.
4. M. Castro and B. Liskov. Practical Byzantine fault-tolerance and proactive recovery. ACM

Transactions Computer Systems, 20(4):398–461, Nov. 2002.
5. M. Correia, P. Veríssimo, and N. F. Neves. The design of a COTS real-time distributed

security kernel. In Proc. of the 4th European Dependable Computing Conference, Oct. 2002.
6. V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts and related

problems. Technical report, Cornell University, May 1994.
7. S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer. Section E.2.1 kerberos authenti-

cation and authorization system, Apr. 13 1989.
8. B. C. Neuman and T. Ts’o. Kerberos: An authentication service for computer networks.

IEEE Communications Magazine, 32(9):33–38, Sept. 1994.
9. C. Neuman, S. Hartman, and K. Raeburn. The kerberos network authentication service (v5).

Internet Engineering Task Force RFC 4120, July 2005.
10. M. K. Reiter, M. K. Franklin, J. B. Lacy, and R. N. Wright. The Ω key management service.

In Proc. of the 3rd ACM Conf. on Computer and Communications Security, 1996.
11. F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A

tutorial. ACM Computing Surveys, 22, Dec. 1990.
12. P. Verissimo. Travelling through wormholes: a new look at distributed systems models.

SIGACT News, 37(1):66–81, 2006.
13. L. Zhou, F. Schneider, and R. Van Rennesse. COCA: A secure distributed online certification

authority. ACM Transactions Computer Systems, 20(4):329–368, Nov. 2002.

660 INForum 2010 João Sousa, Alysson Bessani, Paulo Sousa

Web Application Risk Awareness with

High Interaction Honeypots ?

Sergio Nunes1 Miguel Correia2

1 Novabase 2 Universidade de Lisboa

Abstract. Many companies are deploying their business on the Internet
using web applications. Risk awareness allows to mitigate the security
risk of these applications. This paper presents an experiment with a col-
lection of high interaction web honeypots in order to analyze the attack-
ers' behavior. Di�erent security frameworks commonly used by compa-
nies are analyzed to evaluate the bene�ts of the honeypots security con-
cepts in responding to each framework's requirements and consequently
mitigating the risk.

Resumo. Muitas empresas estao a lançar o seu negócio na Internet us-
ando aplicações web. O risk awareness permite mitigar o risco associado
a essas aplicações. Este trabalho apresenta uma experiência com um
conjunto de honeypots web de alta interação, de modo a analisar o com-
portamento dos atacantes. Diferentes security frameworks utilizadas por
empresas são analisadas para avaliar os benefícios do uso de honeypots
web no contexto da mitigação de risco.

1 Introduction

Nowadays, most of the tra�c circulating in the Internet is web tra�c, traveling
over the HTTP and HTTPS protocols. As multiple applications are moving to
the web with the Web 2.0 phenomenon, this type of tra�c tends to increase.
The Web provides uni�ed access to dynamic content with a simple browser, be-
ing able to encapsulate and integrate multiple technologies. There are multiple
web rami�cations divided among multiple browsers, webservers, web languages
and databases that must all function �awlessly together, despite the involved
complexity. The development of such web applications in its own is a complex
task. Developers su�er pressure regarding time to market minimization and this
leads to time sparing in software testing procedures. Without adequate security
testing, web applications are deployed with multiple vulnerabilities. The data ac-
cessed through web applications is becoming more and more critical, containing
private information that enables �nancial transactions in multiple online busi-
nesses. This vicious cycle is growing and organizations are unable to foment the
necessary risk awareness to be able to analyze these new web threats.

? This work was partially supported by the FCT through the CMU-Portugal partner-
ship and the Large-Scale Informatic Systems Laboratory (LaSIGE).

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 661–672

This new massi�cation of web technologies poses multiple questions regarding
information security: What is the role of security with this signi�cant change?
Is there an improvement in the con�dentiality, integrity and availability of in-
formation with this new situation? Are there any new security threats that put
information at risk?

The objectives of this paper are to address these questions by implementing a
high-interaction honeypot environment composed of several common web appli-
cations used in the Internet that have reported vulnerabilities. By exposing these
vulnerable web applications in a monitored honeypot architecture, the attacks
can be captured and investigated, along with the tools and actions of the attacker
after the intrusion. The proactive honeypot deceptive techniques record as close
as possible the attackers' behavior to minimize his/her advantage, instead of
relying in the common prevention, detection and reaction security approach, in
the usual situation of waiting to be attacked. The careful analysis of the detailed
gathered attack data and the know-how gained by managing honeypots, provides
an insight about the modus operandi and motives of the attacker, classifying him
according to a pre-established pro�le.

Having the attacker pro�le de�ned, the threat model can be speci�ed in order
to develop the necessary risk awareness and risk mitigation controls. Risk mit-
igation is accomplished in organizations by employing a variety of information
security, compliance and risk frameworks that address multiple domains across
the wide information technology environment. The paper considers three frame-
works: ISO/IEC 27001 , Cobit and PCI-DSS. These frameworks present a major
focus in security guidelines by providing speci�c control requirements and objec-
tives to control risk in organizations integrating people, processes and technology
as a whole. These frameworks present most of the time general guidelines that do
not descend to speci�c security technologies, so it is important to evaluate how
common security technology concepts adapt to these frameworks. Honeypots can
bring added value to such frameworks by satisfying multiple enumerated control
requirements.

In a nutshell, the paper tackles its objectives in a sequence of three steps:

1. Recollection of attack data using a high-interaction honeypot environment
with several common web applications;

2. Web application attackers pro�ling based on the data obtained in step 1;
3. Analysis of the honeypots' bene�ts to the security guidelines provided in

common risk assessment frameworks, based on the results of steps 1 and 2.

2 Context and Related Work

The honeypots' main function is to be probed and attacked [15,1,3,13]. The value
of this security mechanism relies on monitoring the real steps and tools of a real
attack and learning where the unknown vulnerabilities lie and how to protect
the critical information assets. These monitoring and decoy capabilities aid the
security professional in developing the required know-how of the modus operandi

662 INForum 2010 Sérgio Nunes, Miguel Correia

of the attacker and infer the security situational awareness of his network to plan
for the adequate safeguards and e�ective incident responses [16].

Web honeypots are means for gathering web attack information and develop
situational risk awareness [6,14]. The Google Hack Honeypot (GHH) [10] re-
veals a new use for honeypots as it simulates vulnerable web applications that
are commonly searched by attackers over search engines. The attacking search
procedure uses careful placed search queries that are able to �nd vulnerable
applications by matching speci�c strings in the previous indexed information.
Mueter et al. developed a toolkit for converting automatically PHP applications
into high-interaction honeypots [11]. They tested the Honeypot-Creator against
a wide variety of applications and analyze the results using their high interaction
analysis tool (Hihat).

What is the risk to business operations of an attack happening? Most of the
time, this question remains unanswered in organizations that have services and
do business over the Internet. It is crucial to mitigate the security risk using
common frameworks of risk management and compliance. The regulatory com-
pliance that organizations must meet should be dealt with due care by the upper
business management, so it is necessary to have an e�ective way of controlling
and securing information technologies. Nowadays there are multiple compliance
and risk frameworks so the question remains which to use and where to direct
its e�orts to achieve adequate risk mitigation.

The ISO/IEC 27001 is an international standard that provides a model for
establishing an Information Security Management System (ISMS) as a strategic
organization decision [8]. The objective of an organization by being certi�ed in
this standard is the compliance that it has put e�ective information security
processes in place, instead of applying non repeatable ad-hoc procedures. The
certi�cation issued by an independent third party serves as evidence that the
security controls exist and function according to the standard requirements.
This evidence can serve as advantage against competitors, can respond to the
compliance requests of some costumers and assures business security following
best practices which generate a trust relationship.

The Information Systems Audit and Control Association published the Con-
trol Objectives for Information and Related Technology (Cobit) to help informa-
tion technology governance professionals to align technology, business require-
ments and risk management [7]. Cobit is positioned at the higher business man-
agement level dealing with a broad range of IT activities and focuses on how to
achieve e�ective management, governance and control.

The Payment Card Industry Data Security Standard (PCI-DSS) was de-
veloped to assure cardholder data security and unify consistent data security
measures globally [12]. It was created by American Express, Discover Financial
Services, JCB, MasterCard Worldwide and Visa International to establish re-
quirements for the security of the payment card industry a�ecting everyone that
stores card payment data, including common online commercial transactions.

Web Application Risk Awareness ... INForum 2010 – 663

3 Web Application Honeypots

3.1 Honeypot environment

This section deals with the planning, implementation, con�guration and analy-
sis of the high interaction honeypot environment. The main requirement for this
environment was the ability to gather detailed attack and malicious action in-
formation that provided a real situational risk awareness regarding web attacks.
The environment had to be similar to a real production deployment. The option
chosen was to deploy a virtual high interaction honeynet, because it does not
limit the attacker's actions. The testbed was composed by real operating sys-
tems, webservers, databases and web applications constrained by virtualization.

The honeypots network, also known as honeynet, had to be managed re-
motely under secure conditions due to the high monitorization that this sort of
high interaction honeypots needs. The solution relied on the use of a management
station with SSH access over the Internet [4].

Minimize the management burden was another requirement that is tackled
with the deployment of VMware Server that allows transparently copying and
moving of honeypot virtual machines. The possibility of emulating ISO images
as a virtual cd-rom also accelerates the installation process. VMware Server also
provides the possibility of deploying checkpoints to be able to return to previous
states if the honeypots are compromised or intermediate state forensic analysis
is needed.

There is the risk of the attacker targeting other systems after honeypot com-
promise, so this situation must be controlled and safeguarded as a requisite. The
response was the use of Honeywall, a layer 2 bridge with �ltering, attack detec-
tion and connection limiting capabilities between the honeynet and the Internet
and the possibilities of monitorization of the virtual honeypot in the host oper-
ating system employing the principle of security layering by employing multiple
approaches [2].

The hardware used was composed by 12 Dell and Fujitsu Siemens Pentium
4 and Core 2 Duo PCs with 512MB to 2GB of RAM. One PC was used as
the Honeywall bridge, another was the management console and the remaining
ones were the VMware Server hosts used for the honeypots. The management
and honeypot networks used two dedicated HP Procurve 2600 series switches
physically separated. The software used for the honeypot host systems was a
minimal installation of Ubuntu 8.04 which is the most recent version supported
by VMware Server 2.0.1.

The honeypot host systems had two network interfaces (NICs): one con�g-
ured static IP address for management and the other con�gured with access to
VMware without IP address. The management is performed over SSH and via
the VMware management console over the management NIC. The xtail com-
mand line utility was installed and con�gured for watching the VMware virtual
disk �les. Monitoring of the honeypots was done using Sebek, a kernel module
designed by the Honeynet project for that purpose [15,5].

664 INForum 2010 Sérgio Nunes, Miguel Correia

The honeypots implemented used di�erent operating systems, di�erent web-
servers, di�erent databases and di�erent web applications developed in di�erent
languages, as can be seen in Table 1. The operating system choice division was
based on compatibility with Sebek and representativeness in the Internet hosts
commonly used as webservers. The name of the honeypots represent the operat-
ing system installed with �webserver� for the Linux machines, �xp� for Windows
XP machines and �win2003� for Windows 2003 machines.

Honeypot Name Operating System Webserver Database Application

Webserver1 Ubuntu 7.10 Apache 2.2.4 Mysql PHPbb

Webserver2 Ubuntu 7.10 Apache 2.2.4 - Wordpress

XP1 Windows XP Apache Mysql EasyPHP

Win2003 Windows 2003 IIS 6.0 SQLServer Snitz Forum

Webserver3 Ubuntu 7.10 Apache 2.2.4 Mysql PHPNuke

Webserver4 Ubuntu 7.10 Apache 2.2.4 Mysql PHPmyadmin

Webserver5 Ubuntu 7.10 Apache 2.2.4 Mysql PHP-fusion

XP2 Windows XP IIS 5.1 - ASP-CMS

XP3 Windows XP Tomcat - JSP Examples
Table 1. Honeypots speci�cation

3.2 Experimental results

This section presents an overall statistical analysis of the results gathered from
the honeypot environment from June to September of 2009 with the analysis of
the attack information across di�erent detailed graphs.

Figure 1 shows that during this time frame our environment su�ered a total
of 8858 attacks. It can also be observed that the �rst honeypot named �web-
server1� (see Table 1) su�ered more attacks that the other honeypots. This can
be explained by its position in the IP address range as the �rst host serving
HTTP requests as a webserver. Detecting the availability of a webserver, the
attacker starts by targeting automatically this host with all his arsenal of web
exploits without checking the installed web application and gives up without
probing sequentially the next IP address.

The large majority of the attacks detected were not speci�c to the applica-
tions installed, but randomly or sequentially scanned across the honeypot IP
address range for multiple speci�c vulnerabilities. The number of targeted at-
tacks is 498 representing only 6% of the total of targeted and untargeted attacks.

The diversity of operating systems and webservers present in our honeypot
environment does not in�uence the attack number results as there is no signi�-
cant distinction on attack rate by operating system or when comparing webserver
technologies as it can be observed in Figure 1.

Attacks to web applications (Figure 2) reveal that PHP is the most attacked
web language with PHPMyAdmin as the most attacked application, while the

Web Application Risk Awareness ... INForum 2010 – 665

Fig. 1. Number of attacks by honeypot (8858 total)

other installed applications present no signi�cant number of attacks with the
exception of the tomcat manager. There is a signi�cant amount of blind attacks
to commonly used Internet web applications that were not installed in the envi-
ronment like Horde, Roundcube or Zencart. These web applications are widely
deployed over the Internet so attackers prefer to conduct random or sequential
exploitation in order to compromise the highest number of machines possible
with little target search and information gathering procedures.

Fig. 2. Percentage of attacks by application

As it can be seen in Figure 3, there is a large amount of URL bruteforcing
attacks, trying to �nd hidden applications with known vulnerabilities by enumer-
ating default locations and version numbers. Direct command execution is also
tried across multiple known vulnerable applications, because of the simplicity
in compromising vulnerable hosts in this manner. Code Injection was accom-
plished against a known vulnerability in PHPMyadmin and remote �le include
was tried in requests to non existent vulnerable web applications in our envi-
ronment. Authentication bruteforce attacks were performed against the tomcat
manager application.

Figure 4 shows the worldwide origin attack distribution that probed our en-
vironment based on source addresses using GeoIPlite country mapping database
by Maxmind [9]. There were 272 di�erent attack sources detected with an av-
erage of 32 attacks by country. The United States was the main source of at-
tack of the environment followed by China as the new rising star in hacking
attempts with their huge evolution in technological resources. The addition of

666 INForum 2010 Sérgio Nunes, Miguel Correia

Fig. 3. Percentage of attacks by type

both these sources represents more than half of the attacks veri�ed in the hon-
eypot testbed. The diversity of attacking countries captured by the environment
shows that there are attackers almost everywhere that try to intrude systems
over the Internet bypassing any geographical borders, language barriers and cul-
tural issues. There were only 9 attacks detected from Portuguese sources, which
consisted only of web server �ngerprinting attempts.

Fig. 4. Top attacking countries

Some of these attack sources can be innocent hosts that were previously
intruded and are used as remote headquarters for conducting further attacks.
The wide search for open proxies veri�ed in the honeypot testbed also shows
these resources are being used to masquerade the real source of attacks.

Comparing these results with the statistics of recent web attacks, we can
conclude that that there was no attempt to exploit multiple cross site scripting
and SQL injection vulnerabilities present in our environment, as these vulner-
abilities require more knowledge to adapt to the attacker's �nal objective. The
major threat of information leakage was not veri�ed in our environment as it
does not present real sensitive information. It can be veri�ed that our environ-
ment su�ered a high number attacks that show a rise of web threats, but as the
number of targeted attacks is low it is impossible to see a wide variety of attack
and vulnerability types. The high number of untargeted attacks su�ered by our
environment dictates that there is a maximization of quick intrusion e�orts by
probing the entire Internet address space for a recent disclosed vulnerability.

Web Application Risk Awareness ... INForum 2010 – 667

3.3 Attacker pro�ling

Based on the data and evidence gathered in our honeypot environment, this
section deals with pro�ling the attackers of our environment, describing the
characteristics and modus operandi that allow recognizing their behavior.

Most of the attacks that we faced were driven by script kiddies testing the
latest disclosed exploit globally throughout the Internet, without even �rst �n-
gerprinting the web server to see if it runs the vulnerable application. They were
apparently driven by pure curiosity as most of them replayed the published ex-
ploit without any code changes and repeated its execution multiple times when,
in some cases, there was no possibility of success. Most of them jumped the nec-
essary information gathering and scanning phase to try directly to get access to
the supposed vulnerable system. The intrusion can be easily identi�ed as most
of these individuals do not have su�cient skills to erase e�ectively their tracks or
remain undetected inside the host. Their attacks are untargeted as they sweep
multiple host ranges using the disclosed exploit sequentially with no focus on the
system as a whole or its data value, but only as a single IP address inside the
range chosen. Others performed enumeration tasks in the scanning phase looking
for speci�cally unprotected administration components using published scripts
and tools. When those components were found with authentication requirements,
they conducted default and common user and password enumeration. This be-
havior reveals a more practical knowledge with pro�ciency in the use of malicious
attacking tools, being able to analyze the results provided by them. As the re-
sults show failure in exploitation or take to much time to complete, they jump
to the next system without analyzing further ways of intrusion.

A minority of attacks has evidence of bot owners as they have a modus
operandi similar to script kiddies, but their main motivation is to install a bot
to control the target remotely. They also start directly in the gaining access phase
by searching for a speci�c vulnerability along a prede�ned range of IP addresses
to maximize the intrusions and consequently the number of bots installed. After
identifying a successful intrusion they upload, install and hide the bot auto-
matically using an automated deployment script. The remote bot management
is performed using an alternative protocol such as IRC, having possibilities of
upgrading the bot software and of performing manual commands on the com-
promised host. Another di�erence in this modus operandi when comparing with
script kiddies is that they are worried in hiding the bot and remain undetected,
by for example disabling the anti-virus or installing a rootkit, in order to main-
tain the access to their zombies active and continue increasing the botnet power
and size. This botnet power and size are the main factors that in�uence the pro�t
when selling the botnet in the black market, if �nancial gain is the attacker's
major motivation.

Our honeypot infrastructure is installed in a university IP range and has no
real challenge regarding data value. The honeypot applications installed tried to
simulate con�dential data value such as students' forums, blogs and administra-
tion panels with prede�ned known vulnerabilities. Any knowledge attacker will
�rst gather information about the target and conclude that it is situated in a

668 INForum 2010 Sérgio Nunes, Miguel Correia

university and unless he has speci�c reasons to attack that host, he will continue
his challenge elsewhere. The only event for which we can conclude that the at-
tacker gathered information about the IP range ownership was the attempt to
proxy requests to a scienti�c subscription article site. The attacker researched
that multiple universities have access to scienti�c subscription article sites and
some of those sites authenticate the subscription with the universities source
IP address providing access to paid articles. The motive of this attack can be
classi�ed as pro�t to save money by not buying the individual articles directly
onsite or selling this privileged information to other individuals looking to access
the scienti�c subscription articles for less money than the online subscription.

4 Risk Awareness

There are multiple frameworks commonly used by organizations that help us to
organize an information security system measuring the risk involving IT assets.
This section analyzes how the honeypots can contribute to the risk awareness
concerning threat and vulnerability identi�cation by looking at multiple frame-
works in a methodological critical approach. Using the knowledge gathered from
the honeypot testbed experience and the pro�ling of the attacker's mindset, an
evaluation is performed to research how the honeypot concepts adapt to each
framework's objectives and controls, bringing added value to the organization's
risk mitigation requirements.

The ISO/IEC 27001 standard mandates to monitor and review the ISMS to
identify attempted and successful security breaches and incidents. The honeypots
could bring to this requirement increased added value when compared to tradi-
tional intrusion detection systems, because of the detailed information gathered
about an attack, which enables gaining real know-how and situational awareness
of the risk that the asset faces. The usual intrusion detection systems deployed
in organizations commonly match attack signatures with attacking procedures
full of false positives and deviate the time of security personnel from protecting
the critical assets.

In ISO/IEC 27002, the supporting standard for ISO/IEC 27001, there are
some controls that can be adapted to the added value of honeypots. The control
for protection against malicious code (27001 Annex A.10.4.1) can be comple-
mented with a honeypot by performing evaluation of malicious code using client
honeypots and by having a honeypot infrastructure capable of monitoring mali-
cious code spreading mechanisms. The use of multiple di�erent malware analysis
is suggested in the standard as a vector to improve the e�ectiveness of malicious
code protection.

The ISO/IEC 27002 standard suggests that is necessary to reduce risks from
exploitation of technical vulnerabilities (27001 Annex A.12.6). The control de-
�nes that timely information about technical vulnerabilities of information sys-
tems being used should be obtained, the organization's exposure to such vul-
nerabilities evaluated and appropriate measures taken to address the associated
risk. This is the main focus of the honeypot technology and by adequate use of

Web Application Risk Awareness ... INForum 2010 – 669

honeypots it is possible to accomplish this goal of establishing an e�ective man-
agement process for technical vulnerabilities that responds to the requirements.

The ISO/IEC 27002 standard details the need to ensure a consistent and
e�ective approach to the management of information security incidents (27001
Annex A.13.2.2). It suggests de�ning the responsibilities and procedures to deal
with the incidents collecting forensic evidence for internal problem analysis. The
forensic evidence can also be used to pursue a legal action preserving the chain
of custody that assures the admissibility in court. This collection of evidence can
be gathered using honeypots or honeypot data gathering mechanisms. It can be
seen that the chain of custody has multiple requirements to be admitted in court,
so training how to collect and preserve the evidence should be an exercise �rst
performed on decoy systems such as honeypots, to prepare for a real incident on
production systems.

The ISO/IEC 27002 standard states that there should be a learning experi-
ence from information security incidents allowing the incidents to be monitored
and quanti�ed. The information gained from the evaluation of information secu-
rity incidents should be used to identify recurring or high impact incidents. This
learning can be developed with the risk and threat awareness delivered with the
continuous use and analysis of honeypots. Honeypots were created precisely as
a mechanism for learning about the modus operandi of attackers.

In the ISO/IEC 27002 standard there is a section concerning the correct
processing in applications (27001 Annex A.12.2) detailing components such as
input and output data validation that are the cause of multiple web attacks like
those analyzed in this paper. Although honeypots are no direct defense against
those attacks, they provide the necessary learning and research capabilities nec-
essary for secure programming and correct evaluation of the risk that results
with the lack of validation in applications. The attacked decoy web applications
can measure the threat level and serve as case studies for future applications
developed.

The protection of organizational records is also a subject detailed in the
ISO/IEC 27002 standard regarding its loss, destruction or manipulation (27001
Annex A.12.5.4). Organization information disclosure attacks happen frequently
in an enterprise and they are di�cult prevent or even to detect. The concept of
honeytokens can help in the detection of disclosure of critical data by placing
careful bogus monitored records in such datastores and track those records while
they travel through the network serving as a warning that the data is being
disclosed.

A similar analysis has been done to COBIT and PCI-DSS, but it is not
possible to show it for space reasons. Table 2 summarizes the results of the
analysis done for the three frameworks.

It can be observed in the table that the honeypots can bring bene�ts to
multiple requirements in each framework. More generically, the major bene�ts
of using honeypot concepts when dealing with risk frameworks are:

� The creation of a risk awareness culture being able to correctly identify the
threats to IT and evaluate the impact to business of attacks;

670 INForum 2010 Sérgio Nunes, Miguel Correia

Honeypot Concept ISO/IEC 27001

Risk Awareness 4.2 Establishing and managing the ISMS

Secure Coding A.12.2 Correct processing in applications

Malicious Code Detection A.10.4.1 Controls against malicious code

Information Disclosure Detection A.12.5.4 Information leakage

Vulnerability Management A.12.6 Technical vulnerability management

Incident Response A.13.2.2 Learning from information security incidents

Honeypot Concept COBIT

Risk Awareness PO9 Assess and manage IT risks

Secure Coding AI2 Acquire and maintain application software

Malicious Code Detection DS5.9 Malware prevention, detection and correction

Information Disclosure Detection DS11.6 Security requirements for data management

Vulnerability Management DS5.5 Security testing, surveillance and monitoring

Incident Response DS5.6 Security incident de�nition

Honeypot Concept PCI-DSS

Risk Awareness 12.1.2 Identify threats and vulnerabilities, conduct
risk assessment

Secure Coding 6.5 Develop all web applications with secure coding
guidelines

Malicious Code Detection 5.1.1 Detect, remove and protect against malware

Information Disclosure Detection 3.1 Keep cardholder data storage to a minimum

Vulnerability Management 6.2 Identify newly discovered security vulnerabilities

Incident Response 12.9 Implement an incident response plan
Table 2. Honeypot bene�ts to three frameworks studied

� The promotion of secure coding by learning from the application attacks
su�ered, evaluating the coding vulnerabilities that were explored and devel-
oping the safeguards necessary to correct them;

� The detection of malicious code due to monitorization of propagation at-
tempts and unusual activity, along with the testing of suspicious webpages
and binaries in a test decoy environment;

� The detection of disclosure of information with the monitorization of decoy
bogus items (honeytokens);

� The creation of an accurate and timely vulnerability management framework
being able to identify, analyze and patch with a minimum time delay recently
disclosed exploits and malicious tools used by attackers;

� The creation of an incident management and response system capable of
identifying, classifying and addressing security problems;

5 Conclusion

In this paper an evaluation of web attack threats is presented focusing in the
importance of developing risk awareness to mitigate them. To gather this attack
information, a high-interaction web honeypot environment was installed, con-
�gured and monitored during approximately 4 months. This research con�rmed
our previous belief that honeypots are useful for companies but underestimated

Web Application Risk Awareness ... INForum 2010 – 671

by them, probably mainly because of a lack of knowledge regarding this technol-
ogy, its uses and bene�ts. The fear of challenging the attacker and being unable
to control the consequences of the intrusion is also a deterrence factor in the use
of honeypots by companies. These issues are never balanced with the possibility
of developing the necessary risk awareness within the company using these decoy
systems to be able to defend the critical assets when a real attack emergency
happens. We believe this is a critical factor enhanced by the use of honeypots: the
possibility of being familiar with the modus operandi of the attacker and being
prepared to respond to a real situation. Readiness only becomes e�ective with
adequate training and this training is done using a test honeypot environment.

References

1. Anagnostakis, K.G., Sidiroglou, S., Akritidis, P., Xinidis, K., Markatos, E.,
Keromytis, A.D.: Detecting targeted attacks using shadow honeypots. In: Pro-
ceedings of the 14th USENIX Security Symposium (2005)

2. Chamales, G.: The Honeywall CD-ROM. Security & Privacy, IEEE 2(2), 77�79
(March-April 2004)

3. Dagon, D., Qin, X., Gu, G., Lee, W., Grizzard, J., Levine, J., Owen, H.: Honeystat:
Local worm detection using honeypots. In: Proceedings of the 7th International
Symposium on Recent Advances in Intrusion Detection (RAID). pp. 39�58 (2004)

4. Hatch, B.: SSH port forwarding. SecurityFocus http://www.securityfocus.
com/infocus/1816 (January 2005)

5. Honeynet-Project: Know your enemy: Sebek (November 2003)
6. Honeynet-Project: Know your enemy: Web application threats (April 2008)
7. ISACA: Cobit framework 4.1. http://www.isaca.org (2007)
8. ISO/IEC 27001: Information technology - security techniques - information security

management systems - requirements
9. Maxmind: Geoiplite. http://www.maxmind.com (2009)
10. McGeehan, R.: Ghh http://ghh.sourceforge.net/
11. Mueter, M., Freiling, F., Holz, T., Matthews, J.: A generic toolkit for converting

web applications into high-interaction honeypots. University of Mannheim (2008)
12. PCI-DSS: Payment card industry data security standard version 1.2.

http://www.pcisecuritystandards.org (October 2008)
13. Portokalidis, G., Slowinska, A., Bos, H.: Argos: an emulator for �ngerprinting zero-

day attacks for advertised honeypots with automatic signature generation. In:
Proceedings of the ACM SIGOPS/EuroSys European Conference on Computer
Systems (EuroSys). pp. 15�27 (2006)

14. Riden, J., Oudot, L.: Building a PHP honeypot. InfoSecWriters
http://www.infosecwriters.com (April 2006)

15. Spitzner, L.: Honeypots: Tracking Hackers. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA (2002)

16. Yegneswaran, V., Barford, P., Paxson, V.: Using honeynets for internet situational
awareness. In: Proceedings of the 4th Workshop on Hot Topics in Networks (Hot-
Nets) (2005)

672 INForum 2010 Sérgio Nunes, Miguel Correia

Sistemas Embebidos e de Tempo-Real

673

Exploiting AIR Composability towards
Spacecraft Onboard Software Update

Joaquim Rosa, João Craveiro, and José Rufino

∗ Universidade de Lisboa, Faculdade de Ciências, LaSIGE

Abstract. The AIR architecture, developed to meet the interests of the aerospace
industry, defines a partitioned environment for the development of aerospace ap-
plications, adopting the temporal and spatial partitioning (TSP) approach,and
addressing real-time and safety issues. The AIR Technology includes the sup-
port for mode-based schedules, allowing to alternate between scheduling modes
during a mission, according to different mission’s operation plans. Furthermore,
it can be necessary, useful or even primordial having the possibility to host new
applications in the unmanned spacecraft onboard computer platform in execu-
tion time. In this paper we define the foundations of a methodology for onboard
software update, taking advantage of the composability properties of the AIR
architecture, in order to add new features to the mission plan.
Resumo.A arquitectura AIR, desenvolvida para responder aos interesses da in-
dústria aeroespacial, define um ambiente compartimentado para o desenvolvi-
mento de aplicaç̃oes aeroespaciais que adoptem a abordagem de compartimen-
taç̃ao temporal e espacial, discutindo questões de tempo-real e de segurança no
funcionamento. A Tecnologia AIR inclui o suporte para alternar entre vários mo-
dos de escalonamento durante uma missão, de acordo com diferentes planos de
funcionamento. Aĺem disso, pode ser necessário, útil ou mesmo primordial ter
a possibilidade de alojar novas aplicações ou funcionalidades no computador de
bordo do véıculo espacial ñao-tripulado em tempo de execução. Neste artigo defi-
nimos os fundamentos de uma metodologia para actualização de software durante
o funcionamento do sistema, aproveitando as propriedades de componibilidade
da arquitectura AIR, para adicionar novas funcionalidades ao plano damiss̃ao.

1 Introduction

Future space missions aiming long-term durations call for anew generation of space-
crafts. This has driven the interest from the space agenciesand industry partners in the
definition and design of fundamental building blocks for onboard computer platforms,
where the strict demands for reliability, timeliness, safety and security are combined
with an overall requirement to reduce the size, weight and power consumption (SWaP)
of the computational infrastructure.

∗ This work was partially developed within the scope of the European Space Agency Innovation Triangle Initiative pro-
gram, through ESTEC Contract 21217/07/NL/CB, Project AIR-II (ARINC 653 in Space RTOS — Industrial Initiative,
http://air.di.fc.ul.pt). This work was partially supported by Fundação para a Cîencia e a Tecnologia (Portuguese Foun-
dation for Science and Technology), through the Multiannual Funding and CMU-Portugal Programs and the Individual
Doctoral Grant SFRH/BD/60193/2009.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 675–686

The definition of partitioned architectures implementing the logical containment
of applications in criticality domains, named partitions,allows to host different appli-
cations in the same computational infrastructure and enables the fulfilment of those
requirements [14]. The notion of temporal and spatial partitioning (TSP) ensures that
the activities in one partition do not affect the timing of activities in other partitions and
prevents the applications to access the addressing space ofeach other.

The AIR (ARINC 653 In Space Real-Time Operating System) Technology emerges
as a partitioned architecture for aerospace applications [13] applying the TSP concepts.
The AIR architecture allows the execution of both real-timeand generic operating sys-
tems in independent partitions, ensures independence fromthe processing infrastructure
and enables independent verification and validation of software components.

In a partitioned architecture, the several functions of an unmanned spacecraft, such
as Attitude and Orbit Control Subsystem (AOCS), Telemetry,Tracking and Command
(TTC) subsystem, share the same computational resources, being hosted in different
partitions. Partitions are scheduled according to fixed cyclic scheduling tables. The AIR
architecture allows the possibility to dynamically alternate between different schedul-
ing tables. This is useful for the adaptation of partition scheduling to different mission
operating modes and for the accommodation of component failures [13].

During the course of a mission, situations may appear on which it may be useful or
even necessary to introduce new functions or to modify existing ones to deal with unex-
pected events. For example, in the presence of a failure of a specific component, it may
be necessary to change the mission plan by reconfiguring the applications’ scheduling.
An example where such features had an important role was the incident with NASA’s
rover Spirit [4]. In May 2009 the rover was stuck on Mars soft sand terrain and after
some months of trying to release it without success, the NASA’s team decided to change
the mission plan and instead of doing surface exploration, the rover started working as
a stationary research platform, performing functions thatwould not be possible to a
mobile platform, such as detecting oscillations in the planet’s rotation which would
indicate a liquid core.

The modular design of the AIR architecture and the separation of applications in
the temporal and spatial domains enables composability properties which are exploited
in the build and integration process. This means that the several components can be
developed, verified and validated independently. To a software provider, this procedure
does not depend on knowledge of the other partitions and, at most, is aided by guide-
lines to accomplish timeliness requirements. To the systemintegrator, it is assigned the
responsibility of ensuring the accomplishment of system-wide temporal requirements.
This paper addresses how to take advantage of the composability properties of the AIR
architecture to establish the basis of an onboard software update methodology.

The remainder of this paper is organized as follows. In Section 2 we describe the
AIR Technology including the schedulability and composability properties of the ar-
chitecture, and the build and integration process. In Section 3, we describe the require-
ments, the components and the integration process of the onboard software update,
along with the methodology defined. In Section 4, we expose future research directions
and some related work. Finally, Section 5 concludes the paper.

676 INForum 2010 Joaquim Rosa, João Craveiro, and José Rufino

2 AIR Technology Design

The AIR Technology design was original prompted by the interest of the European
Space Agency (ESA) in the adoption of TSP concepts to the space industry. The AIR
Technology is currently evolving towards an industrial product definition by improving
and completing its architecture definition and engineeringprocess [12,13].

2.1 System Architecture

The AIR architecture, illustrated in Fig. 1, allows applications to be executed in logical
containers called partitions. At the application softwarelayer (Fig. 1) applications con-
sist in general of one or more processes, which make use of theservices provided by
anApplication Executive(APEX) interface, as defined in ARINC 653 specification [1].
In addition, a system partition may invoke also specific functions provided by the core
software layer, thus being allowed to bypass the standard APEX interface (Fig. 1).

Fig. 1. AIR Architecture and Integration of Partition Operating Systems

The core software layer provides a (real-time or generic) operating system kernel
per partition herein referred to asPartition Operating System(POS). TheAIR POS
Adaptation Layer(PAL) [6] wraps each POS, hiding its particularities from the AIR
architecture components.

The AIR architecture implements the advanced notion of portable APEX, meaning
portability between the different POSs is built on the availability of PAL related func-
tions and on the APEX core layer, which may exploit the POSIX application program-
ming interface available on most (real-time) operating systems. The APEX provides the
required partition and process management services, time management services, intra-
partition and inter-partition communication services andhealth monitoring services.

The partition management, inter-partition communicationand health monitoring
services rely additionally on theAIR Partition Management Kernel(PMK) service inter-
face. The AIR PMK bears the most responsibility in ensuring robust TSP. The temporal
partitioning is achieved by scheduling the partitions according to a given scheduling

Exploiting AIR Composability ... INForum 2010 – 677

table, repeated cyclically over amajor time frame(MTF). The spatial partitioning is
ensured by a high-level abstraction layer which provides a mapping between AIR pro-
tection requirements and the hardware’s addressing space protection mechanisms.

The AIR architecture also incorporates aHealth Monitor(HM) component to han-
dle hardware and software errors, containing them within their domains of occurrence.

2.2 Temporal and Spatial Partitioning

To ensure the safety and timeliness of mission-critical systems and minimize the draw-
backs arising from the integration of multiple functions sharing the same hardware re-
sources, the design of AIR Technology proposes the architectural principle of robust
partitioning. With partitioning we achieve two important properties. The first concerns
containing the occurrence of faults to the context where they appear, and thus not in-
terfering with the system overall behaviour. The other property has to do with system
composabilityenabling the independent verification and validation of software compo-
nents that also facilitates the overall certification process, fundamental for space-borne
vehicles.

The AIR architecture has been designed to fulfil the requirements for robust TSP.
Temporal partitioning ensures that the activities processed in one partition do not affect
the real-time requisites of the functions running in other partition. Space partitioning
relies on having separate addressing spaces and thus not allowing an application to
access the memory and input/output (I/O) spaces of a different partition.

2.3 Designing for Schedulability

The original ARINC 653 [1] notion of a single fixed partition scheduling table, defined
offline, is limited in terms of timeliness control and fault tolerance. The design of the
AIR architecture incorporates the advanced notion ofmode-based partition schedules,
allowing temporal requirements to vary according to the mission’s phase or mode of
operation [13,2].

An AIR-based system includes a set of partition schedules among which it can
switch during its operation. A schedule switch can be ordered by a specific partition
designed and allowed to do so, through the invocation of an APEX primitive. This can,
in turn, result from either a command issued from ground control or from reacting to
environmental conditions as obtained by the spacecraft’s sensors. The order will not
come into immediate effect, but rather applied at the end of the current MTF.

The AIR Partition Scheduler component is responsible for guaranteeing that the
processing resources are, at every time, assigned to the correct partition and for mak-
ing schedule switch effective at the end of the respective MTF. Its implementation is
described in pseudocode in Algorithm 1. This is executed at every system clock tick,
inside the respective interrupt service routine. The implementation of this algorithm is
optimized to introduce little overhead to such routine.

The first verification to be made is whether the current instant is a partition preemp-
tion point (line 2). In case it is not, the execution of the partition scheduler is over; this
is both the best case and the most frequent one. If it is a partition preemption point, we

678 INForum 2010 Joaquim Rosa, João Craveiro, and José Rufino

Algorithm 1 AIR Partition Scheduler featuring mode-based schedules
1: ticks ← ticks + 1 ⊲ ticks is the global system clock tick counter
2: if schedulescurrentSchedule .tabletableIterator .tick =

(ticks − lastScheduleSwitch) mod schedulescurrentSchedule .mtf then
3: if currentSchedule 6= nextSchedule ∧

(ticks − lastScheduleSwitch) mod schedulescurrentSchedule .mtf = 0 then
4: currentSchedule ← nextSchedule
5: lastScheduleSwitch ← ticks
6: tableIterator ← 0
7: end if
8: heirPartition← schedulescurrentSchedule .tabletableIterator .partition
9: tableIterator ← (tableIterator + 1) mod

schedulescurrentSchedule .numberPartitionPreemptionPoints
10: end if

then verify (line 3) if there is a pending scheduling switch to be applied and if the current
instant is also the end of the MTF. If these conditions apply,then a different partition
scheduling table will be used henceforth (line 4). The partition which will hold the pro-
cessing resources until the next preemption point, dubbed the heir partition, is obtained
from the partition scheduling table in use (line 8) and the AIR Partition Scheduler will
now be set to expect the next partition preemption point (line 9).

2.4 Designing for Composability

The design of the AIR architecture and the use of a TSP approach enables thecom-
posability propertiesof AIR-based systems, in both time and space domains. The use
of a fixed cyclic partition scheduling scheme dictates that the timeliness guarantees of
each partition are defined by the processing time assigned toeach partition. In the spa-
tial domain the composability properties ensure that the partition’s memory and I/O
resources are protected against unauthorized access from other partitions. The compos-
ability properties are thus inherent the AIR modular architecture.

The modularity of the AIR architecture design and of its build and integration pro-
cess further enables the composability of AIR-based systems [5]. This means, on a first
approach, that the several components that may compose sucha system can be devel-
oped, verified and validated independently. This eases certification efforts, since only
modified modules need to be reevaluated. It is also a fundamental basis for onboard
software update as proposed in this paper.

From the point of view of one partition’s provider, this further signifies that develop-
ment and validation does not depend on knowledge of the otherpartitions (individually
or as a whole). At most, the development of one partition should be aided by a set of
guidelines for its applicability to the target TSP systems in general. The system integra-
tor is responsible for guaranteeing a correct partition scheduling, so that partitions and
the system as a whole meet their timing requisites [5].

Exploiting AIR Composability ... INForum 2010 – 679

2.5 Build and Integration Process

Because of the particularities of the architecture, the software build and integration
process needs to differ from the canonical application build process, as provided by
standard compilers and linkers. This process is pictured inFig. 2 and it will now be
described in detail.

(a) Software build by partition application
developers

(b) System integration

Fig. 2.AIR build and integration process

Partition build process

The first stage concerns building each partition independently (Fig. 2a). In the typical
scenario, the applications to be executed in the context of apartition, the APEX library,
and the underlying POS libraries (wrapped by the AIR PAL) maybe provided by dif-
ferent teams or providers. Therefore, the build process is tailored to expect these inde-
pendent object files, and link them together to produce an object file with no unresolved
symbols but including relocation information (to allow linking with the remaining par-
titions). Although the AIR PAL also invokes the AIR PMK (which symbols are as of
yet undefined), these interactions are wrapped using data structures to reference the ap-
propriate primitives, which the AIR PMK will register by executing code generated at
system integration time with the assistance of a specific AIRtool.

The introduction of a scheduling analysis phase in the application developers’ soft-
ware production chain [5] takes advantage of the composability properties to provide
independent schedulability analysis. Application developers can perform this analysis
using the timing requirements (period, worst-case execution time, deadline, etc.) of
their applications’ processes. This information can be either estimated, or tentatively
determined through static code analysis [11].

680 INForum 2010 Joaquim Rosa, João Craveiro, and José Rufino

System integration

The system integration process (Fig. 2b) receives input (partition object files) from po-
tentially different teams or providers. Since all partitions will include the common in-
terface provided by the AIR PAL and AIR APEX libraries, the various partitions’ object
files will have symbol name collisions; partitions running the same POS or POSs pro-
viding the same standardized interfaces (e. g., POSIX) haveadditional name collisions.
Therefore, linking these objects will require previous preprocessing. This preprocess-
ing can be in the form of atag filter utility which prefixes all symbols and calls in each
partition’s object files with unique prefixes (e. g.,P1, P2, etc.). This process can be
further optimized by automating the generation of partition prefixes, namely deriving
them from the configuration file.

The partition objects can now be linked with the AIR PMK and the configuration
object. This configuration object is derived by compiling C source code files, which
in turn have been converted from XML (Extensible Markup Language) configuration
files. The use of XML for the configuration file is motivated by the overall intention
to comply, up to a certain degree, with the ARINC 653 specification [1]. Besides the
parameters translated from these XML files (such as partition scheduling tables, ad-
dressing spaces, and inter-partition communication portsand channels), configuration
objects include routines for the AIR PMK to register the adequate primitives in the AIR
PAL structures. This linking step produces the system object file, from which in turn
one can generate the most adequate deployment format for thetarget platform. In the
system integration phase, scheduling analysis capabilities shall be introduced in relation
with the generation of a system-wide configuration [5].

3 Onboard Software Update

We establish the foundations of a methodology to allow including new features on a
spacecraft during a mission. The challenges we face are related to maintaining the real-
time and safety guarantees defined for the original mission.Adding a new application
to the system should be performed in a way that does not affectthe overall behaviour
of the system, including the timeliness of the already running applications.

3.1 Defining Requirements and Components

To support the upload of modified software components to the spacecraft’s onboard
computer platform, we assume the existence of a (secure) communication channel and
a data communication protocol. The communication functions aboard the spacecraft are
responsible for dealing with the reception of the data sent by the ground station and for
performing online processing of the transferred data stream. Handling the update of on-
board software components implies: the identification of the components being updated
(partition software components, PSTs sets); the allocation of the required memory re-
sources; the functional integration of each component in the operation of the onboard
computer platform. The onboard software update handler shall be implemented as an
activity (process/thread) in the domain of the (system) partition associated to the com-
munication functions.

Exploiting AIR Composability ... INForum 2010 – 681

To the partition hosting the communication functions it is ensured a given time
processing budget. However, we assume that software updateactivities are performed
on a best-effort basis, thus with minimal impact on the timeliness of the communication
functions. This ensures the safety of onboard software update since it will not interfere
with other communication functions, namely with the detection and the identification
of ground commands.

To support the introduction of onboard software update operations, the original
APEX interface must be extended with the services presentedin Table 1. However,
only the APEX interface of the partition hosting the onboardsoftware update functions
needs to be extended.

Table 1.Extended APEX services for Onboard Software Update

Primitive Short description

XAPEX MALLOC Allocate memory from the partition’s free memory pool

XAPEX MFREE Deallocate a memory zone for the partition’s free memory pool

XAPEX MCLAIM Claim memory from a specified partition for the partition’s free memory
pool

XAPEX PUPDATE Apply partition software components update

XAPEX PSTUPDATE Apply system partition scheduling table (PST) set update

3.2 Integration on Spacecraft Onboard Platform

We assume the component dedicated to onboard software update, the Update Handler,
is defined as a process/thread integrated in the partition responsible for the communi-
cation functions, as illustrated in the simplified spacecraft architecture [8], pictured in
Fig. 3. This partition also includes a command detection function. Commands issued
from ground mission control will be passed to the TTC througha inter-partition com-
munication channel. One example is a ground command to change a PST.

Fig. 3.Spacecraft onboard platform

682 INForum 2010 Joaquim Rosa, João Craveiro, and José Rufino

3.3 Designing an Onboard Software Update Methodology

The design of a methodology for onboard software update in AIR-based systems has
evolved from the build and integration process. This methodology is extended to cope
with the modification of software components in order to upgrade the original mission.

This may include the modification of application software, partition or system wide
configurations or simple the definition of a new set of partition scheduling tables (PSTs).
The complete methodology consists in a four-step procedureas follows:

STEP 1: Offline Verification and Validation of Software Modifications

The modifications to the software components of a given mission may include the re-
design of the applications associated with a given partition (e.g., payload functions)
and the definition of a new set of PSTs. The linking of the modified partition with the
objects of other partitions is made on the logical address space in order to guarantee
that the mapping of unmodified partitions remains unchanged. This way, only the up-
dated components need to be uploaded to the spacecraft onboard computer platform.
This process is illustrated at the left side of Fig. 4 and may involve scheduling analysis
of the partition. The update of the mission may simply involve the modification of a
given PSTs set. In this case, the schedulability analysis and the generation of a new
configuration and PSTs set is only performed at the system integration stage.

This corresponds to the AIR original verification and validation process of software
components performed on the ground, before sending the applications to the spacecraft,
and consists on applying the build and integration process to ensure that the safety and
the TSP requirements would not be compromised with the introduction of new com-
ponents on the system. Due to the composability properties of the AIR architecture,
the build process may be done by the software development teams or providers inde-
pendently. Each team or provider, along with the new application, delivers the partition
timing requirements, that altogether will form the partition scheduling tables (PSTs),
used by the AIR PMK Partition Scheduler on the target system.

The output produced in this step is the system object file, resulted from the integra-
tion of all the built objects potentially from various developers.

STEP 2: Extraction of Updated Components

After having the result of the build and integration processdone on the previous step,
there is the need to identify which components need to be uploaded to the spacecraft
onboard computer platform. The final goal of this step is to identify those components,
extract them from the complete system object file and create anew object composed
only by the components to be uploaded to the spacecraft onboard computer. Also, it is
necessary to build the object file according to a specific format, in order to the Update
Handler be able to recognize the data received and perform its handling.

Like the previous one, this step is made on the ground. It requires a special-purpose
toolset to perform the extraction and the formatting functions. The extraction and the
formatting actions are represented by the shaded area at theright side of Fig. 4.

Finally, the updated object will be uploaded to the spacecraft using the communica-
tion facilities to exchange data between the ground stations and the space vehicles.

Exploiting AIR Composability ... INForum 2010 – 683

Fig. 4. Integration of an AIR-based system extended with the extraction and formatting of the
updated components

STEP 3: Transfer of Updated Components

In the spacecraft, the application and PSTs uploaded in a single object file are received
by the partition running the application responsible for the communication operations.
Complementarily to the formatting done in the Step 2, when the modified components
were formatted into an object file, the Update Handler look into the uploaded object file
and separate the application of the PSTs.

We assume the existence of a component which will provide therequired commu-
nication facilities between the spacecraft and the ground stations.

Upon reception of partition software components the UpdateHandler will invoke
the XAPEX MALLOC primitive to allocate the required memory. We assumethat the
available memory is large enough to contain the updated application. The Update Han-
dler may also invoke the XAPEXMCLAIM primitive to claim the memory used by the
partition being updated, followed by the XAPEXPUPDATE primitive which assigns
the updated software components to the specified partition (Table 1). Finally, upon re-
ception of a PSTs set, the Update Handler will invoke the XAPEX PSTUPDATE prim-
itive which will apply the PST set update.

STEP 4: Activation of Updated Components

To guarantee that applying the updated PSTs set does not compromise the safety of the
whole mission, the XAPEXPSTUPDATE (Table 1) will perform a blocking wait until
the proper conditions are met, as described in Algorithm 2. The first condition for safe
application of a new set of PSTs is that the currently selected schedule is identical in
both the existing and the updated PSTs sets. The second condition is that a schedule

684 INForum 2010 Joaquim Rosa, João Craveiro, and José Rufino

switch to a PST which has been modified in the updated set is notpending. The goal
of these conditions is to ensure that the operation conditions that the system expects
and/or the criteria by which the system or a ground operator has chosen the current or
next schedule are not voided.

Algorithm 2 XAPEX PSTUPDATE primitive
1: while schedulescurrentSchedule 6≡ newSchedulescurrentSchedule ∨

schedulesnextSchedule 6≡ newSchedulesnextSchedule do ⊲ Wait (block)
2: end while
3: SWAP(schedules,newSchedules)

After the new PSTs have been activated, the uploaded partition application can now
be scheduled, a situation which may occur upon receiving a schedule switch command
from the ground mission control, as illustrated in Fig. 3.

4 Future Developments and Related Work

The importance of a strong verification and validation process in critical systems is
addressed in [3] and the relevance of a safety-policy validation at binary level is high-
lighted in [10]. The problem of dependable online upgrade ofreal-time software was
approached in [16].

The methodology established in this paper for onboard software update can be fur-
ther extended to cope with the upgrade of critical software components that must be
performed without interruption, such as those ensuring AOCS, TTC and communica-
tion functions. This implies a new set of challenges to be addressed specifically in the
steps 3 (transfer of updated components) and 4 (activation of updated components).
Although driven by the specific requirements of aerospace applications, these develop-
ments may benefit from the work performed on dynamic softwareupdate [7,9,15,17].

Solutions for dynamic software update on real-time systemsrequiring the identifi-
cation of specific points in time for components’ update is discussed in [17], while [15]
makes no presumption about new application’s periods and execution times.

The results achieved in [7] shown that the real-time and fault-tolerant requirements
of avionics systems could be accomplish even during a dynamic reconfiguration of the
system due to component failures. An approach for dynamic update of applications in
C-like languages is provided in [9] and focuses on the updateof the code and data at
predetermined times, but does not specify real-time requirements.

5 Conclusion

In this paper we described the AIR Technology, towards buildaerospace applications
to temporal and spatial partitioning systems. Motivated bythe need to add new applica-
tions in the system during a mission, due to changing its plans, we defined the onboard
software update requirements and discussed how to take advantage of the composability

Exploiting AIR Composability ... INForum 2010 – 685

inherent to the build and integration process of the AIR-based systems. We establish
a methodology for onboard software update, that exploits the composability properties
of the AIR architecture, allowing independent verificationand validation. The onboard
software update methodology is based on the redefinition of the original space mission
and it is supported on a specific toolset for the extraction ofthe updated software com-
ponents, to be uploaded to the spacecraft onboard computer.The methodology can be
further extended to support dynamic update of critical software components.

References

1. AEEC (Airlines Electronic Engineering Committee): Avionics application software standard
interface, part 1 - required services. ARINC Specification 653P1-2 (Mar 2006)

2. AEEC (Airlines Electronic Engineering Committee): Avionics application software standard
interface, part 2 - extended services. ARINC Specification 653P2-1 (Dec 2008)

3. Bahill, A.T., Henderson, S.J.: Requirements development, verification, and validation exhib-
ited in famous failures. Systems Engineering 8(1), 1–14 (2005)

4. Brown, D., Webster, G.: Now a Stationary Research Platform, NASA’s
Mars Rover Spirit Starts a New Chapter in Red Planet Scientific Studies.
http://www.nasa.gov/missionpages/mer/news/mer20100126.html (Jan 2010)

5. Craveiro, J., Rufino, J.: Schedulability analysis in partitioned systemsfor aerospace avionics.
In: Proc. 15th IEEE Int. Conf. on Emerging Technologies and FactoryAutomation (ETFA
2010). Bilbao, Spain (Sep 2010)

6. Craveiro, J., Rufino, J., Schoofs, T., Windsor, J.: Flexible operating system integration in par-
titioned aerospace systems. In: Actas do INForum - Simpósio de Inforḿatica 2009. Lisboa,
Portugal (Sep 2009)

7. Ellis, S.M.: Dynamic software reconfiguration for fault-tolerant real-time avionic systems.
Microprocessors and Microsystems 21, 29–39 (1997)

8. Fortescue, P.W., Stark, J.P.W., Swinerd, G. (eds.): Spacecraft Systems Engineering, 3rd Edi-
tion. Wiley (2003)

9. Hicks, M.: Dynamic software updating. ACM Transactions on Programming Languages and
Systems 27(6), 1049–1096 (Nov 2005)

10. Necula, G.C., Lee, P.: Safe kernel extensions without run-time checking. In: Proc. USENIX
2nd Symposium on Operating Systems Design and Implementation. pp. 28–31 (1996)

11. Pushner, P., Koza, C.: Calculating the maximum execution time of real-time programs. Jour-
nal of Real-Time Systems 1, 160–176 (Sep 1989)

12. Rufino, J., Craveiro, J., Schoofs, T., Tatibana, C., Windsor,J.: AIR Technology: a step
towards ARINC 653 in space. In: Proceedings of the DASIA 2009 “DAtaSystems In
Aerospace” Conference. EUROSPACE, Istanbul, Turkey (May 2009)

13. Rufino, J., Craveiro, J., Verissimo, P.: Architecting robustnessand timeliness in a new gen-
eration of aerospace systems. In: Casimiro, A., de Lemos, R., Gacek, C. (eds.) Architecting
Dependable Systems 7. LNCS, Springer, Berlin Heidelberg (2010), accepted for publication

14. Rushby, J.: Partitioning in avionics architectures: Requirements, mechanisms and assurance.
Tech. Rep. NASA CR-1999-209347, SRI International, California, USA (Jun 1999)

15. Seifzadeh, H., Kazem, A., Kargahi, M., Movaghar, A.: A method for dynamic software up-
dating in real-time systems. In: Proceedings of the 8th IEEE/ACIS International Conference
on Computer and Information Science. Shanghai, PR China (Jun 2009)

16. Sha, L.: Dependable system upgrade. In: RTSS ’98: Proceedings of the IEEE Real-Time
Systems Symposium. p. 440. IEEE Computer Society, Washington, DC, USA (1998)

17. Wahler, M., Ritcher, S., Oriol, M.: Dynamic software updates for real-time systems. In: Pro-
ceedings of the HotSWUp’09. Orlando, Florida, USA (Oct 2009)

686 INForum 2010 Joaquim Rosa, João Craveiro, and José Rufino

Resilient Middleware for a Multi-Robot Team

Eric Vial, Mário Calha

FC/UL ⋆⋆

evial@lasige.di.fc.ul.pt

mjc@di.fc.ul.pt

Abstract. This paper addresses a resilient cooperative engine for robot
teams within the context of the surveillance of physical areas. Due to the
unreliability in the wireless communication between robots, a middleware
must offer some resilience to the control application and guarantee that
the robots never collide. We present an architecture for the robots to
share a common view and to handle new events in a safe and resilient
way. The system relies on two control sub-modules, the first one, the
payload, could be complex and has access to information shared among
robots, the second one, the wormhole is reliable but only uses local infor-
mation. The system is evaluated by means of simulation tools and aims
to be ported to hardware platforms composed by real mobile robots.

Resumo: Este documento aborda um motor cooperativo e resiliente
para equipas de robôs no contexto da vigilância de áreas f́ısicas. Devido
à falta de fiabilidade na comunicação sem fios entre robôs, um middle-
ware deve oferecer alguma resiliência à aplicação de controlo e garantir
que os robôs nunca colidem. Apresentamos uma arquitectura que per-
mite aos robôs partilharem uma vista comum e lidar com novos eventos
de uma forma fiável e resiliente. O sistema apoia-se em dois sub-módulos
de controlo, o primeiro, payload, pode ser complexo e acede à informação
partilhada pelos robôs, o segundo, wormhole é confiável mas apenas uti-
liza informação local. O sistema é avaliado através de ferramentas de
simulação e tem como objectivo ser implementado em plataformas de
hardware compostas por robôs reais.

Keywords: group communication, middleware, mobile robots

1 Introduction

Mobile robot teams have the potential to reduce the need of human presence
for complex or repetitive tasks. For most of them, the use of cooperation be-
tween robots can enhance the overall performance of the team. Achieving an
efficient cooperation requires the use of complex algorithms implemented in each
⋆⋆ Faculdade de Ciências da Universidade de Lisboa. Bloco C6, Campo Grande, 1749-

016 Lisboa, Portugal. Navigators Home Page: http://www.navigators.di.fc.ul.pt.
This work was partially supported by the FCT through the LASIGE Multiannual
Funding Program.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 687–698

robot. This internal complexity in addition to the interaction issue with the en-
vironment makes the robot control system more sensitive to failures. Nowadays,
building resilient control systems for mobile robots is a real challenge.

In this paper, we will present a middleware architecture for robots in charge
of monitoring a physical area. In particular, we will focus on three architecture
features which improve the system resilience: First, a control layer which relies
on an hybrid approach, both synchronous and asynchronous. This layer involves
two sub-systems the payload and the wormhole and guarantees a timely execu-
tion of critical tasks. The second architecture feature is the tree-oriented event
structure used in the payload and based on small computation modules, This
structure offers more stability to the system by avoiding cycles of events. Fi-
nally, as last feature, we will describe a group of modules in charge of managing
a common world view for all robots and in particular a synchronization algo-
rithm used during group merging or splitting phases. The algorithm is designed
to be tolerant to communication failures.

The project context is a cooperative surveillance application of a given area.
The covered zone is a campus, a plant or any well-defined area, each robot has
a prior map of this environment. The purpose is to detect an accident or an
intrusion and to build a common strategy to handle properly the detected event
(e.g. blocking the intruder). All robots run the same version of the middleware
and are equipped with local sensors, positioning and wireless devices.

This paper is organized as follows: The next section addresses the related
work. In section 3, we provide an architecture overview. Section 4 gives details
on the wormhole and payload model, the event-based architecture, and the world
view synchronization algorithm. This latter part includes a short analysis with
pros and cons. Finally, section 5 describes pending and future applications of
the work and concludes the paper.

2 Related work

In the last twenty years, there has been a considerable amount of work to study
mobile robot localization. Researches have been carried out focussing on two
problems: computing absolute location using a priori map [6] or building incre-
mentally this map while exploring the environment [5]. Both approaches most
often rely on complex and math-oriented algorithms based on Kalman filters
and maximum likelihood estimation [7]. The present paper does not address this
kind of problem and we assume that the robot is equipped with a location de-
vice based on GPS or RSS technology 1. In the same way, the way a robot team
performs the surveillance of a physical area could obey many rules in order to
maximize the probability of locating an intruder [8]. We wilfully chose not to
optimize this part, the robot just wanders around the world, making random
decisions to turn left or right at every crossing.

In the control architecture, the payload relies on a flexible and modular tree-
oriented architecture. The idea is to break down the control layer into a chain
1 Global Positioning System and Received Signal Strength

688 INForum 2010 Eric Vial, Mário Calha

of small modules. Each one is triggered with an incoming event and is able
to generate outgoing events up to others modules. This concept is a simplified
application of the subsumption theory developed by Rodney A. Brooks [9] at
the beginning of the 80’s. Unlike many implementation projects based on this
theory, we do not allow information cycles between module layers, modules are
top-down triggered which minimizes the risk of an out-of-control diffusion of
events. Finally, we took up the idea of suppressing some input signal to inhibit
a group of modules which is similar to the Brooks suppressor concept.

In the vehicular domain, designing safety-critical application is essential, the
work in [1], [2] or [3] presents a hybrid (synchronous and asynchronous) control
model used in real-time applications. This model is based on two sub-systems, the
payload in charge of running complex algorithms to figure out the best behaviour
of each car to avoid collisions while the second sub-system, the wormhole is
running synchronous and robust algorithms aimed to check whether the payload
timely sends corrections to the car actuators. In case a timely timing failure is
detected, the wormhole can temporally take control of the car. As this technique
is applicable to any domain where a safety-critical control is mandatory, we used
a payload-and-wormhole-based architecture for the robot control layer.

Robot soccer game is an entertaining and well-known application of robot
team cooperation. Actually, it shows many common points with our project like
the need for all robots to real-time maintain a common view of the world. In the
paper [4], the authors present an approach of view model which was successfully
implemented during the 2002 RoboCup Sony competition. Due to some high
latency in wireless communication, the robot team does not perform any view
synchronization. In order to track a dynamic object like the ball, each robot
combines local information from vision sensors with shared information sent by
team-mates. The robot maintains timestamps and uncertainty values for each
view object, uncertainty is updated when receiving new information and grows
with time. Unlike in [4], our world model is based on a view synchronization but
we use certainty flags associated with timestamps to give more or less weight to
an object position in the world view.

3 Architecture overview

In this section, we give an architecture overview through the description of three
key features of the middleware, depicted in figure 1. The left side shows the
middleware layer division. The wormhole and payload are the middleware basic
components. The wormhole is placed in cut-through configuration between the
payload and the sensor/actuator layer and does not have access to the network
device. The payload runs all complex tasks in charge of the robot control. All
tasks are triggered by events broadcasted through a module tree. An example
of module tree used in the payload is shown in the right side of the figure. Each
group of modules is dedicated to a specific task: Position update, navigation
or world view management. Here, we will focus on the view management and
especially the synchronization mechanism.

Resilient Middleware for a Multi-Robot Team INForum 2010 – 689

Fig. 1: Middleware layer division and module tree

3.1 Wormhole and payload model

The payload, may be asynchronous and runs complex and intelligent algorithms.
These algorithms might not be deterministic and the computation time may vary
especially if they require network communication. The wormhole is synchronous
and runs simple and more robust algorithms. On the robot, some critical tasks
like the collision avoidance require for the payload to timely send information to
the hardware layer. In our case, this information will be new speed and heading
commands.

The wormhole’s job is to check whether these commands are timely sent by
the payload. If so, the wormhole will just forward them to the hardware layer.
Otherwise, it will assume the robot’s control by calculating and sending itself
these commands. The wormhole uses a low-level navigation algorithm which
only involves local information. The wormhole will keep the control until the
payload starts again to send commands on time. If the payload does not regain
stability or even no longer sends any command (the payload may have crashed),
the wormhole can restart the whole payload process.

The payload sends the new commands in a structure called the promise. Each
promise includes a deadline which enables the wormhole to control the payload ’s
timeliness. For each promise, the payload is expected to send the next command
before the current deadline is exceeded.

3.2 Module definition

The event-based architecture is well adapted to robot management. It allows
to design a flexible and modular architecture. Indeed, we can create an event
type for any robot feature and dedicate a part of the tree to handle this event.
Moreover, robot hardware is composed by sensors, actuators and communication

690 INForum 2010 Eric Vial, Mário Calha

devices, each one of them can generate a special event or be triggered by this
event. The obstacle event is an example of event which contains the distance
values read from the local sensor.

The payload is composed by modules and groups of modules, all gathered in
a tree. Each of them is in charge of managing a robot feature. A module can be
seen as a process, with a short computation time, which is started by a single
incoming event and can produce one or more outgoing events.

We will detail later the different types of events but basically, an event is
broadcasted from a given location in the tree until the leaves. Each module
which can consume this event, is started. That way, various modules can run at
the same time.

3.3 Team management and view synchronization

Given that robots can move away from each other and go beyond their wire-
less range, a group can be split in various sub-groups. The unreliability of the
wireless network can also lead to isolate a single robot if it temporarily loses the
Wi-Fi signal. When two groups merge together, a synchronization mechanism
is necessary to consolidate the information of each group view. The payload in-
cludes such a dynamic mechanism which ensures that all robot views are the
same inside the group. The synchronization task as all other payload ’s tasks is
triggered by events. The synchro event will be detailed in chapter 4.3.

4 Design and implementation

We will now detail the payload and wormhole architecture, the implementation
of the module structure and finally the world view synchronization algorithm.

4.1 Wormhole and Payload implementation

The wormhole relies on three modules as shown in figure 2: The Timely Timing
Failure Detection (TTFD) monitors the timeliness of the asynchronous payload
process and can activate the Safety task to assume control. The Control task
receives the promise which includes the new speed and heading values and de-
cides whether these values can be forwarded to the actuator layer. The TTFD
sends as well control updates to the payload to inform it won back or lost the
control. Ideally, the payload should use these control updates to improve its
performance. In particular, it could try to real-time adjust the priority of some
internal processes.

Logical flowcharts of the TTFD and Control tasks are given in figure 3. The
payload runs in three modes: “active” when it has the control, “disable” when it
loses the control after the latest deadline is exceeded and finally in “test”, when
the wormhole receives a timely promise while the payload is disabled. The test
mode is a transition period, the wormhole keeps the control and waits for the
payload to meet the current deadline before giving him back control.

Resilient Middleware for a Multi-Robot Team INForum 2010 – 691

Fig. 2: Payload and Wormhole layers

There are two restart conditions for the payload. After setting it to disable,
the TTFD task will increment a timing failure counter and will wait MAXWAIT
milliseconds. If the failure counter is greater than a prior threshold or if no
promise is received within this waiting period, the TTFD task will restart the
payload.

4.2 Tree-oriented structure

The modules could be meshed as a graph and thus make event cycles possible.
In order to avoid hazardous out-of-control cycles inside one robot or between
several robots, we chose a tree-oriented module architecture. Each tree’s branch
has one or several parents. Events are top-down broadcasted until the leaves.
A module computation is started if the current event can be consumed by the
module. There are three types of events:

– Hard events: They are signals generated by the robot’s hardware, e.g. the
robot’s clock (beat event) or a distance sensor measure (obstacle event). Such
events are always broadcasted from the tree’s root.

– Local soft events: These events are produced by a module and are broad-
casted through the neighbour branches (modules with same parent) and the
sub-branches. Any module can produce several soft events during the same
computation.

– Remote soft events: Instead of being broadcasted locally, they are trans-
mitted through the wireless network and sent to all other robots. Once de-
livered to a given robot, the event is broadcasted from the same branch as
if it would be produced locally. This mechanism relies on two architecture
properties: The module tree has the same structure for all robots which
means that any path in the local tree matches the same path in a remote
tree. Secondly, the path to locate the module which produced the event in
the tree, is stored in the transmitted event. That way, we cannot have event

692 INForum 2010 Eric Vial, Mário Calha

(a) TTFD task (b) Control task

Fig. 3: Wormhole logical flowchart

cycles between robots and the remote soft events meet the same constraints
as the hard and local soft events.

Let’s consider the module tree depicted in figure 4 with three robots in the
same group. We assume that e1 and e2 are hard events, e3 a local soft event
and e4 a remote soft event. Now, let’s have a look on the started modules if e1
is triggered on robot 1.

– Module 1 of Robot 1 (locally triggered by e1)
– Module 2 of Robot 1 (locally triggered by e1)
– Module 4 of Robot 1 (locally triggered by e3)
– Module 6 of Robot 2 (remotely triggered by e4 with path root.g1.
– Module 6 of Robot 3 (remotely triggered by e4 with path root.g1.

Although module 3 can consume the e4 event, this module is not started
in robots 2 and 3 because it cannot be reached from the path root.g1. What’s

Resilient Middleware for a Multi-Robot Team INForum 2010 – 693

Fig. 4: Example of module tree common to robots 1, 2 and 3

more, this architecture opens the possibility of dynamically enabling or disabling
a sub-branch of the module tree. When disabled, events are no longer broad-
casted through this branch. The activation or disactivation can be performed by
any computation module. In our project, each robot has three working modes:
Wandering, Searching and Blocking (an intruder), each mode corresponds to a
single branch of the navigation sub-tree. We use the branch enabling/disabling
mechanism to activate the modules associated to the robot current mode.

4.3 World view synchronization algorithm

We will now describe in details the synchronization algorithm used to maintain
in each robot a coherent world view when two or more groups are merging. This
view is composed by all dynamic objects present in the world. The first part
will deal with the algorithm principles and the second part will present some
synchronization scenarios.

Algorithm overview: When two groups are merging, the synchronization
is performed by exchanging a synchro event which contains the list of all view
objects except for the robots position. This latter is already exchanged through
the hello events so including this information in a synchro event would be re-
dundant. The synchro event is normally sent by the group leader. The leader is
the robot with the lowest id in the group. A group is identified by a single id. So
all robots from a group share the same leader and group id. The synchro event
reception is not centralized by the leader, each robot from the destination group,
will handle the synchro event and extract the object list. The synchronization
phase ends when all robots have the same leader and group id.

The basic steps below are associated to a faultless synchronization phase.
By fault, we mean any event reception failure due for instance to a temporally

694 INForum 2010 Eric Vial, Mário Calha

Wi-Fi signal loss. Different fault scenarios will be discussed in the next section.
Two synchro events are exchanged during a faultless synchronization, the first
synchro event is always generated by the group leader with the higher id.

– Step 1 : Leader 1 receives a hello event from the group leader 2.
– Step 2 : Leader 1 broadcasts a synchro event through the group 2.
– Step 3 : Robots from group 2 receive the object list and update their view.
– Step 4 : Leader 2 broadcasts a synchro event through the group 1.
– Step 5 : Robots from group 1 receive the object list and update their view.

The algorithm 1 gives the modules involved in the synchronization phase. The
Hello Receiver module (line 1) is triggered by an object event which is used by
a robot to broadcast its own position, the module checks out whether this event
comes from another leader. The View Synchronizer module (line 9) is triggered
by a synchro event, it extracts the object list and updates the local world view
(line 16). Finally, the Freshness Detector module (line 22) is triggered by the
beat event and removes out-of-date objects from the robot’s view. The beat is a
hard event periodically generated by the system (see section 4.2).

In order to keep the algorithm clear, we won’t detail below neither the Hello
Sender module which is also triggered by the beat event and produces an object
event, nor the View Updater module triggered by an object event and which
updates the world view. The robot state parameters are as follows:

– myId : single robot identifier.
– myView : view objects including team-mate positions.
– myLeader : current group leader identifier.
– myGroup: current group identifier.

Examples of synchronization scenarios: Figures 5 and 6 show various
synchronization scenarios with respectively two and three different groups merg-
ing at the same time. Each group is first composed by two robots, robots 0 and 1
for the first group, robots 2 and 3 for the second one and so on. Arrows identify
events (blue for hello and red for synchro events) which are handled by robots
for the synchronization phase. Other hello events broadcasted to periodically
announce robot positions are not represented here. Each scenario is given as an
example. Therefore, the number of events exchanged during a scenario could be
different according to the order each event is delivered with. This statement is
especially true if the number of groups merging at the same time is large.

In a robot time line, couple of black values correspond respectively to the
leader and group id. The hello event parameters are the source robot, leader and
group id. Finally, the synchro event parameters are the source and destination
leader id (leader1 and leader2 in the algorithm 1).

Scenarios 5b, 5c and 5d highlight temporally reception failures which lead
the robot to broadcast extra events to achieve the synchronization. Such failures
could be due to a temporary Wi-Fi signal loss. The extra event phase is initialized
by the faulty robot which receives a hello packet from its leader. This mechanism
is implemented at line 5 of the algorithm 1.

Resilient Middleware for a Multi-Robot Team INForum 2010 – 695

Algorithm 1 View synchronization algorithm
1: upon event <object | type, id, leader, group> do
2: if type = ”robot” ∧ (leader 6= myLeader ∨ group 6= myGroup) then
3: if id = leader ∧myId = myLeader ∧ id < myId then
4: synchronization(myLeader, leader)
5: else if id = myLeader then
6: synchronization(myId, leader)
7: myLeader ← myId

8:
9: upon event <synchro | leader1, leader2, objList> do

10: if myLeader = leader2 then
11: if leader1 < myLeader then
12: myLeader ← leader1

13: if myId = myLeader then
14: synchronization(myId, leader1)

15: for all obj ∈ objList do
16: trigger <object | obj.type, obj.id, obj.leader, obj.group>

17: if leader1 > leader2 then
18: myGroup← leader1
19: else
20: myGroup← leader2

21:
22: upon event <beat | > do
23: updateRequired← false
24: for all obj ∈ view do
25: if isUptodate(obj) = false then
26: view ← myV iew − {obj}
27: if obj.type = ”robot” ∧ (obj.id = myLeader ∨ obj.id = myGroup) then
28: updateRequired← true

29: if updateRequired = true then
30: updateLeader()

31:
32: procedure synchronization(leader1, leader2)
33: objList← {}
34: for all obj ∈ myV iew do
35: if obj.type 6= ”robot” then
36: objList← objList + {obj}
37: trigger <synchro | leader1, leader2, objList>

38:
39: procedure updateLeader
40: myLeader ← myId
41: myGroup← myId
42: for all obj ∈ myV iew do
43: if obj.type = ”robot” ∧ obj.id < myLeader then
44: myLeader ← obj.id

45: if obj.type = ”robot” ∧ obj.id > myGroup then
46: myGroup← obj.id

696 INForum 2010 Eric Vial, Mário Calha

(a) Synchronization without failure (b) Reception failure on robot 1

(c) Reception failure on robot 0 (d) Reception failure on robot 3

Fig. 5: Examples of view synchronization between two groups

Fig. 6: Example of view synchronization between three groups

The last scenario 6, three groups merging at the same time, is unusual but
shows the algorithm resilience. We can notice that at the end of the first “round”,
the robot 3 doesn’t have the same group id than the others (yellow-circled value).
The situation gets stable after the second hello event.

Resilient Middleware for a Multi-Robot Team INForum 2010 – 697

Advantages and drawbacks: This algorithm is very simple and offers
resilience in signal loss situations. Nevertheless in some tricky scenarios, it could
require more than one round, i.e. more than one hello event to stabilize itself.
Hello events are periodically generated (according to the beat signal frequency),
so increasing this beat signal frequency to accelerate the synchronization phase
could be attractive but may on the other hand overload the wireless network
and what’s more, lead to some algorithm instability if this frequency is greater
than half the mean round trip delay of the wireless network.

5 Conclusion and future work

We have proposed a middleware architecture aimed to offer a resilient control
system for mobile robots. A middleware version was written in C and evaluated
by means of robot simulation Java tools (Simbad v1.4). Most common scenarios
like communication failures, robot group splitting and merging, or payload over-
load have been successfully tested. The next step is now to port the middleware
to an embedded platform based on an ARM chip and a FPGA.

References

1. Lúıs Marques, António Casimiro, Mário Calha, Design and development of a proof-
of-concept platooning application using the HIDENETS architecture, DSN ’09:
Proceedings of the International Conference on Dependable Systems and Networks,
223-228, 2009.

2. Casimiro, A. and Rufino, J. and Marques, L. and Calha, M. and Veŕıssimo, P.,
Applying architectural hybridization in networked embedded systems, The Seventh
IFIP Workshop on Software Technologies for Future Embedded and Ubiquitous
Systems, November, 2009.

3. Paulo Veŕıssimo. Travelling through wormholes: a new look at distributed systems
models. SIGACT News, 37(1):66–81, 2006.

4. Maayan Roth, Douglas Vail, and Maria Manuela Veloso, A Real-time World Model
for Multi-Robot Teams with High-Latency Communication. IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), October, 2003.

5. M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M.
Csorba. A solution to the simultaneous localization and map building (SLAM)
problem. IEEE Transactions on Robotics and Automation, 17(3):229–241, 2001.

6. J. J. Leonard and H. F. Durrant-Whyte. Mobile robot localization by tracking
geometric beacons. IEEE Transactions on Robotics and Automation, 7(3):376–382,
1991.

7. Andrew Howard, Maja J Matarić and Gaurav S Sukhatme. Localization for Mobile
Robot Teams Using Maximum Likelihood Estimation. IEEE/RSJ International
Conference of Robotics and Intelligent Systems (IROS): 434-459, 2002.

8. Kristel Verbiest, Eric Colon. Securing Hostile Terrain with a Robot Team. Fourth
International Workshop on Robotics for risky interventions and Environmental
Surveillance-Maintenance, RISE’2010– Sheffield, UK, January 2010

9. Rodney A. Brooks, A Robust Layered Control System For a Mobile Robot, Mas-
sachusetts Institute of Technology, Cambridge, MA, 1985.

698 INForum 2010 Eric Vial, Mário Calha

Using the MegaBlock to Partition and Optimize
Programs for Embedded Systems at Runtime

João Bispo1, João M. P. Cardoso2,

1 IST/Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

joaobispo@gmail.com,
2 Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia

Informática, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
jmpc@acm.org

Abstract. This paper presents our recent research efforts addressing the
dynamic mapping of sections of execution to a coarse-grained reconfigurable
array (CGRA) coupled to a General Purpose Processor (GPP). We are
considering the common scenario of a GPP – a RISC processor – using the
CGRA as a co-processor to speedup applications. We present a partitioning
scheme based on large traces of instructions (named Megablock). We show
estimations of the speedups achieved by considering the Megablock.

Resumo. Este artigo apresenta os nossos esforços mais recentes em relação
ao mapeamento dinâmico de secções de programas a correr em processadores
de âmbito geral (GPPs) para agregados reconfiguráveis de grão grosso
(CGRAs). Na abordagem actual consideramos um cenário em que temos um
GPP – processador RISC – que utiliza um CGRA como co-processador para
acelerar aplicações. Apresentamos um método de particionamento baseado em
grandes blocos de instruções (denominados MegaBlocos) e mostramos valores
estimados de acelerações do tempo de execução quando se considera o
MegaBloco como unidade de partição.

Keywords: Reconfigurable Computing, Dynamic Mapping, Just-In-Time
Compilation, Binary Translation.

1 Introduction

The execution of applications on general purpose processors (GPPs) can be enhanced
– e.g., lower execution time, lower energy consumption – by moving computationally
intensive parts (hot-spots) to specialized custom hardware components such as
Reconfigurable Processing Units (RPUs) [1, 2]. This is becoming common practice in
high-performance embedded systems. It is common to use a programmable processor,
often a RISC-like GPP, to run the application and use a custom hardware coprocessor
(e.g., CGRAs – Coarse-Grained Reconfigurable Arrays) when certain requirements
cannot be met by the GPP alone.

However, to be able to use the custom hardware, we must rewrite part of the
application and explicitly call this hardware when needed. This can be accomplished

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 699–710

by several means (e.g., manually by a programmer, automatically by a compiler). By
using techniques from both binary translation and dynamic compilation, it is possible
to translate the application and insert calls to the hardware at runtime. This way we
can transparently move critical sections of programs running on a GPP to a CGRA
co-processor without pre-changing the program binaries. We refer to this as dynamic
mapping. It has already been successfully applied [3], but research efforts about the
benefits and the feasibility of dynamically partitioning binaries to reconfigurable
architectures are relatively recent [4].

This paper shows our most recent efforts on dynamic mapping. We identify a set of
characteristics that when present in the critical sections can benefit dynamic mapping,
and we propose a novel partitioning method which can extract blocks of instructions
[5] with those characteristics in mind. We show how this partitioning method can
impact performance.

This paper is organized as follows. Section 2 introduces the dynamic mapping
problem and motivation. In Section 3 we explain our approach to dynamic mapping
and we propose the MegaBlock partitioning method. Section 4 presents experimental
results regarding our approach and Section 5 introduces related work. Finally, Section
6 concludes the paper.

2 Dynamic Mapping

As previous work has shown, if we move the critical loops of a program to dedicated
hardware units, we can have significant performance improvements [6]. There have
been many proposals on accelerators for reconfigurable computing, as well as a
plethora of architectures [7, 8]. Most well-known examples include Adres [9],
Morphosys [10], Chimaera [11], and XPP [12]. Each one of these architectures
proposes unique features and tries to address faster execution and/or energy savings
for a set of algorithms. Currently, there is a wide choice of hardware accelerators and
fine-grained reconfigurable fabrics such as FPGAs (Filed-Programmable Gate
Arrays) are a fairly cheap technology to implement them. The main obstacle to
custom hardware units is the significant cost of rewriting the programs to take
advantage of those units.

A common approach has been to develop tools which automatically partition a
program (typically in C) into software and hardware parts [13, 14]. With the help of
profiling information, the tools detect small sections of code where the program
spends most of its time (critical kernels or hot-spots). This approach is applied at
compile time (statically). Since it is static, it can use more complex algorithms than
dynamic approaches. On the other hand, the binary generated by the tools is often tied
to a very specific setup. Even when the tool supports several families of the same
architecture (e.g., with variations in the number of functional units), at compilation
time the options usually are compiling to a very specific architecture, or to the lowest
common denominator. In addition, if the execution of a program is sensitive to
changes in the input data, the information collected during profiling might not hold
between executions, limiting the adaptability of the generated binary.

700 INForum 2010 João Bispo, João M. P. Cardoso

During static partitioning, we can only move parts of an application to hardware if
we have access to its code. In this approach, pre-compiled libraries (e.g., DLLs) are
usually out of the partitioning scope, and consequently they are not considered for
target-specific compiler optimizations.

Dynamic mapping can make RPUs transparent without compromising existent
binary portability, expose more optimization opportunities and expand the use of
reconfigurable hardware in embedded computing systems. However, dynamic
mapping represents a difficult challenge, since it implies we need to execute many of
the tasks performed by static partition at runtime. On the other hand, it provides
access to information previously not available, which can be used for further
optimizations.

We are considering the common scenario of a GPP using a co-processor to
speedup applications. In such a case, the execution will be switching back and forth
between the GPP and the co-processor.

We focus our work on the level of the instructions executed by the GPP. By
working at a higher level (e.g., doing the partitioning of the program on C code) we
might not have access to important information about the execution flow of the
program.

3 Our Approach to Dynamic Mapping

The main objective of our work is to contribute in bridging the gap between software
and reconfigurable hardware. Embedded computing is a good target since it is an area
where it is common to find systems including customized hardware modules and
reconfigurable hardware.

We want to move parts of programs to hardware to improve one or more particular
aspects (e.g., execution time, energy consumption). So, instead of starting with the
hardware and propose a specific architecture, in our approach we want to start with
the programs, and discover what kind of opportunities they have for dynamic
mapping.

Nonetheless, the particular mapping techniques will depend on the target co-
processor architecture, memory interface, and available communication. We think
that to maximize the impact of dynamic mapping, we should go beyond the Basic
Block and be prepared to map blocks of instructions with dozens to hundreds of
instructions. Bearing this in mind, we choose to base our work on the general
architecture shown in Figure 1. This kind of target architectures with a RISC-like
GPP is commonly used in embedded systems. Currently, we use the Xilinx
MicroBlaze softcore processor [15] as the GPP to run the programs. Dynamic
mapping could possibly be applied to other types of hardware co-processors, but we
choose to focus our work on CGRAs, since they generally need less mapping efforts
than finer-grained alternatives (e.g., FPGAs). Note, however, that this does not
constrain the use of FPGAs as CGRAs can be mapped to the FPGA hardware
resources, which is a trend in the reconfigurable computing area.

We present in this paper a novel approach to one of the challenges in dynamic
mapping: identifying what portions of code should be mapped (partitioning).

Using the MegaBlock to Partition and ... INForum 2010 – 701

Figure 1. General Architecture

Regarding the architecture assumptions previously described in this section, we
identified three issues.

Firstly, the longer a segment of code executes in the co-processor uninterruptedly,
the higher the impact of dynamic mapping. This will reduce the communication and
reconfiguration overhead [13], and since each partition will incur in a mapping cost
the first time it is found and a reconfiguration cost every time it is used, it is desirable
to find mapping candidates which will have a large number of iterations.

Secondly, as stated by Amdahl’s Law, we need to move a large portion of the
program execution to the co-processor if we want to have a significant impact. E.g.,
for a speedup of 2, we will always need to move more than 50% of the execution
from the GPP to the co-processor.

Lastly, branches are a common occurrence in code running on GPPs, and do not
translate well to the usually highly parallel, data-flow co-processors. Branches can
also prevent several optimizations and limit the amount of Instruction-Level
Parallelism (ILP). Hardware accelerators work best when the control-flow is very low
or non-existent.

Taking these issues into account, we consider that a good candidate for mapping
would be a segment of branchless code (control-flow issue) which repeats itself a high
number of times during execution (iteration issue). It is important that such segments
represent a significant portion of the program execution (coverage issue). Figure 2
illustrates the segments we are currently identifying in an execution trace, in an
example in pseudo-code.

The BasicBlock is formed by a sequence of instructions with single entry-point and
single exit-point basic blocks end when a branch or jump instruction appears.

A similar, yet more powerful type of segment is the SuperBlock. SuperBlocks are
regions of code with single entry-point and multiple exit-points. Originally, it was
proposed as a technique to extract more ILP from static compilation [16], but it was
later adapted for dynamic compilation [17]. The dynamic version of the SuperBlock
represents a common, biased path along several BasicBlocks. A SuperBlock is built
by adding BasicBlocks until we reach a BasicBlock that ends with a backward jump.
The jump starts a new SuperBlock.

Expanding on the idea of the SuperBlock, we propose another type of segment, the
MegaBlock, as a sequence of SuperBlocks, with a bias towards consecutive
repetitions. A MegaBlock is built by identifying a sequence of SuperBlocks, up to a

702 INForum 2010 João Bispo, João M. P. Cardoso

predetermined size. When a sequence of SuperBlocks repeats itself at least one time,
that sequence is considered as a MegaBlock with multiple iterations. SuperBlocks
which do not form repeatable sequences are also considered as MegaBlocks, albeit
with only one iteration. It should be noted that when these three kinds of segments are
considered individually, they only have one execution path and the only control-flow
inside the blocks are side-exits.

Figure 2. Program execution partitioning according to BasicBlocks, SuperBlocks and
MegaBlocks

To use these segments in dynamic mapping, it is important that we can detect and
extract them during runtime. To detect BasicBlocks, we identify branch instructions.
SuperBlocks can be detected by identifying backward branch instructions. To find
MegaBlocks at runtime we propose a technique which first, uniquely indentifies
SuperBlocks by using the first addresses of their BasicBlocks to create a hash value
(e.g., [16]). Using a hardware pattern matching module, we can efficiently find
MegaBlocks within a stream of SuperBlock hashes. We could make the detection of
MegaBlocks over the BasicBlocks instead of the SuperBlocks, but the coarser
granularity of the SuperBlock reduces the pattern matching requirements
significantly.

Before mapping a section of the program execution, we can apply optimizations to
expose more ILP, or to reduce the number of instructions to map. Although this is not
explored in this paper, we will refer some considerations about these optimizations.
Since the algorithms should perform during runtime, we favor algorithms which map
well to hardware. We focus on algorithms which can be applied to a stream of
instructions and which use tables to store temporary data, (instead of, e.g., graph
representations). The reason is that, later they might be easier to translate to hardware.
We use a simplified Single-Static Assignment (SSA) format without Phi functions
[18], and maintaining the original number of the registers added with the number of
each specific definition. It is simpler as the algorithms are applied over blocks of

Using the MegaBlock to Partition and ... INForum 2010 – 703

instructions with a single execution path. Since there is no more than one path at any
given moment, a use can only be reached by a single definition which can be kept in
a table removing the need for a Phi function.

4 Experimental Results

We chose a set of 13 benchmarks which are commonly used in embedded computing
and which represent a wide range of integer computations. The benchmarks used are:
adpcm coder and decoder, autocorrelation, bubble sort, discrete cosine transform, dot
product, fdct, fibonacci, fir, max, pop_cnt, sobel and vecsum. All benchmarks were
compiled with mb-gcc (the GCC compiler targeting MicroBlaze) using different
levels of optimization. The number of instructions executed for the benchmarks range
from around 500 instructions to 300,000 instructions.

The Megablock identification uses the maximum size of the sequence of
SuperBlocks as a parameter. Figure 3 represents the coverage of MegaBlock based
partitioning with different maximum sequence sizes. Table 1 shows the sizes, in
number of executed MicroBlaze instructions of the corresponding MegaBlocks.

Figure 3. Portions of the program execution (Y axis) that are covered by MegaBlocks which
have at least a certain amount of iterations (X axis), according to the maximum number of
SuperBlocks a MegaBlock can have. Since every block has, at least, one iteration, value 1 on
the X axis corresponds to 100% of the program execution on the Y axis

Figure 3 and Table 1 indicate that the higher the maximum sequence size, the more
coverage we have, but the bigger will be the MegaBlocks. For sequence sizes above
32 there is no coverage gain for the presented benchmarks. There is a significant

704 INForum 2010 João Bispo, João M. P. Cardoso

difference in the average size of MegaBlocks between a maximum sequence size of
16 and 32, but the average size in the latter case is still comfortably inside the usual
size of blocks in approaches which implement small loops [6]. The coverage is an
average for all benchmarks, when executing the binaries previously generated with
the O3 flag. Regarding the three partitioning schemes previously presented, the
results indicate that the MegaBlock with parameter 32 (i.e., considering MegaBlocks
with up to 32 SuperBlocks) has the potential to represent a significant portion of
program execution. For the considered benchmarks, on average, MegaBlocks with 10
or more iterations represent almost 90% of the total execution; MegaBlocks with 100
or more iterations represent more than 60% of the total execution. Since the
MegaBlock has a single execution path, mapping this block to hardware may need
less effort than mapping blocks with more complex control-flow.

Table 1. MegaBlock sizes with respect to the number of executed instructions. We present
results when we only take into account MegaBlocks with 2 or more iterations, and MegaBlocks
with 10 or more iterations. Note that we are not interested in mapping blocks which have only
one iteration. The weighted average has into account the number of iterations each MegaBlock
of a particular size has

Max Sequence
Size

Minimum Size Maximum Size Weighted Average
2 10 2 10 2 10

1 4 4 106 106 7.5 7.4
2 4 4 106 106 7.5 7.4
4 4 4 106 106 7.5 7.4
8 4 4 783 106 9.0 8.8
16 4 4 783 309 10.4 10.3
32 4 4 783 309 26.0 25.6
64 4 4 783 309 26.0 25.6

Figure 4 presents a comparison between several partitioning methods using the 13

benchmarks. The execution of the programs was partitioned in blocks, and we
measured, during the program execution, the number of consecutive iterations that
occurred for each block. Besides the methods presented in Figure 2, we also
implemented the partitioning method used by the Warp processor [6]. Note, however,
that this last partitioning method detects complete loops with control-flow, while the
others are biased, branchless paths. The curves in the figure should be seen relative to
one another: they are particular for a set of benchmarks, and even the same program
can present a different number of iterations with a different set of input data. For the
considered benchmarks, the MegaBlock with a maximum pattern size of 32 is
consistently above the other considered methods. This means that for the same
number of iterations, the blocks found by this partitioning method represent a higher
percentage of the executed code. It was expected that the Warp partitioning method
could present a higher coverage, since it is covering not only the frequent path of the
loop but also all the other paths of the loop. It seems that the method used by Warp
[6] detects only inner loops. As the MegaBlock detects patterns of SuperBlocks, if an
inner loop can fit in a small number of SuperBlocks and the size of the maximum
sequence is sufficiently big, the MegaBlock partitioning method will automatically

Using the MegaBlock to Partition and ... INForum 2010 – 705

consider small unrolled inner loops. The SuperBlock partitioning method follows the
Warp partitioning method very closely. This is to be expected, since them both use
backward branches to detect small loops.

Figure 4. Portions of the program execution (Y axis) that are covered by blocks, identified by
several partitioning techniques, which have at least a certain amount of iterations (X axis). We
are using MegaBlocks which have, at most, 32 SuperBlocks

To analyze the potential speedups that can be obtained using our approach, we
considered a hypothetical large 2D CGRA architecture coupled to the MicroBlaze.
This CGRA consists of a number of rows, each one with functional units (FUs) and a
single load/store unit. Each row is executed in one clock cycle. We consider that each
instruction in the program execution can be mapped to a functional unit. We imposed
a communication restriction, where FUs from a given row could only communicate
with the FUs of the row immediately below. When an FU needed data from another
FU from a distance higher than one row, the data items are communicated through
other unoccupied FUs using “move” instructions. The only exceptions were data
inputs, which can be read by any row. We also imposed restrictions for the memory
operations: at any given row, there is only one load/store operation. This architecture
is very similar in concept to the DIM architecture [19].

The mapping algorithm is based on the algorithm used by Clark et al. to map
instructions to the CCA [20]. The MegaBlock is read as a stream of instructions, and
each incoming instruction is placed on the first row which respects the data
dependencies. After placement of the instruction, the algorithm checks if the
instruction can receive the required data, and if not, inserts the necessary ‘move’
instructions. Additionally, it uses a conservative approach for memory instructions,
mapping any load operation after the last store operation and respecting the
occurrence order of store operations and possible side-exits. The speedup figures

706 INForum 2010 João Bispo, João M. P. Cardoso

account for communication overheads between reconfigurations, and assume we need
one clock-cycle to communicate each live-in and live-out register.

Figure 5 shows the speedups for each benchmark across several levels of compiler
optimization, when we use the MegaBlock partitioning method with a maximum
sequence size of 32 and we move to hardware all blocks which have at least 10
iterations. As shown in Figure 5, we can achieve speedups from 2 to 4 on average,
depending on the optimization level of the compiler. Higher optimization levels show
higher speedups across most benchmarks, which come from a higher coverage rate for
those optimization levels. This might happen because higher optimization levels can
represent code in a more efficient format, which can benefit the pattern matching
(e.g., less SuperBlocks for a given pattern). When there are simultaneously patterns of
several sizes (e.g., the sequence AAAA has patterns of size one – A – and two – AA),
since the pattern matching algorithm gives priority to the pattern with the smallest
size, it is able to extract the smallest common kernel, even when the compiler uses
optimization techniques which increase the size of the code (e.g., loop unrolling).

Figure 5. Speedups across different levels of compiler optimizations

5 Related Work

In the context of embedded systems, there have been several efforts addressing the
dynamic mapping applications to RPUs.

Lysecky et al. [6] propose the Warp Processor, a system which includes a GPP, a
fine-grained RPU and a dynamic mapping module. The dynamic mapping module
automatically detects critical loops executing on the GPP and maps the corresponding
binary code to the fine-grained RPU. In a posterior work [21], they use the same
technique to improve the performance of a MicroBlaze softcore processor.

Using the MegaBlock to Partition and ... INForum 2010 – 707

The Configurable Compute Accelerator (CCA) [22] is a special-purpose unit
designed to be integrated in the pipeline of a GPP and executes a restrict set of Data-
Flow Graphs (DFGs). The CCA cannot be directly accessed through programming,
and instead, the unit itself has hardware support for binary translation, which
automatically moves code from the instruction pipeline to the CCA.

Beck et al. [19] propose the Dynamic Instruction Merging (DIM) technique, a
binary translation method to transparently map Basic Blocks from a general purpose
MIPS processor to a coarse-grained reconfigurable array. They tightly couple the
coarse-grained array to the processor, working as an additional functional unit in the
execution stage of the pipeline. The objective of this architecture is to accelerate
embedded systems that need to execute many different kinds of tasks.

Regarding these three approaches, Warp uses fine-grained reconfigurable hardware
as the target RPU of dynamic mapping. Comparing to a coarse-grained RPU, it
trades-off higher flexibility in the circuitry that can be implemented with higher
mapping overhead. It is also an approach which needs a greater mapping effort, and
that is not tightly coupled to the processor: both the CCA and the DIM are integrated
in the pipeline of the processor, while the Warp RPU works as a co-processor. In the
other hand, this enables the mapping of larger blocks in the Warp Processor. It
implements complete loops, while the CCA and the DIM exploit ILP inside a small
number of Basic Blocks.

6 Conclusions

This paper presented our approach to dynamically migrate computationally intensive
sections of program execution from a general purpose processor to a coarse-grained
reconfigurable array working as a co-processor. We proposed the MegaBlock for
partitioning and presented experimental results showing a comparison between our
approach and other common approaches such as the BasicBlock and the SuperBlock.

Ongoing work is addressing runtime optimizations and studying their impact in the
final speedups. Future work will address hardware implementations of some of the
modules needed to implement our dynamic mapping approach in order to quantify
some of the resultant characteristics.

Acknowledgments

This research has been sponsored by the Portuguese Science Foundation (FCT) under
research grants PTDC/EEA-ELC/70272/2006 and SFRH/BD/36735/2007.

References

[1] Z. Guo, W. Najjar, F. Vahid, and K. Vissers, "A quantitative analysis of the
speedup factors of FPGAs over processors," in FPGA '04: Proceedings of

708 INForum 2010 João Bispo, João M. P. Cardoso

the 2004 ACM/SIGDA 12th international symposium on Field
programmable gate arrays, Monterey, California, USA, 2004, pp. 162-170.

[2] J. Henkel, "A low power hardware/software partitioning approach for core-
based embedded systems," in Annual ACM IEEE Design Automation
Conference: Proceedings of the 36 th ACM/IEEE conference on Design
automation: Association for Computing Machinery, Inc, One Astor Plaza,
1515 Broadway, New York, NY, 10036-5701, USA, 1999.

[3] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler, A. Klaiber,
and J. Mattson, "The Transmeta Code Morphing™ Software: using
speculation, recovery, and adaptive retranslation to address real-life
challenges," in Proceedings of the international symposium on Code
generation and optimization: feedback-directed and runtime optimization:
IEEE Computer Society Washington, DC, USA, 2003, pp. 15-24.

[4] G. Stitt, R. Lysecky, and F. Vahid, "Dynamic hardware/software
partitioning: a first approach," in Proceedings of the 40th conference on
Design automation: ACM New York, NY, USA, 2003, pp. 250-255.

[5] J. Bispo and J. M. P. Cardoso, "On Identifying Segments of Traces for
Dynamic Compilation," in 20th International Conference on Field
Programmable Logic and Applications (FPL’10), PhD Forum, Milano, Italy,
2010. (accepted)

[6] R. Lysecky, G. Stitt, and F. Vahid, "Warp Processors," ACM Trans. Des.
Autom. Electron. Syst., vol. 11, pp. 659-681, 2006.

[7] S. Hauck and A. DeHon, Reconfigurable Computing: The Theory and
Practice of FPGA-Based Computation: Morgan Kaufmann/Elsevier, 2008.

[8] R. Hartenstein, "A decade of reconfigurable computing: a visionary
retrospective," in Proceedings of the conference on Design, automation and
test in Europe: IEEE Press Piscataway, NJ, USA, 2001, pp. 642-649.

[9] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, "ADRES:
An Architecture with Tightly Coupled VLIW Processor and Coarse-Grained
Reconfigurable Matrix," in Field-Programmable Logic and Applications,
2003, pp. 61-70.

[10] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M. C.
Filho, "MorphoSys: an integrated reconfigurable system for data-parallel and
computation-intensive applications," Computers, IEEE Transactions on, vol.
49, pp. 465-481, 2000.

[11] Z. A. Ye, A. Moshovos, S. Hauck', and P. Banerjee, "CHIMAERA: a high-
performance architecture with a tightly-coupled reconfigurable functional
unit," in Computer Architecture, 2000. Proceedings of the 27th International
Symposium on, 2000, pp. 225-235.

[12] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and M.
Weinhardt, "PACT XPP—A Self-Reconfigurable Data Processing
Architecture," The Journal of Supercomputing, vol. 26, pp. 167-184, 2003.

[13] K. Bondalapati, P. Diniz, P. Duncan, J. Granacki, M. Hall, R. Jain, and H.
Ziegler, "DEFACTO: A design environment for adaptive computing
technology," 1999, pp. 570-578.

[14] Y. Yankova, G. Kuzmanov, K. Bertels, G. Gaydadjiev, Y. Lu, and S.
Vassiliadis, "DWARV: DelftWorkbench Automated Reconfigurable VHDL

Using the MegaBlock to Partition and ... INForum 2010 – 709

Generator," in VHDL generator”, the 17th International Conference on
Field Programmable Logic and Applications (FPL’07: Citeseer, 2007, pp.
697-701.

[15] I. Xilinx, "Microblaze processor reference guide," reference manual, 2006.
[16] W. M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A.

Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, and G. E. Haab, "The
superblock: an effective technique for VLIW and superscalar compilation,"
The Journal of Supercomputing, vol. 7, pp. 229-248, 1993.

[17] V. Bala, E. Duesterwald, and S. Banerjia, "Dynamo: a transparent dynamic
optimization system," in Proceedings of the ACM SIGPLAN 2000
conference on Programming language design and implementation
Vancouver, British Columbia, Canada: ACM, 2000.

[18] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, "An
efficient method of computing static single assignment form," in
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages Austin, Texas, United States: ACM, 1989.

[19] A. C. S. Beck, M. B. Rutzig, G. Gaydadjiev, and L. Carro, "Transparent
reconfigurable acceleration for heterogeneous embedded applications," in
Proceedings of the conference on Design, automation and test in Europe
Munich, Germany: ACM, 2008.

[20] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and K. Flautner, "An
Architecture Framework for Transparent Instruction Set Customization in
Embedded Processors," in ISCA '05: Proceedings of the 32nd annual
international symposium on Computer Architecture, 2005, pp. 272-283.

[21] R. Lysecky and F. Vahid, "Design and implementation of a MicroBlaze-
based warp processor," ACM Transactions on Embedded Computing
Systems, vol. 8, 2009.

[22] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner, "Application-
Specific Processing on a General-Purpose Core via Transparent Instruction
Set Customization," in Proceedings of the 37th annual IEEE/ACM
International Symposium on Microarchitecture Portland, Oregon: IEEE
Computer Society, 2004.

710 INForum 2010 João Bispo, João M. P. Cardoso

A Framework for QoS-Aware Service-based Mobile
Systems

Joel Gonçalves, Luis Lino Ferreira

CISTER Research Center

Polytechnic Institute of Porto (ISEP/IPP)
{vjmg; llf@isep.ipp.pt}

Abstract. In this paper we propose a framework for the support of mobile
application with Quality of Service (QoS) requirements, such as voice or video,
capable of supporting distributed, migration-capable, QoS-enabled applications
on top of the Android Operating system.

Keywords: Quality of Service, mobile systems, Android OS.

1 Introduction

Mobile applications are increasingly more ubiquitous and more dynamic. Furthermore,
mobile systems are increasingly open to third-party developed applications, being
expectable that users put more and more pressure on locally available resources. But,
even considering the substantial increase in devices’ capabilities, it is not expectable
that they will be able to simultaneously support all applications the users may want to
execute. The solution to this is to allow applications to scavenge resources available in
neighbor nodes by allowing applications to migrate some or all of its services into other
nodes (or from other nodes). Therefore, there is a growing need to develop frameworks
and applications that are able to reconfigure considering system-wide distribution of
application and resources. Applications must therefore support: i) the capability to
connect seamlessly to remote services and; ii) the capability to move some of its
services to remote nodes.

Our goal is to provide augmented functionalities (quasi-)transparently in existent
middleware and operating system. The Android operating system is used both due to its
open source nature and potential market, but also due to its innovative architecture.
Although its use to support real-time applications is still debatable [4], it nevertheless
provides a suitable architecture for QoS-aware applications in ubiquitous, embedded
systems.

Android applications (constituted by Intents, Activities and Services) and its
resources are contained in an Android Package (APK) which can be installed in a local
device. During runtime, the APKs components can be assembled to create dynamic
applications, but these functionalities are only available in the local node. In this work,
we extend this concept to a fully distributed and dynamic environment, where
applications use the Activities and Services from the APKs whether they are installed
locally or remote. Further, we allow APKs to migrate to other nodes, by user demand or
due to system’s reconfiguration. Finally, the framework is also able to support

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 711–714

applications with QoS requirements, both during its run-time operation and particularly
during the migration of services.

The APKs are executed as independent processes, with distinct permissions, and,
importantly, also with different QoS parameters. Figure 1 provides an example: the
initial scenario is presented in the left part, where Device 1 is executing an application
that uses services from three distinct APKs, in Device 1 (APK A) and Device 2 (APK B
and APK C).

Fig. 1. Example scenario

The right side of Figure 1 provides a new system configuration, which includes a
new device: Device 3. Assuming that this device has more resources available than
Device 1, it enables a new application configuration with a higher QoS level if APK B
is migrated to Device 3.

Algorithms and frameworks as the ones proposed in CooperatES [3] can be used to
find the new configuration for the system services, maximizing the rewards for the
overall system. As a result of the evaluation, Device 3 now offers the services of APK
B. Mobile code mechanisms of the proposed framework support such approach,
making possible to transfer (guaranteeing the QoS requirements), the code and state of
service B from Device 1 to Device 3, install the corresponding APK file, rebind the
connections between Device 1 and the service, and continue its operation.

2 Framework Architecture Overview

In order to implement our approach we assume the existence of a QoS Manager on the
Android Operating System, the addition of application layer features to support the
core functionalities of a mobile code framework and the use of supporting libraries
which allow programmers to use the full set of capabilities offered by the framework.

712 INForum 2010 Joel Gonçalves, Luis Lino Ferreira

The Framework Core functionalities (Figure 2) is constituted by separate modules
implemented as an Android services, which takes care of service migration to and from
another node, interacting with the QoS Manager in order to determine if the QoS
requirements of the service can be supported.

Any Android application can use the services of the framework in order to support
installing and running an Android APK in another node. More advanced services,
which require the rebinding of connections between components, are only supported if
applications use the Mobile Library.

Fig. 2. Framework core modules

The Mobile Library offers a set of helper classes that extend the core functionalities
of Android with QoS and distributed capabilities. The library allows to transparently
extend the Activity and Service abstractions for distributed systems. Consequently,
application code is only required to send an Intent, after which the framework is
responsible for determining if it refers to a local or remote component. The library also
implements the services required for communication establishment and automatic
rebinding of service’s connections when a service migrates. This library [5] already
implements some generic mechanisms, which can be immediately used by developers,
but also allows extensions to the base classes for new implementations.

The core services provided by the framework are: Discovery Manager, Package
Manager, State Manager and Execution Manager.

The Discovery Manager module is designed to discover neighbour devices on a
local network and advertise the host device available resources. To that purpose, every
node in the network periodically broadcasts information regarding its status and
installed services, such as the APKs installed, their associated Intents interfaces and
resource availability.

The Package Manager is used to install, uninstall and transfer the code of APKs
between Android devices. Applications can start executing when the node receives an
Intent request from a remote Execution Manager (see below). It is also responsible for
the interaction with the QoS Manager in order to request specific QoS levels for the
service being handled. It is the responsibility of the QoS Manager to accept or reject
service installations if the QoS required level cannot be guaranteed.

The State Manager handles transfer of state for statefull services. The State
Manager is responsible for transferring either the full state or specific state items
similarly to what has been proposed in [1, 2]. The flexibility on the implementation of
the state migration policies can be of paramount importance for the use of code

A Framework for QoS-Aware Service-based Mobile Systems INForum 2010 – 713

mobility techniques in real-time systems since it can allow the reduction on the
unavailability time of a service.

The Execution Manager allows launching services on a host device or on a remote
node. Android Intents are exchanged between devices and used locally to start up a
service, which can be a standard Android Activity or Service. Intents that address
Activities or Services in remote nodes are parsed to extract their parameters and sent to
the remote Execution Manager, which then reconstructs the intent and launches it
locally (on the remote node).

Services which are based on the framework use the new versions of Service and
Activity classes; therefore, when calling for a remote service they can connect directly
using the functionalities provided by the Mobile Library.3

3 Conclusions

In this paper we proposed a framework for the development of distributed QoS aware
applications with self-reconfiguration capabilities. The framework is particularly
targeted for the Android Operating System and its implementation extends the main
abstractions used in Android – Activities, Services and Intents, allowing for transparent
interactions of application code in both local and distributed settings. Quality-of-
Service requirements of both applications and reconfiguration services are handled by
supporting an underlying operating system QoS Manager module.

This framework will be used to develop the real-time capabilities of the Android
operating system and particularly to develop adequate strategies for multiple parameter
quality-of-service of applications (considering both tasks and communication streams).
We also plan to investigate further on how to better manage dynamic adaptations
during reconfiguration/mobility phases. An implementation of the framework proposed
in this paper is available at [5].

Acknowledgment. This work is partially funded by the Portuguese Science and
Technology Foundation (Fundação para a Ciência e a Tecnologia - FCT) and project
RESCUE (PTDC/EIA/65862/2006).

References
1. Preuveneers, D. and Berbers, Y. (2010) “Context-driven migration and diffusion of

pervasive services on the OSGi framework”, International Journal of Autonomous and
Adaptive Communications Systems, Vol. 3, No. 1, 2010, pp. 33-22.

2. Malek, S., Edwards, G., Brun, Y., Tajalli, H., Garcia, J., Krka, I., Medvidovic, N., Mikic-
Rakic, M., Sukhatme, G., ”An Architecture-Driven Software Mobility Framework”, Journal
of Systems and Software, special issue on Software Architecture and Mobility, Vol. 83,
Issue 6, Jun. 2010, pp. 972-989.

3. Nogueira, L., Pinho, L., "Time-bounded Distributed QoS-Aware Service Configuration in
Heterogeneous Cooperative Environments", Journal of Parallel and Distributed Computing,
Vol. 69, Issue 6, 2009, pp. 491-507.

4. Maia, C., Nogueira, L., Pinho, L., “Evaluating Android OS for Embedded Real-Time
Systems”, to be published in the 6th International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications (OSPERT 2010), 2010.

5. Distributed and Mobile Framework for Real-Time Systems (DiseRTS),
http://www.hurray.isep.ipp.pt/activities/RTSoft/distFrameworkOverview.ashx/, July 2010.

714 INForum 2010 Joel Gonçalves, Luis Lino Ferreira

Dependable Perception in Wireless Sensor Networks

Lúıs Marques1 and António Casimiro2

1 FC/UL? lmarques@lasige.di.fc.ul.pt
2 FC/UL casim@di.fc.ul.pt

Abstract. In this paper we present an analysis of perception dependability in wire-
less sensor networks. We put forward a model of perception and present the necessary
definitions to understand and ascertain perception quality and dependability. We also
present some directions for future work aiming at providing middleware support for
perception dependability, using this perception model.

Abstract. Neste artigo apresentamos uma análise sobre confiabilidade na percepção
em redes de sensores sem fios. Descrevemos um modelo de percepção e apresentamos
as necessárias definições relativas à qualidade e confiabilidade da percepção. Indicamos
também direcções de trabalho futuro com o objectivo de fornecer um middleware de
supporte à percepção confiável, usando este modelo de percepção.

1 Introduction

Much work has been done in the last decade regarding distributed systems and applications
based on networked sensors and actuators. Specifically, there has been great interest in
wireless sensor networks (WSNs), in particular focusing on environment monitoring [1] and
target tracking applications [2], through the use of small, low powered radio-enabled sensor
nodes.

The general research area continues to garner attention, as can be seen through the
current use of fashionable terms such as “cyber-physical systems” and “Internet of things”,
which refer to systems where information technology pervades and closely interacts with
the real world environment. In fact, the real-time nature of information processed in these
systems creates difficult problems, in particular if WSNs are to be used in sensor network-
based control applications. Our present work is directed towards addressing some of these
problems.

Despite the existence of a large body of work in this area, research has been limited to
some specific topics, such as platforms and OS support, spacial coverage and awareness, syn-
chronization, security, communication protocols and energy conservation (see [3] for a good
survey). Overlooked in this research has been the issue of data quality, being either taken
for granted or addressed with ad hoc validity mechanisms, mostly by using synchronized
clocks [4] and setting validity deadlines for data, or simply by overwriting old data [5].

Lacking has been a systematic analysis of faults that may impair perception reliability
and the definition of abstractions to allow reasoning in terms of perception quality. More
practically, it is necessary to develop algorithms and mechanisms to deal with faults and
improve perception quality and dependability. This can be done as part of a programming
? This work was partially supported by FCT through the Multiannual Funding and the CMU-

Portugal Programs.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 715–718

model and middleware framework which would allow systems to be designed to explicitly
reason about and be aware of perception quality and data validity.

In this paper we present a perception model upon which a middleware for dependable
perception in WSNs can be built. We also present some possible directions for implementing
such middleware.

2 Perception Model: Definitions and Dependability Issues

In our perception model we distinguish between environment entities and the systems’ per-
ception of them. We adopt the terminology in [6], referring to the former as Real-Time
entities (RTe), which conceptually represent the actual state of some environment variables,
exactly as they exist in a given moment, and to the latter as Real-Time representatives (RTr),
which are the internal representation of a RTe, as imperfectly perceived by the system.

Having this RTe/RTr duality, we can thus define perception quality (or observation error)
as the similitude (or difference) between a RTr and its respective RTe at some given time
instant. The more similar a representative is to its RTe, the higher the perception quality.

Many applications require a minimum level of quality, so it is important to be able to
distinguish between scenarios where an RTr is sufficiently similar to the corresponding RTe
and scenarios where it is not. We can thus refer to perception validity, or temporal consistency
of an RTr with respect to the RTe, which indicates if the perception quality is sufficient for
an application. More formally, given a maximum allowed error ε, the perception is valid, or
the RTr is temporally consistent at t, if |RTr(t)− RTe(t)| ≤ ε.

This definition of validity requires possessing knowledge of the real value of the RTe,
and as such is suitable for theoretical reasoning, but cannot be directly used in practice
(the state of the RTe is obviously unknown to the system). Instead, one or more of several
different approximations can be used to derive the validity of an RTr. A suitable approach is
to set a temporal validity interval or a deadline as soon as the RTe is observed (or sampled),
after which the RTr value can no longer be considered valid. This approach requires a global
notion of time in the distributed system and is dependant on the RTe’s dynamics. Therefore,
while it is always possible to perceive the state of any environment, doing so in a dependable
way requires its dynamics to be somehow predictable, or no guarantee can be given about
the validity of its perceived state. We thus consider as part of our perception model that we
can bound the environment dynamics.

We consider that the perception of real-time entities can be affected in two ways. One
is by faults and measurement errors affecting the sensing processes, such as malfunctioning
transceivers and intrinsic sensor tolerance intervals. The other is by faults and temporal
uncertainties affecting the communication in the wireless sensor network.

In this model we consider that faults are stochastic. We can then determine the best
possible perception quality that is achievable with some probability, by considering the best-
case sensing outcomes and the best-case transmission delays between information producers
(sensing RTes) and consumers (using RTrs).

However, we need to distinguish the following two cases: either the system is able to
eventually provide an RTr within the required error margin or it will never be able to do so.
This second case would happen in situations where the fidelity of the sensors is insufficient
for the required error margin or the transmission times are too large, always preventing
updates of an RTr to be done in useful time.

If a system is able to eventually provide a valid RTr then the issue is that this validity
cannot always be maintained, only being secured during some periods. In other words, it is

716 INForum 2010 Lúıs Marques, António Casimiro

possible to reason in terms of the probability that an RTr is valid at a given instant. We call
this the coverage of an assumed error margin, which is a measure of the quality of service
(QoS) provided by the WSN. In fact, we can generalize this concept so that completely
unworkable QoS requirements are simply classified as being provided with zero coverage.

Redundancy can be used to deal with faults in WSNs and increase dependability. This
can be spacial redundancy (the same information transmitted through different paths) or
temporal redundancy (waiting more time to receive new updates, despite some lost ones).
The impact of these approaches on the perception quality has to be investigated. For in-
stance, waiting times in intermediate nodes during message propagation may be useful to
overcome lost messages, but also imply a perception quality degradation.

Given the described model, middleware support can be provided to let applications
enjoy a requested level of perception quality (ensure temporal consistency with a certain
probability), or become aware of the maximum achievable quality. Providing awareness and
probabilistic guarantees is a way to improve system dependability.

3 Middleware for Dependable Perception

Using the previously described perception model, a middleware for dependable perception
can be built, which allows WSN-based applications to state their requirements concerning
perception quality and coverage and have local real-time representatives be automatically
updated accordingly. In the following paragraphs we sketch some general and preliminary
ideas about what may be done by such distributed middleware.

The application specifies its requirements at a sink node. Then, before any actual sensor
data dissemination occurs, the middleware undergoes a setup phase to propagate the require-
ments down the network to the relevant entities, i.e., active sensor nodes (which observe the
RTe) and routing sensor nodes (which only propagate sensor data). A specification of the
RTe dynamics must also be provided by the application at the sink node. When the network
is configured, then the middleware enters a steady-state phase, during which sensor data
is disseminated using a protocol that is designed to achieve the required quality/coverage
specification of the RTr at the sink node. A key issue will be to manage the trade-off between
the involved dissemination costs and the required dependability.

Depending on the nature of the considered RTe, there can be one or several active sensor
nodes, performing actual sensing of the RTe (converting a physical state into its digital
description). Every sensor node may also act as a routing node, propagating RTr updates
to sink nodes. However, these different roles can be abstracted at the middleware level.
Incoming data should be treated homogeneously, whether it has been received from a peer
node, or has been generated locally by the sensing and transducing hardware. The task
of the middleware is to decide when to propagate the data further and to which nodes.
The decision will depend on several issues, including the dependability requirements and
knowledge about the state of the network, failures, the number of hops to reach the sink
and the actual validity of the received data. In essence, all the variables with impact on
the validity of data should to be taken into account. In particular, this means that the
middleware will also incorporate mechanisms to evaluate the operational context, which can
have a simple local scope, or may involve distributed operations as well.

A possible functioning of the dependable perception middleware is then as follows. During
the setup phase it is necessary to evaluate if the application request is feasible. By monitoring
network conditions and using a fault probability model, the nodes are able to compute

Dependable Perception in Wireless Sensor Networks INForum 2010 – 717

the amount of time that is necessary to ensure, with a given coverage, that RTr updates
propagate between sensing nodes and sink nodes. If the middleware determines that a request
is feasible then the sensor data dissemination mechanism can start. After the setup phase
we can rely, with the specified coverage, on the RTr validity in the sink node. Preserving this
coverage during the steady-state phase implies ensuring that each time the sink node’s RTr is
about to become invalid it should receive a RTr update which extends its validity. Intuitively,
and without further concerns, sensor data generation and propagation should be as frequent
and fast as possible, thus always ensuring the best possible RTr validity. However, this could
be too resource consuming (in WSNs the objective is always to save resources) and even
prejudicial to the objective of securing a given data validity, by creating network contention.
Therefore, the middleware must incorporate mechanisms to evaluate the precise amount of
resources that are needed to secure the application requirements, forwarding sensor data
only when necessary and only through the strictly necessary redundant paths.

Given the dynamic and uncertain nature of the operational conditions, the potential
need to accommodate topology changes and the heterogeneity of context perceived by each
node, it is important that the middleware at each node continuously evaluates the amount
of resources needed for data propagation. For instance, if no faults occur and an update
is quickly propagated to an intermediate sensor, that sensor might recognize the slack still
available for transmission and conclude that it can temporarily delay the propagation of the
update. It could thus save energy if a subsequent update of the same RTr arrived at the
node during that delay, thus improving the overall trade-off between validity and cost.

4 Conclusion

How to be aware and how to assure perception quality is still an open problem, relevant
to many types of WSN applications. This paper discusses this problem and tries to provide
some preliminary ideas on how to deal with it at the middleware level.

References

1. Tolle, G., Polastre, J., Szewczyk, R., Culler, D., Turner, N., Tu, K., Burgess, S., Dawson, T.,
Buonadonna, P., Gay, D., Hong, W.: A macroscope in the redwoods. In: SenSys ’05: Proceedings
of the 3rd international conference on Embedded networked sensor systems, ACM Press (2005)
51–63

2. Simon, G., Maróti, M., Lédeczi, A., Balogh, G., Kusy, B., Nádas, A., Pap, G., Sallai, J., Frampton,
K.: Sensor network-based countersniper system, ACM Press (2004) 1–12

3. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52(12)
(2008) 2292–2330

4. Rhee, I.K., Lee, J., Kim, J., Serpedin, E., Wu, Y.C.: Clock synchronization in wireless sensor
networks: An overview. Sensors (2009) 56–85

5. Williamson, G., Cellai, D., Dobson, S., Nixon, P.: Modelling periodic data dissemination in wire-
less sensor networks. In: EMS ’09: Proceedings of the 2009 Third UKSim European Symposium
on Computer Modeling and Simulation, Washington, DC, USA, IEEE Computer Society (2009)
499–504

6. Veŕıssimo, P., Rodrigues, L.: Distributed Systems for System Architects. Kluwer Academic
Publishers (2001)

718 INForum 2010 Lúıs Marques, António Casimiro

Sistemas Inteligentes

719

Decision Making for Agent Moral Conducts

Helder Coelho 1, António Carlos da Rocha Costa 2 and Paulo Trigo 3

1 LabMAg, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
hcoelho@di.fc.ul.pt

2 Centro de Ciências Computacionais, PPGMC, Universidade Federal do Rio Grande,

96.201-900 Rio Grande, RS, Brazil, ac.rocha.costa@gmail.com

3 LabMAg, Instituto Superior de Eng. de Lisboa, DEETC, 1959-007 Lisboa, Portugal,
ptrigo@deetc.isel.ipl.pt

Abstract. Looking to the operation of an agent architecture, ie. its goal
generation and maintenance processing, is relevant to understand fully how a
moral based agent takes appropriate and diverse decisions within social
situations of serious games. How decision does happen is a complex issue and
the major motivation of this paper, and our answer, the proposal of a new
architecture, is supported on the clarification of the organization and structure
of an agent, ie. the interpretation of agent actions (moral-driven behaviour)
under the pressure of severe constraints.

Keywords: moral architecture, values and norms, behaviour regulation, morality
reconsideration.

1 Introduction

“Synthesis and simplification are the essential issues in architecture”.
Alejandro Aravena, Revista Única Sep. 19, 2009.

Recently, we have been discussing the proposal of an overall architecture of moral
based agents, embedded in a social multitude, by facing two major issues, intelligence
(Corrêa and Coelho, 2010) and complexity (Coelho and Costa, 2009; Coelho et al,
2010). This line of research is different from the logical programming direction, and it
is more akeen to Sloman and Minsky bet on an architecture for cognitive diversity.
The follow-up of a recent R&D EEC project, EMIL (2007-09), help a lot to clarify
differences between norm-governed and moral agents. Norm processing is almost
trivial as compared with moral decision. Several conjectures were put forward:

C1: A moral agent, like any cognitive agent, is defined by an hybrid architecture.
C2: The key, and central question, concerns how its decision policy is managed,
because the environment is pro-active and it requests a certain complexity of social
behaviour.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 721–732

C3: The architecture has many layers, at least four systems (cognitive, emotional,
moral, and esthetical), and there are many interactions (feed-forward and feed-back
flows) among its modules before an appropriate (moral) decision is attained.
C4: Choice and preference reconsideration (action selection) is mandatory. Moral
agents have different individual cultures and values and must be cautious and
respectful in order to avoid inappropriate behaviours (generation of social conflicts).
C5: Behaviours are ruled by norms which depend on values. Norms are means in
order behaviours be compatible to moral values.
C6: Moral global behaviour is the result of many informed local decisions, taken by
different modules and along n-layers, of feed-back and feed-forward moves, and the
negotiation among those modules is often required to support the final decision.

2 Morality

A vision of morality, conformity to the rules of right (moral, virtuous) conduct, the
so-called moral character (evaluation of particular individual qualities) is strongly
connected to what is socially defined as normal or appropriate (March and Olson,
2009), true, right or good, in spite of the necessary calculus of consequences and
expected utility. How agent conduct is engendered, according to values, rules, codes
and principles is only a fraction of what is necessary. Any agent acts because it
pursues to achieve a purpose or satisfy a desire, and it seeks also adequate actions in
defence of its interests and, often, anticipates future consequences following criteria
of similarity and congruence, rather than likelihood and value. Appropriateness
reflects learning of some sort from personal history, but it does not guarantee
technical efficiency or moral acceptability.

When moral judgments (weighing reasons for and against affective attitudes and
moral intuitions) are given, in face of some non-trivial situation (eg. switch dilemmas
in trolley problems), an intriguing contrast emerges between the intuitive opinions
from those considering the scenarios. The respective acts may be evaluated differently
and the choices (“sacrifice one life in order to save five”) are unexpected for similar
events. The interpretation can be explained by emotional arousal and by the
importance attributed to intuitions. So, the utilitarian or deontological views are in
danger to be good candidates for supporting moral judgment. We are convinced that
somewhere in between lies the sound solution.

Are moral issues just a matter of taste or culture? Are moral judgments provoked
by expressions of affective states on which reasons have little influence? Or, should
more attitudes be justified, ie. some moral and cultural judgments are wrong, and
others right, because they relate to facts of moral relevance in adequate or inadequate
ways. What ought we do? Ignore all our ordinary moral judgments, and do what will
produce the best consequences, or follow what we were told to do!

Morality is the respect for the other, and it is not a monolithic concept with sharp
boundaries. Really, what happens in moral judgment, is mostly a part of typical
response patterns (the so-called moral signature, full character of an agent), because
there are aspects of acts and/or situations that are relevant to take moral decisions.

722 INForum 2010 Helder Coelho, António Carlos da Rocha Costa, Paulo Trigo

3 Moral character

When studying moral agents we are attracted by a diversity of feelings, a kind of pro-
social sentiments, of guilt, compassion, empathy, anguish or ambivalence, triggered
by states of affiliation or sadness. Moral decisions may be very complex because they
entail the cooperative interplay of several systems, namely of thought, emotion,
empathy or foresight, and along layers of importance. How can we design such an
agent able to make judgements, by juggling evidence and emotions, reasons and
sentiments? How may we envisage a moral mind? Three directions are possible: 1)
With a set of mathematical formulae used to make predictions about behaviour? 2)
With a computer program to simulate thinking? or, 3) With a description (operation)
of mechanisms that explain observed mental phenomena? Our conjecture is: with a
decision apparatus, and following the third trend.

Morality is more than simple utilitarianism or deontology, as some authors defend
(Hauser, 2006), focusing on what actions are morally, right or wrong. It is not only a
utility function with some devious calculus of importance, because it requests
emotional regulation, according to recent findings of Cognitive Neuroscience, and the
full cooperation between reason and emotion, at least.

We judge our actions by imagining what the future looks like, and we act because
we would like to achieve a purpose, preserving a set of qualities. Imagination is
essential to empathy, in order to comprehend the full moral dimension of a situation,
and, in point of fact, to be an agent with moral virtues of character it is necessary to
have more than general principles of rationality. And, get a direct answer about how
the mind works implies to get closer about the description of several mechanisms that
explain the mental phenomena at large (Minsky, 2006).

The most successful theoretical explanation in cognitive science has been
mechanistic in the sense elucidated by philosophers of science. A mechanism is a
system of parts whose interactions produce regular changes. Therefore, the idea of
composing the architecture of a moral agent (our proposal in this paper) is debatable,
but it allows to design how an agent achieve a variety of conflicting aims
(components), such as: deliberation, advance goals and act on commitments that must
be revisable; action guided by context-sensitive judgement; ability to be sensitive to
the requirements of particular circumstances; emotional connection, or sensitivity of
moral concepts (moral attention), imagination and self-reflection (Singh and Minsky,
2005). Such an architecture requires all of the skills we associate with general
intelligence and common sense reasoning, namely 1) reasoning ability, ie. making
logical inferences, synthesizing and interpreting information, or recognizing
similarities and differences; 2) getting vision of the situations, judging and doing
accurate predictions; 3) moral perception with intuitive skills of situations embedded
in social customs, personal and relation histories (social interactions); 4) correcting
and revising power (truth maintenance capacity) in order to guide further/future
judgements (Ethics versus centred on wanting something other than what exists); and,
5) emotional intelligence in order to preserve the value of options not acted and to
guide the agent through the practical reasoning process.

Decision Making for Agent Moral Conducts INForum 2010 – 723

4 Moral totality

Usually, a moral decision does not follow a single criterion. It requires comparison of
different points of view, some in favour and some against, and an algebra to take care
of multiple criteria and trade-offs. So, amalgamating the multidimensional aspects of
the decision situation into a single scale of measure is no longer the way out.
Prudential calculus is made by characters served by a set of qualities, which implies
taking into consideration some personalities of an agent to cover the skills akin to
morality (personal, cultural, affective, anticipatory).

Decision is often defined as an objective function like a single point of view (profit
or cost index) representing the preference (or not) of the considered actions, which is
maximized (or minimized). In moral contexts, this is very simplified and unnatural,
because any decision is always related to a plurality of points of view, and the pros
and cons (relevance) are to be taken in due account. So, it is advisable to make the
aggregation of individual preferences into collective ones when choosing, ranking or
sorting the actions (solutions, alternative courses…).

Our intuition, about the good choice, is on multiple criteria decision analysis
(MCDA) because there are several dimensions involved apart of ethics, it is suitable
to structure the complex evaluation and to include both qualitative and quantitative
criteria. This choice favours a behaviour that will increase the consistency between
the evolution of the process, the objectives and the values. By attending each pertinent
point of view separately, independently from the others, it is generally possible to
arrive at a clear and common elicitation of preferences regarding the single point
considered. This also leads to associating a specific criterion to each point of view.

5 Around the design of a moral agent

The interplay of mentality (cognition), sociality (collective regulation) and morality
(norm/value guidance) reveals the definite anatomy of those smart creatures able to
think about, to interact with others in a society, and also to decide upon good and evil.
Which is the most suitable architecture for an agent with these three features?

Agents can be reduced to simple bit strings when genetic programming is adopted
in social simulation of complex scenarios. In what concerns symbolic programming,
an agent can be more elaborated than a decision (utility) function. For example, in a
risky environment, (Castelfranchi et al, 2006) adopted a two-layers structure by
mixing an extended BDI with an emotion manager for modelling cautious agents. In
order to design social and normative agents (Castelfranchi et al, 2000) defended
norms as meta-goals on the agent´s own processes, around a BDI kernel and two
levels of process abstraction. In the serious game (mixing human and artificial agents)
of water management (Adamatti et al, 2009), any artificial agent had a behavioural
profile linked to one or more strategies regarding a certain role (the BDI model was
simplified), no learning and planning modules were available, and only reduced
decision making skills were offered, and again a one-layer structure was adopted. In
other serious games on participatory management of protected areas (Briot et al,
2008), conflict dynamics was taken care and a more advanced decision capability was

724 INForum 2010 Helder Coelho, António Carlos da Rocha Costa, Paulo Trigo

implemented, but agents had no mentality and affective power. When designing
cultural agents, (Mascarenhas, 2009) updated an old architecture of social intelligent
agents for educational games and proposed to combine a memory store with a reactive
device and a deliberative machine, without forgetting the motivational states of the
other agents. However, serious games require moral agents, to be acceptable by users.

A moral agent, as it was defended by Hauser and by Green, is a mix of cognitive
and affective capabilities, but no architecture was till today presented as the definite
one, despite several design attempts (Wiegel, 2006; Andrighetto et al, 2007), without
any explanation on the operation of the moral decision machinery. Several questions
needed yet to be answered: What makes a moral (norm-abiding, virtuous,
conventional) agent? By what mechanisms and layers can abstract moral principles
and values spread or decay from one agent to another (like memes)? How are explicit
morals implemented and added to the overall architecture to generate aims and
desires, and, later on, to fix conducts? What is the function of moral reasoning, of
perceiving a new detail in a situation, or of understanding the moral relevance of what
we see? Which is the specific role of the (cognitive, moral, ethical) values?

A moral agent needs to get a more intricate way of thinking than a simple reactive
(assimilate observations of changes in the environment) or a proactive one (reduce
goals to sub-goals and candidate actions). Why? It is not sufficient to embody a goal-
based or a value-based model. We need a mix of intuitive (low level) and deliberative
(high level) processes, and also the ability to think before acting (pre-active) when
choosing between right or wrong, ie. capability to think about the consequences of the
candidate actions (generate logical consequences of candidate actions, helping to
decide with heuristics or decision theory between the alternatives). The classic
component based on the observe-think-decide-act cycle (present in the BDI model) is
unable to deal with morality because we get different kinds of goals (achievement,
maintenance) and, at the same time, preferences and priorities are requested.

The one-layer structure is no longer the correct solution because we arrive at our
ultimate moral (utilitarian, where results maximize the greatest goods, or
deontological, where any moral evaluation is independent of consequences)
judgements by a mix of emotions and conscious reasoning. As a matter of fact,
emotions drive behaviours as weights, and play a critical mediating role in the
relationship between an action’s moral status and its intentional status. A moral ability
may be seen as a set of rules (a grammar according to Hauser) to constrain the
behaviour of the agent: each rule having two ingredients, the body of knowledge and
the set of anchored emotions, which are going to interplay. See our proposal for the
architecture of a moral agent in figure 1.

Decision Making for Agent Moral Conducts INForum 2010 – 725

Fig. 1. Proposal of a moral agent kernel architecture.

This tentative proposal of a highly modular and hybrid moral architecture is
composed by three layers, as opposed to two of the deliberative normative
architecture of (Castelfranchi et al, 2000): 1) the first, for the classical cognitive flow,
based upon deliberation (BDI), 2) the second, for the moral system with judgement
(upon choices) and decision, a moral maintenance system, an ethical memory, and the
morality (including a moral grammar and a moral learning module) manager, and 3)
the third one for the emotional system containing the emotion manager (including
three handlers for caution, expectations, and feelings, and a mis-matcher analyser).
The two managers interact heavily between them and, also, each one with the BDI
and decision modules.

The architecture of figure 1 has a high-level (the moral reasoning), mainly
concerned with how the agent manages its currently available best options for diverse
social situations, ie. how it orchestrates the choices together into a moral coherent
behaviour. Such a structure allows the moral agent to be flexible enough in changing
social environments and to adapt graciously. And, a low-level (moral reaction): a
moral judgement is the consequence of a rational process (based upon moral rules)
applied to a certain situation or of a simpler reactive process. The moral agent’s
decisions are not rigid ones but rather well balanced decisions, weighing preferred
options or choices, with the aid of a morality manager (the white box in figure 1). The
involved mixture of intuitive and deliberative processes embody also a question of
power: who is in charge of the higher or lower levels?

726 INForum 2010 Helder Coelho, António Carlos da Rocha Costa, Paulo Trigo

Fig. 2. Interplay of diverse systems

According to the social intuitionist model by (Green and Haidt, 2002), there is

more one layer (Esthetics), because moral judgment is similar to esthetical one: when
we listen to a story or look to some action/behaviour we get an instantaneous feeling
(intuitions with some affective value) of approval/disapproval. In figure 2, we sketch
an extended moral architecture with four layers, where the esthetical layer is
appropriate to support the agent social reasoning, which involves, as a matter of fact
all the four layers (each one with its own objectives and values)! Such an extension
aims to model adequately the phenomena behind moral decision working, including
the processing of all causal mechanisms.

We adopted an idea from (Dignum et al, 2001) by using desires (self purposes) as
links between the cognitive layer and the other ones. Desires are generated by the non
cognitive layers and work as factors (to be mixed with the normative factors) and
capable to influence the agent deliberation. In (Castelfranchi et al, 2000), norms were
mental representations (objects) entering the mental processing and the interaction, in
several ways, with beliefs, goals and plans in order to fix the agent´s behaviour. This
is also an interesting idea, adopted in the operation of our 4-layer architecture to allow
an agent may follow or violate norms. In (Corrêa and Coelho, 1998) we proposed a
table of mental states of an agent, facilitating the inclusion of other mental objects
(eg. expectations, hopes), and extending easily the BDI classical architecture
(Cascalho, 2007) with mental states through attributes (a kind of weights), laws of
composition and control mechanisms).

Those desires are relevant to constrain moral judgments. By adopting influence
diagrams, we may connect them to judgments by arcs, where each one has a weight

Moral

System

Emotio
nal

System

Cognit
ive

System

Estheti
cal

System

Percept
ion

Action

Decision Making for Agent Moral Conducts INForum 2010 – 727

according to the rules associated with the agent objective, emotional or cognitive
situations. A moral judgment can be positive or negative, depending on deductions
made by the moral rules, having a certain intensity/importance given by the sum of
the weights of those factors (very high, high, average, low, very low).

Every decision an agent makes, when it comes to choosing between right or wrong,
reveals his true character (subjectivity and identity): the Humean model with
emotions behind judgements or the Rawlsian model with emotions and reasons after
judgements have only two layers, where the main processing flow is done
sequentially in one-layer, and the trade-offs are not allowed. In a 4-layer architecture,
the interactions among layers, systems and components (eg. emotional vs. moral
systems) make the personality of an agent. There is always a sentiment of avoidance
in violating what seems to be reasonable, ie. the possibility to have access to the
outcomes (classifications) of the agent actions.

An effective decision should be based on the achievement of objectives. Criteria
(universal principles, values, beliefs) and objectives (purposes, aims, desires) are used
to measure how well we achieve our goals. Decision making is always difficult
because trade-offs must be made among competing objectives. In order to consider
trade-offs, we must be able to evaluate and measure each aspect of the decision, some
quantitative, some qualitative, some very important and some not so important.
Uncertainties and competing interests among the components (deliberation, emotion,
morality, decision) also add to the complexity of the overall decision making.

A moral agent associates always reason with emotion, social values and cultural-
situational knowledge before making a decision. Therefore, its more-than-one-layer
architecture, integrating micro and macro levels, requires an extended (with will and
expectations) BDI model, the addition of emotional machinery to deal with
sentiments, a library of contexts to situate any evaluation, heuristics to avoid wrong
decisions (mind traps), a sort of universal moral grammar to fix any sort of moral
system and action generation, and also modules concerning decision taking, constraint
satisfaction (reinforcement) learning and planning. The organization with
interconnected multiple layers seems inevitable on account of the balance between
reasoning and emotion and the assembling/tuning of composite judgements
(embedded in preference criteria).

6 An illustrative experiment

The interplay of cognition, collective regulation and norm/value guidance is better
described by an example that justifies the components of our proposal. The usual
purpose of a fairy tale (fable) is to provide a context for some general moral
interpretation. Although the global message is usually very clear, a deeper reading of
some fable details often reveals ambiguity even at the morality level interpretation.

We consider the well-known “Jack and the Beanstalk” fable (1807, British
unknown author). The story tells of Jack, a very poor boy, whose lack of common
sense exasperates his widowed mother. She sends him to the market to sell their only
possession, a cow, but along the way, Jack meets a stranger (adult) who offers to buy
the cow for five "magic beans". Jack is thrilled at the prospect of having magic beans,

728 INForum 2010 Helder Coelho, António Carlos da Rocha Costa, Paulo Trigo

so he makes the deal. When he arrives at home with his beans, his mother, in despair
that they were ruined, throws the beans out of the window, and the two go to sleep
without eating any supper. The story proceeds with several adventures but, in the end,
the boy and his mother get very wealthy because the beans turned out to be really
magic.

The story fragment of the “cow for beans’ trade” illustrates some interactions
between goals, plans, beliefs, desires, social norms and moral values. We named the
two agents J and B, respectively, referring to Jack (a child) and the adult owner of the
(magic) beans, so we have Ag = { J, B }. The set of available resources may be
described by Rs = { cow, beans, food, money }. The “possess” relation, p: Ag → Rs,
describes an agent’s belongings, thus p (J) = { cow }, and p(B) = { beans, food }.
Each agent’s goal is described by g: Ag → Rs, therefore g (J) = { money, food } and
g(B) = { money }. According to the story, a general plan for each agent may be
devised as follows: plan(J) = [get(cow), exchange-for(cow, money), buy(food)]
and plan(B) = [get(beans), exchange-for(beans, money1)].

Additionally, a social norm underlying the whole story is that “an adult always
negotiates honestly with a child”. This norm holds two important concepts: a) the
negotiation, and b) the honesty. The “negotiation” calls for utility based reasoning and
the “honesty” resorts to the moral interpretation of one’s motivations. We know that
the utility for a cow is much higher than the utility for five beans, i.e., util(cow) >>
util(beans). But, how does the “honesty” concept integrates the overall formulation?
One alternative is to interpret “honesty” as a moral evaluation of some subset of the
agent beliefs, i.e., moralEval: 2Bel → [0,1], where Bel represents the belief set and 0
(zero) and 1 (one) represent, respectively, the least and the most adherence to the
moral principles underlying the corresponding belief subset. Additionally, the “moral
signature” of each agent relates each moral concept, e.g., “honesty”, with a subset of
beliefs, i.e., moralSig: Mc → 2Bel where Mc is the set of moral concepts (within a
certain domain). Cleary, this moral signature relation, moralSig, already expresses
some of the “moral guides” behind the (human) designer of the relation. Thus, a
complex domain requires a (human) designer sensibility and expertise to be tuned in
the process of interacting with other (human) designers.

Let us describe agent J as follows: “util(cow) >> util(beans)” ∈ BelJ, the agent
moral evaluation is moralEvalJ({ util(cow) >> util(beans) }) = 0 and its moral
signature is moralSigJ(honesty) = { util(cow) >> util(beans) }. So, agent B, after
meeting agent J, refines its original plan into a new plan'(B) = [get(beans),
exchange-for(beans, cow), exchange-for(cow, money2)]. From a purely utilitarian
perspective, money2 must be higher than money1 (above a threshold) in order for
agent B to pursue this new more complex plan. But “util(cow) >> util(beans)” ∈
BelB so agent B is willing to drop the original plan and adopt the new one (plan’).
But, at the same time, the negotiation environmental context includes a child so the
“negotiate honestly” norm (cf. above) becomes active. Now the agent must apply its
moral signature, moralSig, regarding “honesty”. The agent uses a machinery to
combine the moral evaluation, moralEval, with additional parameters, such as the
utilitarian added-value for the new plan. Here, we simplify and decide just upon the
moralEval; in this scenario we have moralEvalB({ util(cow) >> util(beans) }) = 0
so the agent B proceeds and moves to the new plan.

Decision Making for Agent Moral Conducts INForum 2010 – 729

Now, under plan'(B) agent B must find a way to convince agent J that trading a
cow for beans is a fair trade. Therefore, B must raise J’s expectations regarding the
beans, and B believes that a way to raise a child’s expectations is to invoke directly its
“magic world”. Hence a new plan is generated plan’’(B) = [get(beans), inform(
beans, “magic”), exchange-for(beans, cow), exchange-for(cow, money2)]. The new
plan takes B to convince J to trade its cow for the beans; B gets the cow’s money and
J makes a plan to get a lot of food and richness from the beans.

This illustrative scenario shows agent B moving forth and back among plans,
beliefs, social norms and moral signatures and values. But, if one is not able to follow
all the internal reasoning details is it possible to know whether agent B was following
norms and moral principles? Let us assume that agent B believes that the beans are
really magic and that they would provide a huge fortune to its owner. Then a
completely different scenario would arrive and the only difference (from the previous
one) could be that “util(cow) << util(beans)” ∈ BelB. In this new scenario agent B
exhibits an aesthetically altruistic behaviour. In fact such a high order altruism also
resorts for some degree of divine power over disgrace and poorness. But, on the other
hand if we were to dissect the child’s beliefs and (utilitarian and moral) reasoning we
could find that a social norm such as: “trading extremely differently valued assets is
not a fair trade” is also active. Usually this is a norm that a child knows about in order
to prevent him from bargaining with a much younger child. In this new context the
child also ends up bypassing its “fairness” moral signature along with the associated
social norm.

The above reasoning scenarios were drawn from a deeper analysis of the internal
processes of two agents in the context of an apparently innocuous fairy tale.

7 Conclusions

“Agents are a way of thinking, a conceptual frame for modelling
active, distributed, complex, and layered phenomena.”

C. Castelfranchi in IEEE Internet Computing, March-April 2010.

The research and experimentation around the sketch of an architecture for moral
agents is supported on the belief that moral decisions are very complex processes.
Applications such as regulation of e-communities or realistic serious games for
managing human capital are eager of new agent models and architectures with ethical
concerns and some sort of subjectivity. We invested, for more than a decade, in heavy
experimentation about agent models and architectures, for individual and collective
decision making (large scale disasters, electric energy markets, semantic web spaces),
trying in each step forward, to increase the number of interactions and relations
among components of the next architecture.

The character of a moral agent is dependent on its architecture, namely on the
interactions (for negotiation) and on the relations (global complexity) among its
components. Any architecture reveals also a mix of high level (deliberative, moral
reasoning) and low level (reactive, intuitive) processes, where some one of them is in
power to support the acting.

730 INForum 2010 Helder Coelho, António Carlos da Rocha Costa, Paulo Trigo

Our agent design ideas were based on the understanding of the semantic operation
of morality, rethinking computing and knowledge in terms of interaction and social
processing, but several open questions frame still our current research: How can we
operationally verify all the interactions behind a moral agent architecture? How do
actors produce and are at the same time a product of social reality? Which ideas are
accepted and which are rejected driven by adaptation and evolution? How many are
slowly assembled from diverse data in a single mind? Answers, from Cognitive
Neurosciences, Moral or Evolutionary Psychology, point to a strong focus on a
context sensitive approach to agency and structure, the interplay of which leads to
emergent phenomena, underlining the generative paradigm of computational social
science. Agent-based modelling and simulation can be of great help in order to allow
a better comprehension of this sort of complexity.

References

Adamatti, D., Sichman, J. and Coelho, H. An Analysis of the Insertion of Virtual
Players in GMABS Methodology Using the Vip-JogoMan Prototype, Journal of
Artificial Societies and Social Simulation, JASSS in press, 2009.

Andrighetto, G., Campenni, M., Conte, R. and Paolucci, M. On the Immergence of
Norms: a Normative Agent Architecture, Proceedings of AAAI Symposium, Social
and Organizational Aspects of Artificial Intelligence, Washington DC, 2007.

Briot, J.-P., Vasconcelos, E., Adamatti, D., Sebba, V., Irving, M., Barbosa, S., Furtado,
V. and Lucena, C. A. Computer-Based Support for Participatory Management of
Protected Areas: The SimParc Project, Proceedings of XXVIIIth Congress of
Computation Brazilian Society (CSBC´08), Belém, Brazil, July 2008.

Cascalho, J. The Role of Attributes for Mental States Architectures, PhD Thesis (in
Portuguese), University of Açores, 2007.

Castelfranchi, C., Dignum, F, Jonker, C. M. and Treur, J. Deliberative Normative
Agents: Principles and Architectures, Proceedings of 6th ATAL Conference (1999),
Intelligent Agents VI, Springer LNCS 1757, 2000.

Castelfranchi, C., Falcone, R. and Piunti, M. Agents with Anticipatory Behaviours: To
Be Cautious in a Risky Environment, ECAI, 2006.

Coelho, H. and Costa, A. R. On the Intelligence of Moral Agency, Proceedings of the
Encontro Português de Inteligência Artificial (EPIA-2009), October 12-15 Aveiro
(Portugal), in L. S. Lopes, N. Lau, P. Mariano e L. M. Rocha (eds.), New Trends in
Artificial Intelligence, pp. 439-450, 2009.

Coelho, H., Costa, A. R. and Trigo, P. On the Complexity of Moral Decision, FCUL
and DI Working Report, 2010.

Corrêa, M. and Coelho, H. From Mental States and Architectures to Agents´
Programming, Proc. Of the 7th Iberoamerican Congress on Artificial Intelligence

Decision Making for Agent Moral Conducts INForum 2010 – 731

(IBERAMIA98), Lisbon 6-9, Springer-Verlag LNAI 1484, pp. 64-85, 1998.

Corrêa, M. and Coelho, H. Abstract Mental Descriptions for Agent Design, Intelligent
Decision Technologies (IDT), an International Journal, IOS Press, 2010.

Costa, A. R. and Dimuro, G. Moral Values and the Structural Loop (Revisiting
Piaget´s Model of Normative Agents), PUC Pelotas Working Report, 2009.

Dignum, F. Kinny, D. and Sonenberg, L. From Desires, Obligations and Norms to
Goals, Utrecht University, 2001.

Green, J. and Haidt, J. How (and Where) does Moral Judgment Work? In Trends in
Cognitive Sciences, Academic Press Volume 6, Issue 12, December 2002.

Hauser, M. D. Moral Minds: How Nature Designed our Sense of Right and Wrong,
Ecco/Harper Collins, 2006.

March, J. G. and Olsen, J. P. The Logic of Appropriateness, Arena Centre for
European Studies Working Papers WP 04/09, University of Oslo, 2009.

Mascarenhas, S. F. Creating Social and Cultural Agents, IST MS.C. Thesis, 2009.
Minsky, M. The Emotion Machine, Simon & Schuster, 2006.

Trigo, P. and Coelho, H. Decision Making with Hybrid Models: The Case of
Individual and Collective Motivations, Proceedings of the EPIA-07 International
Conference (New Trends in Artificial Intelligence), pp. 669-680, Guimarães, 2007.

Trigo, P. and Coelho, H. Decisions with Multiple Simultaneous Goals and Uncertain
Causal Effects, in Artificial Intelligence in Theory and Practice II, IFIP Volume 276,
Springer-Verlag, pp. 13-22, 2008.

Trigo, P. and Coelho, H. Simulating a Multi-Agent Electricity Market, in Proceedings
of the 1st Brazilian Workshop on Social Simulation (BWSS-08/SBIA-08), Bahia,
October 26-30, 2008.

Wiegel, V. Building Blocks for Artificial Moral Agents, Proceedings of
EthicalALife06 Workshop, 2006.

732 INForum 2010 Helder Coelho, António Carlos da Rocha Costa, Paulo Trigo

Development of an Adaptive Interface for the Electronic
School Notebook

Luís Alexandre1, Salvador Abreu11

1LabSI2 / ESTIG, Instituto Politécnico de Beja, Portugal

11Universidade de Évora and CENTRIA FCT/UNL, Portugal

luis.alexandre@ipbeja.pt, spa@di.uevora.pt

Abstract. In this article we describe the construction of an adaptive interface
for the Electronic School Notebook, with the ability to predict the most likely
task that a user is about to perform, based on prior knowledge of actions already
made in the system, combined with the action time frame. This adaptive
capability will reduce the number of explicit interactions to accomplish a
certain task. The system makes use of machine learning algorithms, based on
decision trees and Markov chains.

Resumo. Neste artigo descrevemos a construção de uma interface adaptativa
para o Caderno Escolar Electrónico, com a capacidade de prever a tarefa mais
provável que um utilizador irá realizar no sistema. Esta capacidade de predição
baseia-se no conhecimento das tarefas realizadas anteriormente pelo utilizador
em conjugação com o espaço temporal das mesmas. Esta interface adaptativa
permitirá reduzir o número de interacções explícitas com o sistema, com vista à
realização de uma tarefa. O sistema utiliza algoritmos de aprendizagem
automática, baseados em árvores de decisão e redes de Markov.

Keywords: Interactive systems, Students with Special Needs, Support
Technologies, Human Computer-interaction, Machine Learning, Prediction,
Adaptation.

1 Introduction

The Electronic School Notebook (CE-e) [1] in Fig. 1, has become a valuable tool for
children with special needs, in the organization of notes in a classroom environment
and also in the organization, in a logical manner, of electronic documents related to a
given course.

The CE-e together with other assistive technologies, like Eugénio [2] actively
support these children, allowing them to perform writing tasks within a very similar
time period to the one spent by children without special needs. This tool promotes the

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 733–744

adoption of a methodical process of collecting notes in classroom context, as a result
of this process, remarkable benefits can be obtained in terms of academic success [4].

If the system becomes aware of the task at hand by the user, it will be able to better
support users, by helping in accomplishing the task.

In some situations it’s very difficult to determine the intentions behind a user
actions sequence, but in other situations using the domain knowledge [5] or observing
the users behavior in similar situations [6], we are able to predict the goal of the user.
An obvious case is the opening of a new lesson, of a certain course with the
combination of the system time and the information of the student’s time table.

Not only chidrem with motor impairments can benefit from these technologies,
also students with cognitive impairments can work in a more autonomous manner
with the help of these systems. These kind of mecanisms have already been tried in
other aplications, like email clients [6], in order to free the user from the execution of
routine tasks by delegating the execution responsibility to the system. This approach
has also been tried in the development of Eugénio’s keyboard assistant [2][7].

The project guiding principle is DWIM (Do What I Mean) [3]. This principle states
that the system should behave exactly according to the user objective, instead of
behaving according to a miss-executed instruction, not intended by the user. This is an
unattainable goal; still it’s guiding our intentions.

The main objective of this project is to implement and evaluate an adaptive
interface for the Electronic School Notebook that allows students with special needs a
higher level of support in performing several tasks.

Fig. 1. CE-e notetaking interface

734 INForum 2010 Lúıs Alexandre, Salvador Abreu

To attain this objective the system must possess application and user models [5] in
order to identify the user intentions to provide the necessary assistance in the
accomplishment of the task.

In a first moment we gathered the required information to build a knowledge base
that contains all the tasks performed by the user on the system, the different actions
that lead to the task and finally the context in which they were performed. To
characterize the context we gathered a timestamp composed of the date, day of the
week, the current time and the associated activities. These records were gathered
during normal classes, in the student’s personal computers, using CE-e. All the
students have cerebral palsy, but this problem only affects them physically. None of
these students uses any custom I/O devices, such as switches or adapted mice.

This data and knowledge base was used on the next phase of the project, were we
built and evaluate support mechanisms that help users in the accomplishment of tasks,
based on the knowledge contained by the knowledge base. This is the main
contribution of the project. If the system is able to correctly interpret all the context
dimensions, it may evolve from a set of hardcoded rules that provide a limited set of
adaptations, to a system that with its continued use will be able to learn and create
new adaptations, more appropriate for the user profile. This "intelligence" will only
be possible with the use of machine learning algorithms.

On Section 2 of this article we will describe the sate of the art in this subject. The
description of the system is made on Section 3 and finally on Section 4 we present a
conclusion and propose directions for work to be done in the future.

2 State of the Art

Nowadays we are surrounded by computer systems (e.g. desktops, laptops, PDAs,
among many others) and we become computer dependent, all aspects of our lives are
determined by decisions or actions that took place on a computer.

However these systems could provide a greater support, if they were able to
provide it in an automatic and autonomous form. This support is only possible if the
system is able to determine or recognize the context in which both the user and the
machine are inserted [8].

Many researchers have reported the importance and benefits that context
knowledge can bring to the usability of computer systems thereby increasing and
enhancing the Human-Computer Interaction [9]. The main idea behind this
knowledge of the context, known as context-awareness, states that computers can feel
and react based on the environment. In order to enable this reaction, computer
systems should have at their disposal a set of stimuli and prior knowledge that are
combined with a set of hardcoded rules. The reaction is the logical result of these
calculations [10].

A context-aware system can and should try to make assumptions about the
surrounding environment. In [12] the context is defined as "any information that can
be used to characterize a situation of any one entity".

Development of an Adaptive Interface ... INForum 2010 – 735

Context-awareness is often used in satellite tracking systems or in ubiquitous
computing. In these systems it’s possible to use sensors and other systems that capture
with precision part of the context, and thus can, for example, propose and make
environmental changes (e.g. environment light or open the windows in buildings, to
minimize energy consumption).

Initially the context was understood has being the location, but more recently some
researchers proposed that the location coulnd’t be understood as the context of a
situation, but rather as a component of context [12]. It was further proposed that the
context could be used to build adaptive and intelligent interfaces, in which the
interaction sould be as implicit as possible.

Many of the studies and attempts of adaption to context have passed through the
use of satellite tracking devices. These systems use only a small component of a
relatively large universe of possible adaptations to the context. A system that only
uses the location to fit the context, can not be considered a context-aware system, and
should be considered as location-aware system [13].

In the last years, context information has been combined with time; as result of this
many researchers have proposed several types of “intelligent” interfaces (intelligent
Human-computer Interaction).

Examples of this new kind of interaction are the “Adaptive and Predictive
Interfaces”. These interfaces try to minimize the two major problems that affect the
interaction between humans and computers: (i) The considerable quantity of
information and widgets that populate the interfaces; and (ii) The fact that users must
decide the next step or action in a very short time [15].

The idea behind these interfaces is the following: “ Instead of being the user to
adapt to the system, the system adapts to the user”. Although based on a known
premise, the inherent problems are in large number and complexity. An adaptive
interface must be based on cognitive models and on the surrounding environment
[15]. These models try to explain the user’s level of expertise and experience, through
parameters such as: (i) commands made, (ii) error rates, (iii) typing speed, among
others. An adaptive interface can make the adjustments in one of two forms:

─ The adaptation responsibility is splited between the system and the user, for
example, the system makes a small adaptation and waits for its acceptance, if
the adaptation is not accepted or not satisfactory, the system makes a new
adaptation;

─ Alternatively, the system suggests the most adequate adaptation for the current
context in a totally independent mode.

The second form is considered by many has the true adaptability. However, this
kind of adaptation is very difficult to achieve and it’s only possible with the use of
machine learning algorithms. The concept behind machine learning can be considered
as adaptive, because the algorithms of this type base their decisions on prior
information (train and test sets).

However an adaptive interface also has its problems and among others we can
mention the fact that the user can not create a mental model of the system, if the
appearance of the system often changes. Another potential problem may result from

736 INForum 2010 Lúıs Alexandre, Salvador Abreu

the loss of control that a user may feel. Finally, and perhaps the biggest problem of
adaptive interfaces, turns out to be the cost and complexity of the implementation.

Another paradigm of adaptability and predictability derives from the attention and
suggestion. In this case the interfaces are alert and automatically suggest actions to
users.

An attentive interface automatically sets priorities and in accordance with these
priorities presents to the user the most appropriate information or options regarding
the current context and time, in order to optimize the resources of both user and
system. With this optimization, the interaction actors never incur in overloading [16].
As in adaptive interfaces, attentive interfaces base their decisions on information and
models, based on decisions previously made by the user.

On the other hand we have the suggestive interfaces, which only provide the user
with clues about the next possible action, through the enhancement of certain
interface components [17].

The interaction with a suggestive interface is very simple, in fact the user only has
to choose one of the highlighted options or if none of the options matches the desired
one, the user only has to choose the desired option. Usually suggestions are generated
by a system often called “suggestions engine”, which constantly observes the system
state, generating a set of suggestions that matches the patterns closest to the current
state. A suggestive interface can be viewed as a gestures interaction system, i.e.,
instead of updating the system automatically, when it discovered a similar pattern, the
interface presents a set of hints and prompts the user to choose one of these.

Suggestive interfaces are an extension of predictive interfaces and are being,
viewed by many researchers, as the interfaces of the future, for the vast majority of
systems, including WIMP systems (Windows, Icons, Menus and Pointing Devices).

3 Architecture of the Adaptive Interface

The interface of the CE-e prototype was been designed according to a design
methodology for interactive systems with focus on the user and, therefore is quite
simple and intuitive [1]. However as CE-e intends to provide as much help as possible
in tasks of notetaking and information organization, it’s intended that the interface can
alleviate, as much as possible, the user of routine and repetitive tasks, which may be
particularly useful for users with severe motor problems. Thus, based on our
experience, in the opinion of technicians and other experts, we decided to implement
a suggestive interface on CE-e.

We made this choice because these kind of interfaces are seen as a possible path
for the future of interfaces, since they exploit context-awareness in order to reduce the
number of explicit commands to be performed by users, required for any given
operation [17][25]. The adaptive interface, designed for the CE-e, meets all these
requirements, extending the traditional notions of an interface.

Development of an Adaptive Interface ... INForum 2010 – 737

Fig. 2. CE-e log structure

3.1 The Knowledge Base

As previously stated, the system’s ability to anticipate or suggest the most probable
action for a certain context, can only happen if the system has access to a knowledge
base with the knowledge acquired in prior interactions with the system. To build this
knowledge base researchers often use a technique called “logging”.

For some years, researchers have been working in Augmentative and Alternative
Communication (AAC) systems. These efforts are only justified if the impact of these
technological advances can be measured. Thus, in order to facilitate the analysis of
the collected data; researchers have defined a standard logging format that allows the
analysis of data in a systematic way, called Universal Logging Format [18].

The log file structure proposed in [18], has three distinct parts: (i) The head, which
specifies the content and format of records; (ii) Body, which is composed of n lines,
each representative data on a log; (iii) Analysis section (optional), where some
statistical analysis of the logs can be referenced.

The logs have a time component, an output or result (action), the type of device
used which originated the log, type of communication that was being developed, the
context (in case of a AAC tool), which words preceded the log and an indication of,
where in the system, the action was triggered.

Under this format, we built a log system with the structure presented in Fig. 2 that
contains the following fields: date, day of week, time, system page, active discipline
and resulting action.

A log mechanism it’s useful if we have a fast, precise and powerful form to extract
the information we want. Inspired in [19] and on features of relational DBMS we
decide to use SQLite1. This relational database management system, besides allowing
the construction of queries in standard SQL, doesn’t need to have an active server in
the system. This log mechanism, adds to the capabilities of SQL, a total independence
of the system, since this RDMS is added to the application via a DLL built in C
Programming Language.

1 Project Web site: http://www.sqlite.org/

738 INForum 2010 Lúıs Alexandre, Salvador Abreu

Fig. 3. Extract from a log file

3.2 The Algorithms

For some time now, that researchers in the field of Human-computer Interaction,
develop studies on the adaptability of interfaces to users, through learning systems
based on machine learning, both for traditional desktop interfaces and for Web
interfaces [14][15][20].

Before the implementation of the system, the logs were subjected to machine
learning tools, to check which classification algorithm could offer better results.

We can divide machine learning, through classification, in two major groups:
Supervised Learning and Unsupervised Learning [21]. The collected logs for the
formation of the knowledge base are constituted by the time frame, context and the
performed action, i.e. the user’s objective. In this scenario we face a case of
supervised learning, where the user actions will be the class. Supervised learning can
be further divided in classification or regression problems. Since our aim is the
prediction of the user most probable action, in a multiclass environment, we have a
classification problem.

In the possession of real use records (Fig. 3), it was possible to start working in the
"intelligence" component of the system, in order to prove the feasibility of an
intelligent interface for the Electronic School Notebook. This type of tests is known
as “proof of concept”.

The Weka environment [22] was chosen for the knowledge base tests in search of
patterns that could justify the system implementation. This environment provides
implementations of the majority of machine learning algorithms, like decision trees.
Our first choice fell on Decision-trees, since the system will work in real time,
making queries to the knowledge base and presenting the hypothesis that best fits the
context of the moment.

Development of an Adaptive Interface ... INForum 2010 – 739

Fig. 4. Confusion matrix generated by Weka with the data from the knowledge base

The first tests carried out, using a C4.5 decision tree [23] showed that this machine
learning algorithm can reach a hit rate of 50%, which justifies the development and
implementation effort, since the system has forty classes. However these forty options
aren’t always visible, depending on the screen where the user is located, the system
will only present between three and seventeen options.

Other classification algorithms were tested, searching for better results or outcomes
that strengthen those obtained using decision trees, particularly Markov chains and
Hidden Markov Models [26].

The inference engine of the system will have to manage a small set of attributes, as
shown in Fig. 2. The engine will only have four attributes that need to be analyzed, as
the fifth attribute is the class attribute, which will serve to train the classifier.
However, this classifier will have to deal with a multiclass problem with a large
number of classes. The confusion matrix build by Weka (Fig. 4), clearly shows the
number of classes. This particularly large number of classes is a possible problem for
the classifier, because the resulting tree will have a large number of nodes and leaves,
thereby increasing the probability of errors in the suggestion of the most likely action.
However the 52% accuracy achieved, ensure that at least one in every two
suggestions is correct, thus reducing the work load on the user, necessary to perform
tasks that add value to the work of the user in the system.

3.3 The Encoding

The inference engine encoding is being developed with two algorithms, a C5 decision
tree, which derives from the C4.5 tree [23] and a Markov chains based algorithm. The
decision tree is fastest and more efficient in the process of finding patterns and in the
classification of new samples. The implementation with a Markov chains algorithm
follows a different methodology. While the decision tree is being implemented with a

740 INForum 2010 Lúıs Alexandre, Salvador Abreu

DLL based on open-source code, the second is hardcoded and integrated in the
source-code of CE-e.

The ultimate objective of the project is the construction of a prototype using the C5
decision tree, but the encoding process of the DLL is delayed due to some problems.

As soon as possible, we wanted a prototype that demonstrates the usefulness of the
Electronic School Notebook adaptive interface, so we decided to implement the
inference engine of the CE-e with a Markov chains based algorithm. The final version
of the system prototype will not be available with this algorithm, because the tests
results were poorer, in terms of hits and speed.

After the proof of concept has been held, the DLL based on the decision tree [23],
will be developed. This effort is justified by the fact that the DLL is an independent
and portable component, allowing and ensuring its reuse in other systems. Another
fact that justifies this effort is that the development of new versions of CE-e, with and
without an adaptive interface, will be simpler and we don’t have the necessity of
building two incompatible versions.

With the introduction of the inference engine in the CE-e prototype, shown in Fig.
5, the system had to undergo some changes, so that the various components of the
interface could be dynamically changed by the interface inference engine.

Fig. 5. System prototype with the inference engine

Development of an Adaptive Interface ... INForum 2010 – 741

4 Conclusions and Future Work

In this article we propose and present an adaptive interface for a tool that aims to be
an alternative to traditional school notebooks, for students with special needs,
particularly those who only have physical problems, that restricts the mobility and
ability to manipulate traditional I/O mechanisms.

Currently we have a prototype of the CE-e with the adaptive interface in the final
stages of development. This initial prototype will only be used for testing and proof of
concept, which are ongoing.

The interface makes suggestions to the user using the knowledge base, which
contains information about past actions in the system. The analysis is carried out
using techniques of machine learning and algorithms based on Markov chains.

With the objective of building a knowledge base that could answer the questions
asked during the analysis and decision phase, a relational database log mechanism
was built, using the SQLite database manager.

We want a system that continuously learns. This learning process can quickly push
the number of lines, of the log file, to a few thousand. As a result, the inference
engine can become very slow. A possible solution to this problem is the limitation of
the log file, in number of lines or size. This limitation will eliminate automatically the
logs with a certain timestamp.

However, the assumption of a temporal limitation for the logs can still change as
we are yet analyzing which option will gives a higher percentage of hits. If the system
only has access to the logs of the last thirty days of use, will have a temporally limited
knowledge, but this knowledge may focus on options that the user has used more
frequently. Moreover, and assuming that the logs can grow indefinitely, the system
will have an overview of all actions and choices carried out by the user, which could
bring higher probabilities of success. This decision can only be taken, after a period of
use and testing with a duration not smaller than six months. These tests will determine
what is the best structure for the knowledge base, "with forgetfulness" or "without
forgetfulness”.

A possible solution for the continuous collecting of logs is an offline processing,
which will lead to the construction of an index of actions. This technique is quite used
in information retrieval systems [24].

Another inherent objective of this project is to provide the system with a set of
hardcoded rules, which in case no correspondence between the rule and the result
obtained by inference engine, the rule will override the inference engine decision. As
an example of such rules we have the timetable that can provide information about the
most likely task to execute on the system, according to the time component provided
by the operating system.

The suggestion mechanism highlights the most likely option. This enhancement is
combined with a keyboard shortcut, to avoid a mouse movement to confirm the
option. As earlier mentioned, a suggestive interface can be viewed like a pseudo-
gestural interface, because instead of immediately responding to the users input,
updating the interface immediately, the system first asks the confirmation after
showing multiple suggestions. On CE-e the inference engine will only highlight one

742 INForum 2010 Lúıs Alexandre, Salvador Abreu

option, and the user can complete the action by choosing the presented option, or can
ignore it, by choosing another option, rather than the one presented.

CE-e wants to be an effective alternative to traditional school notebooks. If the
introduction of an adaptive interface proves to be an asset, students with physical and
motor difficulties, will have at their disposal a tool that will help them further more in
the organization of all writing tasks and in the organization of electronic documents.

By now, the adaptive CE-e has an interface that can predict the most likely action
for a certain context, which reinforces the lemma of the project: Help and relieve
students with special needs of routine tasks, that don’t add capital gains to the work
that they have to perform, in order to assist in their integration into regular education.

The final testing phase is in progress. These tests will bring the answers regarding
the effectiveness of the suggestive interface, designed and built for CE-e.

Acknowledgements

We would like to thank the valuable collaboration, inputs and ideas of the faculty staff
of the Polytechnic Institute of Beja assigned to the Information Systems and
Interactivity Lab (LabSI2).

References

1. Alexandre, L., Garcia, L., Bruno, L.: Development of an electronic scholar
notebook for students with special needs. In DSAI2007. Vila Real, Portugal
(2007).

2. Garcia, L.: Concepção, implementação e teste de um sistema de apoio à
comunicação aumentativa e alternativa para o português europeu. Tese de
Mestrado. Universidade Técnica de Lisboa, Instituto Superior Técnico (2003).

3. Teitelman, W.: A tour through cedar. Proceedings of the 7th international
conference on Software engineering. Pages: 181 – 195. Orlando, Florida, United
States (1984).

4. Boyle, J.R., Weishaar, M.: The effects of strategic notetaking on the recall and
comprehension of lecture information for high school students with learning
disabilities. Learning Disabilities Research & Practice, 16(3), pp. 133–141, (2001).

5. Dix, A., Finlay, F., Abowd, G., Beale, R.: Human Computer Interaction, 3rd
Edition. Prentice Hall (2004).

6. Maes, P.: Agents that reduce work and information overload. Communications of
the ACM 37(7) (1994).

7. Rodrigues, N.: Desenvolvimento de mecanismo de interacção preditiva para
aumentar o desempenho de tarefas. Projecto de Licenciatura. Escola Superior de
Tecnologia e Gestão do Instituto Politécnico de Beja (2007).

8. Blum, M.L.: Real-time context recognition. Master’s thesis, Department of
Information Technology and Electrical Engineering, Swiss Federal Institute of
Technology Zurich - ETH (2005).

Development of an Adaptive Interface ... INForum 2010 – 743

9. Bradley, N.A., Dunlop, M.D.: Toward a multidisciplinary model of context to
support context-aware computing. Human Compute-Interaction, 20:403 – 446,
(2005).

10. Schilit, B., Adams, N., Want, R.: Context-aware computing applications.
IEEE Workshop on Mobile Computing Systems and Applications - WMCSA’94,
1:89 – 101 (1994).

11. Schilit, B.N., Theimer, M.M.: Disseminating active map information to
mobile hosts. IEEE Network, pages 22 – 32 (1994).

12. Dey, A.K.: Understanding and using context. Personal Ubiquitous
Computing, 51:4 – 7 (2001).

13. Barnard, L., Yi, J.S., Jacko, J.A., Sears, A.: Capturing the effects of context
on human performance in mobile computing systems. Personal and Ubiquitous
Computing, Volume 11, Issue 2, Pages: 81 – 96. Springer-Verlag (2006).

14. Langley, L.: Machine Learning for Adaptive User Interfaces. Proceedings of
the 21st Annual German Conference on Artificial Intelligence: Advances in
Artificial Intelligence. Pages: 53 – 62 (1997).

15. Norcio, A.F., Stanley, J.: Adaptive human- computer interfaces: A literature
survey and perspective. IEEE Transactions on Systems, Man and Cybernetics, 19,
No.2:399 – 408 (1989).

16. Vertegaal. R.: Designing Attentive Interfaces. ETRA'02. N.O., USA (2002).
17. Igarashi, T., Hughes, J.F.: A suggestive interface for 3D drawing.

Proceedings of the 14th annual ACM symposium on User interface software and
technology. Pages: 173 – 181. Orlando, Florida (2001).

18. Lesher, G.W., Moulton, B.J., Rinkus, G., Higginbotham, D.J.: A Universal
Logging Format for Augmentative Communication. Enkidu Research, Inc.
Lockport, NY (2000).

19. Gonçalves, M.A., Panchanathan, G., Ravindranathan, U., Krowne, A., Fox,
E.A.: JCDL'03 Proceedings of the 3rd ACM/IEEE-CS joint conference on Digital
libraries (2003).

20. Frias-Martinez, E., Chen, S.Y., Liu, X.: Survey of Data Mining Approaches
to User Modeling for Adaptive Hypermedia. IEEE Transactions on Systems, Man,
and Cybernetics – Part C: Applications and Reviews, Volume 36, No. 6 (2006).

21. Alpaydin, E.: Introduction to Machine Learning. MIT Press (2004).
22. Garner, S.R.: Weka: The Waikato environment for knowledge analysis. In

Proc New Zealand Computer Science Research Students Conference, pages 57-64,
University of Waikato. Hamilton, New Zealand (1995).

23. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers (1993).

24. Manning, C.D., Raghavan, P., Schütze, H. An Introduction to Information
Retrieval. Cambridge University Press (2008).

25. Van Dam, A. Post-WIMP User Interfaces, Communications of the ACM,
Vol. 40, No. 2, pp. 63-67 (1997).

26. Rabiner, Lawrence R. (February 1989). A tutorial on Hidden Markov Models
and selected applications in speech recognition". Proceedings of the IEEE 77 (2):
pp. 257–286 (1989).

744 INForum 2010 Lúıs Alexandre, Salvador Abreu

Jogos de Papéis e Emoções em Ambientes
Assistidos

Luis Machado, Davide Carneiro, Cesar Analide, and Paulo Novais

Departamento de Informática, Universidade do Minho,
Braga, Portugal

luisp_machado@hotmail.com,{dcarneiro,analide,pjon}@di.uminho.pt

Resumo Projectos de cenários dotados de Inteligência Ambiente têm
vindo a crescer de dia para dia e, mesmo sendo uma área relativamente
recente, já mostram a sua importância. Com esta tecnologia, é posśıvel
encontrar soluções para áreas tão vastas como a medicina, o entreteni-
mento e lazer ou a segurança, procurando, sempre, o bem-estar e a segu-
rança dos seus utilizadores. Neste artigo faz-se um levantamento sobre as
principais técnicas de Jogos de Papéis e Computação Afectiva, mostrando
o seu importante papel em cenários dotados de Inteligência Ambiente.
Apresenta-se ainda o trabalho realizado na extensão de uma plataforma
de simulação de Ambientes Inteligentes com conceitos de computação
afectiva, nomeadamente, acrescentando a capacidade de lidar e de reagir
a informação que define sentimentos e emoções de utilizadores.

Palavras-Chave: Computação Afectiva, Jogos de Papéis, Emoções, In-
teligência Ambiente, Ambientes Assistidos.

1 Introdução

A Inteligência Ambiente é definida pela IST Advisory Group (ISTAG) como
ambientes que são senśıveis e respondem à presença de pessoas. É posśıvel en-
contrar nesta tecnologia soluções para áreas tão vastas como a medicina, o en-
tretenimento e lazer ou a segurança. É objectivo deste tipo de ambientes terem
comportamentos pró-activos coerentes, que zelem pelo bem-estar e segurança dos
seus utilizadores. São ainda caracterizados por terem a capacidade de prestar as-
sistência nas tarefas do dia-a-dia de quem os utiliza.

A Inteligência Ambiente apoia-se essencialmente em três tecnologias: re-
des de computadores, computação ub́ıqua [8] e interfaces inteligentes [32]. No
paradigma da computação ub́ıqua, o poder computacional encontra-se distribúıdo
por dispositivos electrónicos cada vez mais pequenos, que, muitas vezes, pas-
sam despercebidos ao utilizador. Os interfaces inteligentes apresentam uma nova
forma de interacção Homem-Máquina, mais intuitivos e mais fáceis de utilizar
que se libertam dos mecanismos e limitações que até hoje os interfaces tradi-
cionais têm mostrado. São, ainda, caracterizados por usarem mecanismos de
interacção mais naturais para o Homem, como, por exemplo, a voz, os gestos,
ou, até, o estado de esṕırito.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 745–756

1.1 Inteligência Ambiente

A Inteligência Ambiente (IAm) [31] [29] é um paradigma computacional relativa-
mente novo na sociedade da informação, no qual as capacidades das pessoas são
aumentadas através de um ambiente digital que é “consciente”da sua presença e
contexto [1], sendo senśıvel, adaptativo e atento às suas necessidades, hábitos e
emoções. A IAm pode ser definida como a junção da computação ub́ıqua com
os interfaces inteligentes. É constitúıda por uma rede de dispositivos predom-
inantemente móveis. Ao adicionarmos métodos adaptativos de interacção com
o utilizador, o resultado são ambientes digitais criados para melhorar a quali-
dade de vida das pessoas, pela tomada de decisão autónoma [4]. Estes sistemas,
conscientes do contexto, combinam informação ub́ıqua, comunicação e entreteni-
mento, com personalização, interacção natural e inteligência. O caminho a seguir
para atingir este objectivo recorre a áreas tão diferentes como a inteligência
artificial, a psicologia, a lógica matemática, bem como diferentes paradigmas
computacionais e metodologias de resolução de problemas, como, por exemplo,
mecanismos de Suporte à Decisão em Grupo.

1.2 Jogos de Papéis

Os Jogos de Papéis (Role-Playing Games - RPG) consistem num tipo de jogo
onde os jogadores “interpretam”uma personagem, criada dentro de um determi-
nado cenário (ambiente). As personagens respeitam um sistema de regras, que
servem para organizar as suas acções, determinando os limites do que pode ou
não ser feito [20]. RPG é uma técnica muito utilizada para treinos, porque per-
mite colocar os jogadores frente a situações de tomada de decisão sem implicar
enfrentar as consequências reais. Grandes empresas têm utilizado RPG em cur-
sos de formação devido ao factor lúdico envolvido nos jogos, o que faz com que
o treino e/ou aprendizagem de determinado assunto seja facilitado.

Desta maneira, são jogos onde cada jogador desempenha um papel e toma
decisões, a fim de alcançar os seus objectivos. Na verdade, os jogadores utilizam
RPG como um “laboratório social”, isto é, como uma forma de experimentar
uma variedade de possibilidades, sem sofrer as consequências do mundo real [6].

1.3 Emoções

Uma das primeiras abordagens ao estudo sistemático das emoções foi realizada
por William James [19] e Carl Lange [22], que, embora tenham desenvolvido os
seus estudos separadamente, anunciaram os seus resultados aproximadamente ao
mesmo tempo, o que fez com que a teoria que anunciavam ficasse conhecida como
a de James-Lange. Esta teoria sugere que as emoções são consequência de uma
resposta fisiológica dos humanos a est́ımulos externos, sendo identificadas através
da análise às respostas dadas por estes (i.e., se vejo um urso, então fico a tremer,
se estou a tremer então estou com medo, onde medo é a emoção identificada).
De acordo com esta teoria, a cada emoção está associada uma reacção fisiológica
diferente [16].

746 INForum 2010 Luis Machado, Davide Carneiro, Cesar Analide, Paulo Novais

Muitos autores criaram outras teorias à sua volta, como é o caso de Walter
Cannon [9] e Philip Bard [5] (segundo esta última teoria, quando uma pessoa
chora é porque está triste, enquanto que na teoria de James-Lange, a pessoa
está triste porque chora). Mais tarde, o trabalho de Madga Arnold deu origem a
muitas outras teorias de avaliação, sendo de realçar os trabalhos de Nico Frijda
[14] e de Richard Lazarus [23] [24].

1.4 Plataforma VirtualECare

O projecto VirtualECare [11] está a ser utilizado como caso de estudo. O seu
principal objectivo é o de desenvolver um sistema multi-agente inteligente ca-
paz de monitorizar, interagir e fornecer aos utilizadores serviços de saúde de
qualidade melhorada. Este sistema irá ser interligado, não apenas com outras
instituições de prestação de cuidados de saúde, mas, também, com centros de
lazer, estruturas de formação, lojas ou até mesmo os parentes do paciente, para
citar alguns exemplos.

A arquitectura do VirtualECare (Figura 1) é uma arquitectura distribúıda
com os seus diferentes módulos interligados através de uma rede (p.e. LAN,
MAN, WAN). Os módulos são: Supported User (a), Environment, Group De-
cision (b), CallServiceCenter (c), CallCareCenter (d), Relatives (e). Cada um
destes módulos desempenha um papel espećıfico [28].

Figura 1. Arquitectura da Plataforma VirtualECare
[11]

Jogos de Papéis e Emoções ... INForum 2010 – 747

2 Jogos de Papéis

Os Jogos de Papéis, mais conhecidos por RPG (Role-Playing Games) consistem
numa categoria à parte nos jogos, optando pela colaboração em vez da com-
petição: os RPG não são jogos com um final com ganho ou perda. No final, deve
completar-se uma história constrúıda a partir das regras do jogo, procurando
objectivos individuais e/ou colectivos. Além disso, é um jogo em que o discurso,
diálogo e troca de ideias são vitais para o seu desenvolvimento.

Os RPG possuem o potencial de, através do exerćıcio da fantasia, agir positi-
vamente no desenvolvimento mental do homem e, consequentemente, no seu de-
senvolvimento social. Se observado com maior cuidado, pode-se perceber a força
de integração latente de aux́ılio pedagógico, pois o jogo estimula uma troca con-
stante de informações e experiências. Assim, “se bem direccionado e explorado,
o RPG tem tudo para ter um papel marcante na sociedade”[20].

2.1 Jogos de Papéis e a Socialização

Os RPG destacam-se por ter a fantasia como principal instrumento. O jogador
tem a oportunidade de viver diferentes personagens, viver em diferentes mundos,
em diferentes realidades. E é isso que faz dele um jogo com possibilidades in-
comuns. Segundo Freud [13], “A fantasia é fundamental para o desenvolvimento
do pensamento, para o relacionamento do homem com a realidade”. Os RPG
permitem ao jogador exercitar a sua fantasia e torná-la aceitável no seu meio, o
que confere ao jogo o papel de elemento social. No momento em que o jogador
começa a viver a sua personagem na história e a sentir-se aceite, as suas inibições
são despidas, e isto favorecerá certamente a sua socialização.

A capacidade de integração do RPG começa na própria estrutura do jogo: é
jogado em grupo, sendo que não é voltado para a competição, mas sim para a
cooperação entre seus participantes [3].

Os grupos de RPG acabam por ser constrúıdos em torno das suas afinidades.
Geralmente, um grupo de RPG costuma ouvir o mesmo tipo de música, filme,
ou ter um conjunto de referências mais ou menos similares.

Dentro de uma sociedade que se mostra cada vez mais complexa devido, por
exemplo, ao desenvolvimento tecnológico, não será exagero supor que o jogador
de RPG está, à partida, mais apto para agir nesta sociedade [3].

2.2 Jogos de Papéis em cenários dotados de inteligência ambiente

Focando o conceito dos Jogos de Papéis, onde cada jogador pode encarnar uma
determinada personagem, num cenário dotado de inteligência ambiente podem
ser criadas várias personagens-tipo com as respectivas regras associadas a cada
uma delas. Aqui, cada utilizador assume determinado papel e é reconhecido
pelo sistema como tendo determinadas caracteŕısticas e determinadas regras que
aquele papel lhe permite usufruir. Assim, é posśıvel simular, com a proximidade
à realidade que o sistema pretender, isto é, podem ser criadas tantas personagens
quantas as necessárias para corresponder o melhor posśıvel à realidade de um
ambiente do género.

748 INForum 2010 Luis Machado, Davide Carneiro, Cesar Analide, Paulo Novais

2.3 Trabalhos relacionados

Muitos autores relacionam as técnicas dos RPG com sistemas computacionais
devido ao seu factor lúdico. Nesta secção, são apresentados alguns destes trabal-
hos, onde se pode verificar a existência de uma grande diversidade. Parte deles
são sistemas educacionais em que o utilizador pode testar os seus conhecimentos,
perceber quais as suas lacunas e aprender com o sistema. Um desses exemplos
é apresentado no artigo “O Desenvolvimento de um Protótipo de Sistema Espe-
cialista Baseado em Técnicas de RPG para o Ensino de Matemática” [36], onde
se apresenta um modelo computacional baseado em técnicas de Sistemas Peri-
ciais e de RPG, que permite ao utilizador, ao exercitar a sua fantasia, testar os
seus conhecimentos matemáticos. G.Schlup, et al, autores de “RPG Educacional
Utilizando o Conceito de Agentes” abordam, também, esta temática ([33]).

No artigo “A Computer-based Role-Playing Game for Participatory Manage-
ment of Protected Areas: The SimParc Project” [18] é apresentado um exemplo
de como os RPG podem ser usados para dois efeitos complementares: na ajuda
e extracção de experiências sociais, e, também, no apoio à tomada de decisão.
É explorado no contexto da gestão participativa de áreas protegidas para a con-
servação da biodiversidade e inclusão social.

Elisa Mattarelli et al, autores do artigo ‘ ‘Design of a role-playing game to
study the trajectories of health care workers in an operating room”[25] através
dos jogos de papéis, aliados às técnicas de simulação, tentam prever ou simular
os mecanismos de coordenação dentro de blocos operatórios, e, outros ainda que
apresentam arquitecturas genéricas para suportar o processo de negociação num
cenário de resolução de conflitos [2].

Por fim, e ainda relacionado com os jogos de papéis, encontramos o projecto
KidZania1. Este projecto oferece um parque temático dirigido às crianças, onde
estas podem “brincar aos adultos”num ambiente altamente realista.

3 Emoções e Computação Afectiva

Até finais do século XX as ciências consideravam que a emoção existia à parte
do racioćınio consciente. Esta noção sofreu mudanças significativas, com estu-
dos oriundos da Neurologia e das Ciências Cognitivas. Entretanto, resultados
recentes [12] apontam uma forte ligação das emoções com quase todos os aspec-
tos da cognição e com a origem do pensamento consciente na criança. Este novo
entendimento das relações entre emoção e cognição começou a influenciar alguns
projectos de sistemas computacionais, em geral, e a pesquisa e o desenvolvimento
de sistemas de aprendizagem baseados no computador, em particular.

Estas iniciativas foram agregadas numa sub-área cient́ıfica da IA denominada
por Computação Afectiva (CA). Esta área consiste num conjunto de técnicas
adaptadas da IA e da Engenharia de Software, agregadas e coordenadas con-
juntamente ao estudo, modelação e simulação da experiência afectiva humana,
orientado a aplicações nos mais variados domı́nios [7].

1 www.kidzania.pt

Jogos de Papéis e Emoções ... INForum 2010 – 749

3.1 Emoção e Inteligência Artificial

Inspirados em modelos psicológicos de emoção, investigadores da área cient́ıfica
da IA começam a reconhecer a importância da modelação da componente emo-
cional quando se trata de desenvolver sistemas computacionais direccionados
para a tomada de decisão. Rosalind Picard [21] sintetizou motivações para dotar
as “máquinas”de capacidades emocionais, nomeadamente:

– As emoções podem ser úteis na construção de robôs e personagens sintéticas
com capacidade de simular o comportamento de seres vivos. O recurso à
problemática da emoção aumenta a credibilidade destes agentes perante os
seres humanos;

– A capacidade de exprimir e entender a emoção será útil para o melhora-
mento da interacção Homem-Máquina. Se pensarmos, por exemplo, numa
aplicação educacional, será útil se o agente tiver a capacidade de interpretar
o estado emocional do utilizador (i.e., através de expressões faciais, pressão
sangúınea). Não é de excluir que um utilizador fatigado possa não aceitar
determinados tipos de interacções;

– Para construir máquinas “inteligentes”(embora o conceito de “máquina in-
teligente”não seja bem definido);

– Para entender a emoção e simulá-la. Este é um ponto importante para este
trabalho, porque, embora não se pretenda enveredar por um estudo apro-
fundado deste tema, pretende-se simular o comportamento de um sistema,
onde actuam diferentes utilizadores com as suas respectivas caracteŕısticas
emocionais.

As publicações de Aaron Sloman [35] e de Marvin Minsky [26] foram cruciais
para o despertar do interesse dos investigadores da área da IA por esta faceta
do comportamento humano.

3.2 Computação Afectiva em cenários dotados de inteligência
ambiente

Os cenários dotados de inteligência ambiente pretendem ser, cada vez mais, am-
bientes capazes de reagir e agir pro-activamente face às necessidades dos seus
utilizadores. Para isto, estes ambientes necessitam de perceber, com a melhor
fiabilidade, as reais necessidades ou desejos dos seus utilizadores. Neste sentido,
a computação afectiva e em particular o reconhecimento das emoções, têm-se
revelado de grande importância. Através do reconhecimento das emoções, estes
sistemas serão capazes de identificar, com maior precisão, as necessidades do
utilizador. Por exemplo, se o sistema detectar que o utilizador se encontra stres-
sado, pode adaptar o ambiente de maneira a acalmá-lo, ligando música calma
num volume baixo, em conformidade com as preferências do utilizador.

750 INForum 2010 Luis Machado, Davide Carneiro, Cesar Analide, Paulo Novais

3.3 Trabalhos relacionados

Na área da detecção e reconhecimento de emoções, existem alguns trabalhos
muito relevantes. Estes trabalhos focam, essencialmente, mecanismos de de-
tecção (expressões faciais, batimento card́ıaco) e mecanismos de reconhecimento
de emoções. O trabalho de A.Herbon et a [17]l, é um exemplo de como medir e
reconhecer diferentes estados afectivos (raiva, desgosto, medo, alegria, tristeza e
surpresa) dos utilizadores. Estes estados afectivos são reconhecidos através dos
batimentos card́ıacos do utilizador, a sua actividade electro dérmica, a activi-
dade dos músculos faciais e a sua voz. Existem outros projectos que se preocupam
com a comunicação através das emoções. Um desses exemplos é o projecto Shoji
[34] onde foi desenvolvida uma ferramenta de comunicação que permite enviar e
receber informação ambiental como temperatura, luminosidade, ńıvel de rúıdo,
informação da presença ou ausência de indiv́ıduos, os seus movimentos e as suas
emoções. Outro exemplo é o projecto Emotion-Sensitive Robots [30] que apre-
senta uma plataforma de cooperação onde o robô é senśıvel às emoções expressas
pelo humano, trabalhando com ele e sendo capaz de mudar o seu comportamento
de acordo com a sua percepção. Ainda outro exemplo é o projecto Oxygen 2

que visa a comunicação centrada no utilizador e aposta na computação pervasiva
através da combinação de uma interacção perceptiva (voz e visão) das necessi-
dades do utilizador, do conhecimento individualizado, de agentes de software e
de tecnologias de colaboração.

Com uma ideia ligeiramente diferente, Kiel Gilleade et al [15], apresenta a
filosofia de manter os jogadores entusiasmados enquanto jogam.

4 Simulação

A simulação é uma operação fundamental quando está em causa a criação de
cenários reais onde a margem de erro tem que ser mı́nima a fim de evitar danos
maiores ou mesmo irreverśıveis.

Deste modo, uma vez que o cenário que nos propomos trabalhar pode pôr
em risco a qualidade de vida de quem o utiliza e confia nele, é prioritária a
criação de um sistema de simulação de todo este ambiente, assim como tentar
reproduzir todas as falhas posśıveis do mesmo. Como já referido anteriormente,
é usado como caso de estudo o projecto VirtualECare.

Inicialmente, o projecto VirtualECare considerava apenas um utilizador. O
sistema reage e aprende (através de técnicas de Case Base Reasoning - CBR)
as suas preferências, necessidades e acções. Por exemplo, quando a temperatura
dentro do quarto está alta, o utilizador pode optar por baixar as persianas ou
ligar o ar condicionado [10]. Este é o tipo de cenário que é posśıvel simular na
plataforma VirtualECare.

O objectivo deste trabalho é o de evoluir o sistema através da possibilidade da
criação de grupos de utilizadores, com base em jogos de papéis onde cada jogador
pode encarnar uma determinada personagem, e identificar as diferentes emoções
2 Project Oxygen - http://www.oxygen.lcs.mit.edu/, 2004. 22 July, 2007.

Jogos de Papéis e Emoções ... INForum 2010 – 751

expressas pelos utilizadores em cada instante, com o intuito de, o sistema ser
capaz de tomar as decisões necessárias, com base nos diferentes tipos de emoções
expressas pelos utilizadores.

4.1 Simulação dos utilizadores

Em cada cenário, devem existir utilizadores para que tudo isto faça sentido.
Mais do que isso, os utilizadores interagem com o sistema e são, provavelmente,
a parte mais impreviśıvel deste.

Os utilizadores podem alterar os parâmetros ambientais da casa através dos
actuadores ou através das acções rotineiras que realizam em casa. Por exemplo,
se o utilizador decide tomar um banho, ele está a aumentar a temperatura e
humidade na casa de banho. O simples facto de interagir com certos dispositivos
interfere com os parâmetros ambientais: se o utilizador liga o forno para cozinhar
uma refeição, a temperatura na cozinha subirá. Isto justifica a importância de
simular os diferentes utilizadores e as suas acções dentro da casa.

À plataforma VirtualECare foi acrescentada a possibilidade de adicionar
vários utilizadores-tipo. Estes utilizadores são criados com base em jogos de
papéis, isto é, cada utilizador-tipo vai representar um papel espećıfico dentro do
ambiente, o que o habilita a efectuar determinadas acções com base em regras
previamente estabelecidas para este papel. No momento da criação destes papéis,
o utilizador da plataforma de simulação deve definir as diferentes acções que cada
papel poderá efectuar dentro da casa (Figura 2). A utilização dos jogos de pa-
péis permite-nos distinguir diferentes grupos de utilizadores com caracteŕısticas
espećıficas.

Figura 2. Configuração dos utilizadores.

Há, no entanto, dados mais importantes a serem simulados sobre os uti-
lizadores. Como o sistema final visa monitorizar os sinais vitais dos utilizadores
(Figura 3), estes também devem ser simulados para testar os mecanismos de
inferência que tentam avaliar o estado de saúde dos diferentes utilizadores. A

752 INForum 2010 Luis Machado, Davide Carneiro, Cesar Analide, Paulo Novais

simulação dos sinais vitais pode provocar a ocorrência de casos espećıficos e ver
como e quão rápido o sistema reage a certas configurações de sinais vitais, po-
dendo desta forma melhorar os mecanismos de inferência. São posśıveis duas
modalidades para configurar os sinais vitais dos utilizadores: Random mode e
Planned mode. No Random mode os sinais vitais dos diferentes utilizadores são
gerados de forma totalmente aleatória, enquanto que no Planned mode estes
sinais vitais podem ser totalmente configurados.

4.2 Simulação das emoções

São fornecidas pelo VirtualECare mais algumas informações dos utilizadores
que nos permitem prever ou determinar as suas emoções em cada instante. Ini-
cialmente, estas emoções são determinadas através das preferências (temper-
atura,humidade e luminosidade) (Figura 3) dos diferentes utilizadores, com base
em regras previamente definidas. Por exemplo, se o utilizador tem preferência por
uma temperatura mais elevada e o quarto onde se encontra está frio, o utilizador
pode expressar a emoção de tristeza ou desapontamento.

Para determinar as emoções é usada uma simplificação da teoria OCC [27]
onde, inicialmente, apenas teremos em conta os seguintes tipos básicos de emoções:
alegria, tristeza, medo, raiva, desapontamento, surpresa. Com base nas preferên-
cias dos diferentes utilizadores e nas caracteŕısticas momentâneas de cada quarto
(temperatura,humidade e luminosidade), o sistema é capaz de modelar as difer-
entes emoções através da conjugação das preferências do utilizador e das carac-
teŕısticas do quarto em que este se encontra.

5 Conclusões e Trabalho Futuro

Como resultado deste trabalho, foi criada a possibilidade de inserção de vários
utilizadores recorrendo a técnicas RPG, o que nos permite efectuar simulações
(Figura 4) mais próximas da realidade dos diferentes ambientes posśıveis. Ainda,
foi desenvolvida uma ferramenta que permite modelar diferentes emoções, com
base nas caracteŕısticas dos utilizadores e do próprio ambiente.

Como trabalho futuro, pretende-se que o sistema utilize estas emoções para
tomar as diferentes decisões posśıveis, ao invés de interrogar o utilizador até que
o sistema aprenda por aplicação de técnicas de CBR.

Pretende-se, ainda, no futuro, ser capaz de determinar as diferentes emoções
dos utilizadores com a ajuda dos seus sinais vitais o que aumentará a aproxi-
mação à realidade já conseguida actualmente.

Jogos de Papéis e Emoções ... INForum 2010 – 753

Figura 3. Configuração das preferências dos utilizadores.
[11]

Figura 4. Simulação do ambiente.

Agradecimentos O trabalho descrito neste artigo foi parcialmente suportado
pelo projecto TIARAC - Telematics and Artificial Intelligence in Alternative
Conflict Resolution Project (PTDC/JUR/71354/2006).

754 INForum 2010 Luis Machado, Davide Carneiro, Cesar Analide, Paulo Novais

Referências

1. Giovanni Acampora, Vincenzo Loia, Michele Nappi, and Stefano Ricciardi. Ambi-
ent intelligence framework for context aware adaptive applications. In CAMP ’05:
Proceedings of the Seventh International Workshop on Computer Architecture for
Machine Perception, pages 327–332, Washington, DC, USA, 2005. IEEE Computer
Society.

2. D. F. Adamatti. Inserção de Jogadores Virtuais em Jogos de Papéis para Uso em
Sistemas de Apoio À Decisão em Grupo: um Experimento na Gestão de Recursos
Natuais. PhD thesis, São Paulo: Escola Politécnica da Universidade de São Paulo,
2007.

3. F. Andrade. Rpg e educação - possibilidades de uso do rpg.
http://www.historias.interativas.nom.br/educ/rpgtese.htm, 1997.

4. J.C. Augusto, P. McCullah, V. McClelland, and J.-A. Walden. Enhanced health-
care provision through assisted decision-making in a smart home environment. 2nd
workshop on artificial intelligence techniques for ambient intelligence, 2007.

5. P. Bard. On emotional expression after decortication with some remarks on certain
theoretical views, parts 1 and 2. Psychological review, 41:309–449, 1934.

6. Olivier Barreteau, Christophe Le Page, and Patrick D’Aquino. Role-playing games,
models and negotiation processes. Journal of Artificial Societies and Social Simu-
lation, 6:2, 2003.

7. Magda Bercht. COMPUTAÇÃO AFETIVA : VÍNCULOS COM A PSICOLO-
GIA E APLICAÇÕES NA EDUCAÇÃO. PhD thesis, Instituto de Informática -
Universidade Federal do Rio Grande do Sul - UFRGS, 2006.

8. M. Bick and T. Kummer. Ambient intelligence and ubiquitous computing. In
Handbook on Information Technologies for Education and Training, Part I(Subpart
1):79–100, 2008.

9. Walter B. Cannon. The james-lange theory of emotions: A critical examination
and an alternative theory. The American Journal of Psychology, 39(1/4):106–124,
1927.

10. Davide Carneiro, Paulo Novais, Ricardo Costa, and José Neves. Case-based reason-
ing decision making in ambient assisted living. In IWANN ’09: Proceedings of the
10th International Work-Conference on Artificial Neural Networks, pages 788–795,
Berlin, Heidelberg, 2009. Springer-Verlag.

11. Ricardo Costa, Paulo Novais, Lúıs Lima, Davide Carneiro, Dário Samico, João
Oliveira, José Machado, and José Neves. virtualecare: intelligent assisted living.
In ehealth, pages 138–144, 2008.

12. A. R. Damásio. O erro de descartes. emoção, razão e o cérebro humano. São Paulo:
Companhia das Letras., 1996.

13. Sigmund Freud. Formulations on the two principles of mental functioning. London:
Hogarth Press, 12:213–216, 1911.

14. N.H. Frijda. The emotions. New York: Cambridge University Press., 1986.

15. Kiel Mark Gilleade, Alan Dix, and Jen Allanson. Affective videogames and modes
of affective gaming: Assist me, challenge me, emote me. In de Castell Suzanne and
Jenson Jennifer, editors, Changing Views: Worlds in Play: Proceedings of the 2005
Digital Games Research Association Conference, page 7, Vancouver, June 2005.
University of Vancouver.

16. M. Goreti Marreiros. Agentes de Apoio à Argumentação e Decisão em Grupo. PhD
thesis, Escola de Engenharia - Universidade do Minho, 2007.

Jogos de Papéis e Emoções ... INForum 2010 – 755

17. A. Herbon, A. Oehme, and E. Zentsch. Emotions in ambient intelligence-an exper-
iment on how to measure affective states. HCI 2006, 2006.

18. Marta Irving, Davis Sansolo, Gustavo Melo, Ivan Burstyn, Altair Sancho, and Jean-
Pierre Briot. A computer-based role-playing game for participatory management
of protected areas: The simparc project. In IV Encontro da Associação Nacional de
Pesquisa e Pós-Graduação em Ambiente e Sociedade (IV ENANPPAS), Braśılia,
DF, Brasil, 6 2008. Associação Nacional de Pós-Graduação e Pesquisa em Ambiente
e Sociedade (ANPPAS).

19. W. James. what is an emotion? mind, 9:188–205, 1884.
20. S. Klimick. Construção de personagem & aquisição de linguagem: o desafio do rpg

no ines. PhD thesis, departamento de artes e design - puc, rio de janeiro, 2003.
21. Mit Media Laboratory and Rosalind W. Picard. What does it mean for a computer

to ”have”emotions? rosalind w. picard. In In: Emotions in Humans and, pages 115–
148. MIT Press, 2001.

22. C. Lange. the emotions. reprinted in the emotions, lange and james (eds.). new
york: harner publishing co. 1967., 1885.

23. R.S. Lazarus. Psychological stress and the coping process. New York: McGraw
Hill., 1966.

24. R.S. Lazarus. Progress on a cognitive-motivational-relational theory of emotion.
American Psychologist, 46:819–834, 1991.

25. Elisa Mattarelli, Kelly J. Fadel, and Suzanne P. Weisband. Design of a role-playing
game to study the trajectories of health care workers in an operating room. In CHI
’06: CHI ’06 extended abstracts on Human factors in computing systems, pages
1091–1096, New York, NY, USA, 2006. ACM.

26. Marvin Minsky. Why people think computers can’t. AI Magazine, 3(4):3–15, 1982.
27. A. Ortony, G. Clore, and A. Collins. The cognitive structure of emotions. University

Press, 1988.
28. Costa R., Carneiro D., Novais P., Lima L., Machado J., Marques A., and Neves J.

Ambient assisted living. In Advances in Soft Computing, volume 51, pages 86–94,
Springer- Verlag, 2008. IEEE Computer Society.

29. Carlos Ramos. Ambient intelligence - a state of the art from artificial intelligence
perspective. In Portuguese Conf. Artificial Intelligence Workshops, pages 285–295,
2007.

30. Pramila Rani and Nilanjan Sarkar. Emotion-sensitive robots - a new paradigm for
human-robot interaction, 2006.

31. G. Riva. Ambient intelligence in health care. Cyberpsychol, 6:295–301, 2003.
32. G. Riva, F. Vatalaro, F. Davide, and M. Alcañiz, editors. Ambient Intelligence

- The evolution of technology, communication and cognition towards the future of
human-computer interaction. OCSL Press, 2005.

33. G. Schlup, Raphael P. T. de Jesus, Ricardo B. de Simas, Anita M. da Rocha Fer-
nandes, and Rudimar L. S. Dazzi. RPG Educacional Utilizando o Conceito de
Agentes. PhD thesis, Universidade do Vale do Itajáı, 2004.

34. M. Shuzo, J.J. Delaunay, M. Shimura, and I. Yamada. Shoji: A communication
terminal for sensing and receiving ambient information. IDETC/CIE 2009, 2009.

35. Aaron Sloman and Monica Croucher. Why robots will rave emotions. In IJCAI,
pages 197–202, 1981.

36. Ivanete Zuchi. The Development of a Expert Prototype System Based on RPG
techniques for the learning of Mathematics. PhD thesis, Engenharia de Produção
e Sistemas, Universidade Federal de Santa Catarina - UFSC, 2000.

756 INForum 2010 Luis Machado, Davide Carneiro, Cesar Analide, Paulo Novais

O Processo ETL em Sistemas Data Warehouse

João Ferreira, Miguel Miranda, António Abelha e José Machado

Universidade do Minho, Departamento de Informática,
Braga, Portugal

tiago_jtx@hotmail.com
{miranda,abelha,jmac}@di.uminho.pt

http://www.di.uminho.pt

Resumo. Extração, Transformação e Carga (Extract Transform Load - ETL)
são procedimentos de uma técnica de Data Warehouse (DW), que é responsável
pela extracção de dados de várias fontes, a sua limpeza, optimização e inserção
desses dados num DW. Este artigo tem como objectivo demonstrar o
funcionamento genérico do processo ETL em sistemas DW. O processo ETL é
uma das fases mais críticas na construção de um sistema DW, pois é nesta fase
que grandes volumes de dados são processados. Será abordado de forma
sucinta, o modo como este processamento ocorre, e ainda, as ferramentas de
ETL disponíveis no mercado. Por fim, serão abordados quais os critérios a ter
em consideração na escolha de uma destas ferramentas.

Palavras-chave: Extract Transform Load (ETL), Data Warehouse (DW),
Ferramentas ETL .

1 Introdução

A ideia principal de um sistema de Data Warehouse (DW) (ilustrado na figura 1),
consiste em agregar informação proveniente de uma ou mais Bases de Dados (BD),
ou de outras fontes, para posteriormente a tratar, formatar e consolidar numa única
estrutura de dados. Um sistema DW está associado a BD com um grande volume de
dados devido quer ao volume proveniente das fontes heterogéneas quer da baixa
normalização habitualmente utilizada. A estrutura de dados do DW é desenvolvida de
forma a facilitar a análise desses dados. Após ser armazenada, estas informação, fica
disponivel no DW ou em DataMarts (DM) para consultas que visam ajudar na tomada
de decisão. Devido ao custo elevado, o DW muitas vezes é dividido em partes
menores, nomeadamente os DM. Um DM consolida apenas as informações de uma
determinada área e após a sua criação podem se unir vários DM para formarem um
único DW [1].

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 757–765

Figura 1. Esquema da Infra-estrutura de um sistema DW [1]

Para a construção de um DW são necessários diferentes passos principalmente ao

nível da extracção e processamento de dados. O processo ETL destina-se à extracção
e transformação dos dados e termina com a inclusão destes no DW. Esta fase
caracteriza-se por englobar procedimentos de limpeza, integração e transformação de
dados. Segundo a literatura este é o processo mais crítico e demorado na construção
de um DW [1].

Quando o DW se encontra construído, uma das ferramentas mais utilizadas para o
acesso e a análise dos dados é o Online Analytical Processing (OLAP). Através desta
ferramenta é possível realizar o tratamento dos dados proveniente de diferentes fontes
em tempo real, utilizando métodos mais rápidos e eficazes. Permite também usar uma
grande variedade de ferramentas de visualizações dos dados e organizá-los através
dos critérios de selecção pretendidos. A maior vantagem do OLAP é, no entanto, a
capacidade de realizar análises multidimensionais dos dados, associadas a cálculos
complexos, análises de tendências e modelação [3,2].

2 O Processo ETL

O ETL é um processo para extrair dados de um sistema de Bases de Dados (BD),
sendo esses dados processados, modificados, e posteriormente inseridos numa outra
BD. Estudos relatam que o ETL e as ferramentas de limpeza de dados consomem um
terço do orçamento num projecto de DW, podendo, no que respeita ao tempo de
desenvolvimento de um projecto de DW, chegar a consumir 80% desse valor. Outros
estudos mencionam, ainda, que o processo de ETL tem custos na ordem dos 55% do
tempo total de execução do projecto de DW [4,5,6].

758 INForum 2010João Ferreira, Miguel Miranda, António Abelha, José Machado

A figura 2 descreve de forma geral o processo de ETL. A camada inferior
representa o armazenamento dos dados que são utilizados em todo o processo. No
lado esquerdo pode-se observar os dados “originais” provenientes, na maioria dos
casos, de BD ou, então, de ficheiros com formatos heterogéneos, por exemplo de
texto. Os dados provenientes destas fontes são obtidos (como é ilustrado na área
superior esquerda da figura 2), por rotinas de extracção que fornecem informação
igual ou modificada, relativamente à fonte de dados original. Posteriormente, esses
dados são propagados para a Data Staging Area (DSA) onde são transformados e
limpos antes de serem carregados para o DW. O DW é representado na parte direita
da figura e tem como objectivo o armazenamento dos dados. O carregamento dos
dados no DW, é realizado através das actividades de carga representadas na parte
superior direita da figura.

Figura 2. Ilustração do processo de ETL [13].

O ETL é um processo que se divide em três fases fulcrais:

1. Extração;
2. Transformação;
3. Carga.

Segundo alguns autores a concepção de um processo ETL incide sobre o
mapeamento dos atributos dos dados de uma ou várias fontes para os atributos das
tabelas do DW [7,8].

2.1 Utilização do processo ETL em BD e Ferramentas disponíveis

No DW, os dados normalmente utilizados estão localizados em BD
multidimensionais. É importante que se tenha consciência que as alterações nos dados

O Processo ETL em Sistemas Data Warehouse INForum 2010 – 759

não afectam as fontes originais, mas sim, os dados no momento de extracção para o
repositório da DW. Mais ainda, que os ajustes são modelados de acordo com as
necessidades do modelo de DW, atendendo assim às restrições que são necessárias
para esse modelo [12].

Depois do processo de transformação ocorre o processo de carga. Neste
processam-se os mapeamentos sintácticos e semânticos entre os esquemas,
respeitando as restrições de integridade e criando assim uma visão concretizada e
unificada das fontes. Este processo é dos mais árduos e complexos de obter devido a
sua complexidade que dependerá da heterogeneidade das BD [10] [11].

No mercado existem muitas ferramentas capazes de executar processos de ETL, a
tabela 1 apresenta uma visão geral da evolução destas ferramentas [3].

Tabela 1. As várias gerações de ETL ao longo dos anos

Ano Título Significado
Início de 1990 Codificação manual de ETL Códigos personalizados escitos à mão
1993-1997 A primeira geração de

ferramentas de ETL
Código baseado em ferramentas de
ETL

1999-2001 Segunda geração de
ferramentas de ETL

Código baseado em ferramentas de
ETL

2003-2010 Ferramentas de ETL
actualmente

A maioria das ferramentas eficientes

As ferramentas de ETL disponíveis actualmente encontram-se bem preparadas para

o processo de extracção, transformação e carga. Tem-se assistido a inúmeros avanços
nestas ferramentas desde 1990, estando actualmente mais direccionadas para o
utilizador [3].

 Uma boa ferramenta de ETL deve ser capaz de comunicar com as diversas BD e
ler diferentes formatos. Actualmente a oferta é elevada, como registado na tabela 2.

760 INForum 2010João Ferreira, Miguel Miranda, António Abelha, José Machado

Tabela 2. Diferentes ferramentas de ETL

Lista de ferramentas ETL Versão ETL vendedores
Oracle Warehouse Builder (OWB) 11gR1 Oracle
Data Integrator & Data Services XI 3.0 SAP Business Objects
IBM Information Server (Datastage) 8.1 IBM
PowerCenter 9.0 Informatica
Elixir Repertoire 7.2.2 Elixir
Data Migrator 7.6 Information Builders
SQL Server Integration Services 10 Microsoft
Talend Open Studio & Integration Suite 4.0 Talend
DataFlow Manager 6.5 Pitney Bowes Business Insight
Data Integrator 9.2 Pervasive
Open Text Integration Center 7.1 Open Text
Transformation Manager 5.2.2 ETL Solutions Ltd.
Data Manager/Decision Stream 8.2 IBM (Cognos)
Clover ETL 2.9.2 Javlin
ETL4ALL 4.2 IKAN
DB2 Warehouse 9.1 IBM
Pentaho Data Integration 3.0 Pentaho
Adeptia Integration Server 4.9 Adeptia

A selecção de uma ferramenta de ETL adequada é uma decisão muito importante a

ser tomada. A ferramenta de ETL opera no núcleo do DW, com a extracção de dados
de múltiplas fontes e a sua transformação. Estas características tornam-na numa
ferramenta acessível para os analistas de sistemas de informação.

Ao contrário de outros componentes de uma arquitectura de Data Warehousing, é
muito difícil mudar de uma ferramenta ETL para outra, devido à falta de normas,
definições de dados e regras de transformação.

Ao seleccionar uma ferramenta de ETL devem ser tomados em consideração
os seguintes pontos [9]:
• Suporte à plataforma: Deve ser independente de plataforma, podendo assim

correr em qualquer uma.
• Tipo de fonte independente: Deve ser capaz de ler directamente da fonte de

dados, independentemente do seu tipo, saber se é uma fonte de RDBMS
(Relational Database Management System), ficheiro simples ou um ficheiro
XML.

• Apoio funcional: Deve apoiar na extracção de dados de múltiplas fontes, na
limpeza de dados, e na transformação, agregação, reorganização e operações de
carga.

• Facilidade de uso: Deve ser facilmente usada pelo utilizador.
• Paralelismo: Deve apoiar as operações de vários segmentos e execução de

código paralelo, internamente, de modo que um determinado processo pode tirar
proveito do paralelismo inerente da plataforma que está sendo executada.
Também deve suportar a carga e equilíbrio entre os servidores e capacidade de
lidar com grandes volumes de dados. Quando confrontados com cargas muito

O Processo ETL em Sistemas Data Warehouse INForum 2010 – 761

elevadas de trabalho, a ferramenta deve ser capaz de distribuir tarefas entre
múltiplos servidores.

• Apoio ao nível do debugging: Deve apoiar o tempo de execução e a limpeza da
lógica de transformação. O utilizador deve ser capaz de ver os dados antes e
depois da transformação.

• Programação: Deve apoiar o agendamento de tarefas ETL aproveitando, assim,
melhor o tempo não necessitando de intervenção humana para completar uma
tarefa particular. Deve também ter suporte para programação em linha de
comandos usando programação externa.

• Implementação: Deve suportar a capacidade de agrupar os objectos ETL e
implementa-los em ambiente de teste ou de produção, sem a intervenção de um
administrador de ETL.

• Reutilização: Deve apoiar a reutilização da lógica de transformação para que o
utilizador não precise reescrever, várias vezes, a mesma lógica de transformação
outra vez.

3 Caso de estudo

Na sequência da necessidade de validar os dados dos recursos humanos de um centro
hospitalar português foi extraída a informação dos seus repositórios para um ambiente
de data warehouse. A ferramenta escolhida para o tratamento de dados e construção
do repositório foi a release 2 da Oracle Database 11g, que possui embebida em si a
plataforma de desenvolvimento de data warehouse denominada Oracle Warehouse
Builder. A fonte principal era uma instância Oracle 8i, na qual estavam integrados em
diferentes perfis dados de recursos humanos e outros sistemas como o de controlo de
ponto.

A informação encontrava-se dispersa em mais de uma centena de tabelas com
registos processados e a processar. A dispersão de informação obrigou a alterar a
fundo o esquema normal de destino procurando uma normalização de nível mais
baixo para a construção dos diferentes data marts. Desta forma foram necessários
desenvolver métodos para o ETL do repositório dos recursos humanos que
garantissem a qualidade da informação e permitissem a construção de um novo
repositório que fosse mais adequado para alimentar a DW.

Nesta fase tentou-se garantir que toda a informação estava correcta e consistente,
teve-se algum receio que dados incorrectos pudessem conduzir a erros críticos de
tomada de decisão. Dada esta importância de detecção de erros serão de seguida
explicitados alguns objectivos de teste que se estabelecem para o sistema ETL:

3.1 Preenchimento de dados

Neste teste procura-se assegurar que todos os dados esperados eram carregados.

• Comparam-se o número de registos entre os dados das fontes e o número de
registos carregados para o DW.

762 INForum 2010João Ferreira, Miguel Miranda, António Abelha, José Machado

• Comparam-se valores únicos de determinados atributos entre as fontes e os
dados carregados para o DW.

• Procura-se fazer um bom esquema de dados para perceber as limitações dos
valores atribuídos.

• Procura-se validar os conteúdos de cada atributo, ou seja, não permitir que
por razões de codificação o limite de caracteres entre cada esquema
relacional (fonte e destino) não resulta na falha do fluxo de dados.

• Transformação de Dados - Neste teste tenta-se assegurar que os dados são
transformados correctamente de acordo com as regras de negócio
especificadas.

• Procuram-se criar testes, os mais diversos possíveis para antever algumas
situações consequentes.

• Tenta-se validar o processamento correcto de campos no ETL tais como
chaves estrangeiras.

• Procura-se verificar sempre se os tipos de dados presentes no DW são os que
se tinham planeado.

• E ainda procura-se testar a integridade referencial entre as tabelas.

3.2 Qualidade de dados

Neste teste procura-se assegurar que o sistema ETL rejeita ou substituí valores por
defeito, corrige ou ignora dados e reporta dados inválidos.

• Procura-se realizar as conversões dos dados sempre correctamente.
• Nos casos de atributos NULL procura-se sempre inserir valores equivalentes

a "desconhecido".
• Sempre que algum atributo não está correcto procura-se validar e corrigir o

problema.
• Sempre que aparecem valores duplicados analisam-se os códigos e corrige-se

o problema

3.3 Performance e Escalabilidade

Nesta fase procura-se, assegurar que o carregamento dos dados e a performance das
interrogações são eficientes e que a arquitectura é escalonável.

• Os carregamentos de teste são efectuados com volumes de dados pequenos
para garantir o bom funcionamento.

• Comparam-se estes valores de performance de carregamento do ETL para
antecipar questões de escalabilidade. Assim pontos de fraqueza que sejam
detectados podem ser melhorados.

• Efectuam-se operações simples com junções para validar a performance das
interrogações em volumes de dados muito grandes.

3.4 Integridade de dados

O Processo ETL em Sistemas Data Warehouse INForum 2010 – 763

 Neste teste procura-se verificar que o processo de ETL funciona correctamente em
relação a outros processos de upstream e downstream.

3 Conclusão

O processo ETL é o mais complexo e moroso na construção de um sistema DW,
devido a aspectos já anteriormente vistos neste artigo. Nos dias de hoje são
disponibilizadas diversas ferramentas de ETL no mercado, cada uma com as suas
particularidades. Entre estas ferramentas destacam-se a Oracle Warehouse Builder
(OWB), SQL Server Integration Services, entre outras referidas no presente artigo. As
suas capacidades de tratamento e manipulação de informação, aliadas a facilidade e
simplicidade de utilização, tornam-nas uma referência entre as ferramentas ETL
abordadas. Na aquisição de uma ferramenta deste tipo é muito importante saber
adequar essa escolha ao problema em questão, sendo que a produtividade na obtenção
das informações geradas pelo DW irá reflectir o grau de acerto dessa escolha.

Referências

1.http://imasters.uol.com.br/artigo/11721/bi/arquitetura_de_data_warehouse_parte_02/imprimir
acedido em 8 Junho 2010

2. Rudman, W.; Brown, C.; Hewitt, C. The use of data mining tools in identifying medication
error near misses and adverse drug events. Top Health Information Management; 23(2). p.
94–103; 2002.

3. Evaluating ETL and Data Integration Platforms http://www.evolve.mb.ca/dw/etlreport.pdf
acedido 8 Junho 2010

4. Cza. Shilakes, J. Tylman. Enterprise Information Portals. Enterprise Software Team, em
http://www.sagemaker.com/company/downloads/eip/indepth.pdf acedido em 8 Junho 2010

5. M. Demarest, The politics of data warehousing.
http://www.uncg.edu/ism/ism611/politics.pdf acedido em 8 Junho 2010

6. B. Inmon. The Data Warehouse Budget. DM Review Magazine, January 1997, em
www.dmreview.com/master.cfm?NavID=55&EdID=1315

7. R. Kimbal, L. Reeves, M. Ross, W. Thornthwaite. The Data Warehouse Lifecycle Toolkit:
Expert Methods for Designing, Developing, and Deploying DataWarehouses. John Wiley &
Sons, February 1998.

8. P. Vassiliadis. Gulliver in the land of data warehousing: practical experiences and
observations of a researcher. In Proc. DMDW (Stockholm, Sweden, 2000), pp. 12.1 -12.16.

9. Rob Karel and Michael Goulde Market Overview: Open Source ETL Tools
http://www.bismart.be/docs/forrester_research_market_overview_open_source_ETL.pdf
acedido em 8 Junho 2010

10. Jorg, T., Dessloch, S.: Towards generating ETL processes for incremental loading. IDEAS,
101-110, 2008

11. Jorg, T., Dessloch, S.: Formalizing ETL Jobs for Incremental Loading of DataWare-houses.
BTW, 327-346, 2009

12. Kimball, R., Caserta, J.: The Data Warehouse ETL Toolkit: Practical Techniques for
Extracting, Cleaning, Conforming, and Delivering Data. John Wiley & Sons, 2004

764 INForum 2010João Ferreira, Miguel Miranda, António Abelha, José Machado

13. Panos Vassiliadis, P., Simitsis, A., Georgantas, P., Terrovitis, M., Skiadopoulos, S.: A
generic and customizable frameworkfor the design of ETL scenarios. Information Systens
30, 492-525, 2005

O Processo ETL em Sistemas Data Warehouse INForum 2010 – 765

Processo Clínico Electrónico Visual

Rui Marinho1, José Machado2, e António Abelha2

1 ruipmarinho@gmail.com
2 Departamento de Informática - Universidade do Minho - Portugal

{jmac,abelha}@di.uminho.pt

Resumo Com a crescente expansão dos sistemas de informação de saúde,
o Processo Clínico Electrónico (PCE) tornou-se numa das fontes agrega-
doras de informação clínica mais importantes no contexto da saúde digi-
tal. Consequentemente, pede-se cada vez mais um esforço adicional aos
profissionais de saúde no preenchimento de actos clínicos estruturados,
tipicamente através de formulários, que se têm revelado desapropriados
por serem demasiado complexos. Esta situação levou ao desenvolvimento
de um novo conceito de registo de informação designada de PCE Visual,
no qual o profissional de saúde regista o que vê, e não o que pretende
dizer que viu. Através de tecnologia exclusivamente Web, foi possível
implementar um protótipo para o registo de procedimentos, traumas e
lesões em modelos anatómicos, com captação de dados estruturados com
recurso a objectos gráficos, de leitura imediata, de consulta fácil e de
interacção natural, preparada para suportar equipamentos sensíveis ao
toque.

Palavras-Chave: processo clínico electrónico, pce, visual, svg, interac-
tivo, gráficos, aplicação web

Abstract. With the increasing expansion of health information systems,
the Electronic Health Record (EHR) has become one of the finest sour-
ces for clinical information aggregators in the context of digital health.
As a consequence, health professionals are being asked to provide more
thorough structured clinical statements when filling up forms, which are
becoming inappropriate and overly complex. This situation led to the
development of a new concept of information registration designated Vi-
sual EHR, in which the health professional registers what he sees and not
what he means. Exclusively through Web technology, it was possible to
implement a prototype for the registration of procedures, traumas and
injuries in anatomic models, effectively capturing structured data using
graphical objects, much more easier to understand and to work with,
and also capable of supporting multi-touch devices.

Keywords: electronic health record, ehr, visual, svg, interactive, graphi-
cal, web application

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 767–778

1 Introdução

O Processo Clínico Electrónico (PCE) é um registo de saúde informatizado onde
profissionais de saúde registam informação clínica sobre um paciente. Tem como
objectivo auxiliar os sistemas de informação a reunir todos os cuidados de saúde
prestados a um determinado paciente e facultar uma análise transversal do seu
historial clínico em diferentes serviços e unidades médicas. Para além de infor-
mações biométricas, prescrições correntes e resultados de exames imagiológicos
e laboratoriais, começam a surgir novos mecanismos mais avançados que já inte-
gram o PCE com sistemas de apoio à decisão e tarefas logísticas e contabilísticas
[7].

A quantidade e a qualidade da informação disponível num PCE para os
profissionais de saúde pode ter um forte impacto no seu desempenho, pois é esta
que guia o seu percurso de tomada de decisão. É, por isso, fundamental que
múltiplos eixos informativos se cruzem de forma relacionada e coerente.

Tecnicamente, um PCE é constituído por um conjunto de dados que se de-
signa de texto narrativo livre não estruturado e por dados codificados e estrutu-
rados. Entenda-se por dados estruturados um conjunto agrupado de informações
que do ponto de vista informático está relacionado com outro pedaço de informa-
ção. Esta ligação, descrita em termos lógicos ou a nível do modelo representa uma
associação estrutural e possivelmente semântica, que permite a interpretação dos
termos e dos meta-dados que são recolhidos e posteriormente processados. Isto
permite que as aplicações clínicas e os agentes inteligentes associados consigam
depois actuar de forma mais precisa e concertada ao nível conceptual humano,
uma vez que conhecem o significado da informação com que lidam. Dificilmente
se conseguem os mesmos resultados com texto narrativo livre.

Por este motivo, o uso de técnicas que permitem expandir este tipo de dados
a todo o PCE tem vindo a aumentar, recorrendo-se cada vez mais a mecanismos
que procuram facilitar a recolha e a análise de dados estruturados. Esta infor-
mação é muito valiosa, pois permite contribuir para a investigação clínica, para
a optimização de fluxos de trabalho, para o refinamento de motores de apoio à
decisão, para o melhoramento da gestão das infra-estruturas hospitalares e para
o planeamento de forma mais objectiva da prestação dos serviços de saúde [9, 10,
2, 8]. Deste modo, à medida que é incentivada a captação de dados estruturados,
mais rigor e objectividade são exigidos dos mesmos.

É inegável a supremacia dos dados estruturados face aos de texto livre nar-
rativo no campo do processamento computacional. Contudo, do ponto de vista
do profissional de saúde, os dados estruturados são mais complicados de gerir
pois envolvem o preenchimento de variados formulários. É legítimo considerar
que este cenário pode induzir uma quebra de produtividade nos profissionais
de saúde, juntamente com a possibilidade acrescida de ocorrerem mais erros do
que na redacção de um parágrafo de texto, devido a interfaces mal desenhadas,
demasiado complexas, ou com mecanismos de validação desapropriados.

Idealmente, os dados deveriam ser capturados de forma não estruturada no
decorrer da actividade médica, numa conversa entre o profissional de saúde e o
paciente, e serem posteriormente processados de forma estruturada em formato

768 INForum 2010 Rui Marinho, José Machado, António Abelha

electrónico [6, 1, 11]. Até a taxa de erro deste cenário ser aceitável, novas formas
de interacção Homem-Máquina terão de ser desenvolvidas, suprimindo, por um
lado, as necessidades de dados estruturados e, por outro, diminuindo as barreiras
de utilização.

Neste contexto, este artigo propõe o desenvolvimento de uma nova aplicação
gráfica baseada apenas em tecnologia Web, recorrendo a tecnologias interactivas
e de visualização para criar uma nova dinâmica na comunicação entre o profissi-
onal de saúde e o sistema de informação do PCE, de modo a auxiliá-lo a registar
visualmente informação médica, sem recurso a formulários ou outros mecanismos
de complexidade equivalente. Esta aplicação Web permitirá aos profissionais de
saúde recorrer a objectos gráficos para efectuarem uma leitura rápida da infor-
mação clínica disponível, registar procedimentos, lesões e traumas através de
ferramentas gráficas clínicas pré-definidas, navegar entre níveis de detalhes ana-
tómicos de acordo com o serviço onde se encontram, e colaborar durante um
acto médico. É esperado que esta aplicação Web contribua para um aumento da
estruturação dos dados e, simultaneamente, reduza a possibilidade de introdu-
ção de erros, aumente a produtividade dos profissionais de saúde e proporcione
informação estruturada de qualidade.

Este artigo está organizado em mais três secções. A Secção 2 descreve o
trabalho relacionado com visualização de dados clínicos; a Secção 3 apresenta os
requisitos necessários para desenvolver a aplicação Web proposta, bem como a
sua arquitectura e implementação. Na Secção 4 são apresentadas as conclusões
finais e são apresentados alguns exemplos de melhorias possíveis no futuro.

2 Trabalho Relacionado

2.1 Agência de Interoperação, Difusão e Arquivo

Visão Geral A única implementação conhecida de uma interface Web de re-
gisto clínico electrónico visual é no Quadro de Registo de Procedimentos (QRP),
integrado na Agência de Interoperação, Difusão e Arquivo (AIDA). É uma pla-
taforma que resulta de parcerias de investigação entre a Universidade do Minho
e unidades de saúde Portuguesas e tem como objectivo promover o arquivo e a
difusão dos Meios Complementares de Diagnóstico (MCDTs) e a terapêutica ao
nível da unidade hospitalar, centro hospitalar ou unidade local de saúde, bem
como a consolidação electrónica às escalas regional e nacional [3].

O QRP, inserido no sistema de PCE da AIDA [4], é uma área de trabalho clí-
nica pioneira que possibilita aos profissionais de saúde registarem procedimentos
através de ferramentas gráficas no PCE de cada paciente. O QRP é composto por
duas acções principais: o índice de registos e vista de procedimentos. A primeira
contém um mapa de visualização dos registos efectuados até ao momento no pa-
ciente, sendo utilizado uma representação 3D de um modelo anatómico que varia
apenas com o sexo do paciente. Estes registos estão indicados através de um cír-
culo colocado na imagem anatómica directamente no local onde o procedimento
ocorreu. Também é incluído um resumo textual com o nome do procedimento e a

Processo Cĺınico Electrónico Visual INForum 2010 – 769

data de colocação de todos os registos efectuados, estando organizado por zonas
do corpo humano pré-definidas. Os registos podem ser retirados, alterando-se a
sua cor no mapa de visualização, e serem acompanhados de observações clínicas.
No acto de registo, quando uma zona do corpo é seleccionada, são apresenta-
dos todos os procedimentos disponíveis nessa área, juntamente com parâmetros
complementares, caso existam.

Limitações As principais limitações desta ferramenta estão relacionadas com
a biblioteca de imagens anatómicas disponível e com a possibilidade de se regis-
tarem apenas procedimentos.

A plataforma permite apenas carregar três modelos (Homem adulto, Mulher
adulta e Criança), limitando o registo de procedimentos a apenas uma área
muito abrangente. A única perspectiva existente impede que sejam registados
pormenores em locais mais minuciosos como, por exemplo, na retina de um
paciente, pois o círculo correspondente a este procedimento ocuparia toda a
área do olho representado.

Por outro lado, a possibilidade única de registar procedimentos, através de
um marcador circular de tamanho fixo, deixa de fora outro tipo de registos como
lesões e traumas, de igual modo importantes no contexto do diagnóstico clínico.
Esta característica não permite, por exemplo, que sejam demarcadas áreas com
polígonos irregulares, indicadores de feridas actuais ou lesões na pele.

2.2 Soluções Comerciais

Visão Geral Apenas uma solução comercial é conhecida, embora ainda em fase
de testes, e foi criada no Laboratório de Investigação da IBM Zurique. Trata-se
de um sistema que permite a consulta de registos médicos num ambiente 3D
através de uma aplicação de Desktop. Recorrendo aos modelos anatómicos do
corpo humano, alinhados de uma forma semelhante à da navegação geoespa-
cial como no Google Earth, este sistema foi apelidado pela IBM como Motor
de Mapeamento Simbólico e Anatómico. Os registos são mostrados através de
setas posicionadas num eixo tridimensional na representação do corpo humano,
indicando as áreas em que está disponível informação clínica. Ao seleccionarem
qualquer uma destas setas, os profissionais de saúde conseguem obter todo o tipo
de informação associada a essa área - registos textuais, resultados laboratoriais
e imagens de MCDTs. Também é possível efectuar pesquisas semânticas pois é
utilizada a nomenclatura médica sistematizada SNOMED para criar uma ponte
entre os conceitos gráficos e os documentos de texto não estruturados. Outras
funcionalidades incluem a possibilidade de inspecção de órgãos e dos sistemas
circulatório, muscular e nervoso, bem como novos mecanismos que procuram
dotar a aplicação de inteligência artificial. [5].

Limitações A plataforma da IBM integra unicamente dados de sistemas he-
terogéneos para os apresentar no sistema visual de forma agrupada e contextu-
alizada. Contudo, a introdução de dados no sistema continua a depender dos

770 INForum 2010 Rui Marinho, José Machado, António Abelha

habituais processos de registar dados clínicos, algo que não foi abordado por
esta solução. Tal como referido anteriormente, é essencial que as barreiras de
entrada nos sistemas digitais sejam diminuídas, começando principalmente pela
base fundamental do PCE.

É também de realçar que esta aplicação foi desenvolvida para ambiente de
Desktop. Mesmo que o recurso à tecnologia 3D possa ter estado na origem desta
opção, também esta pode ser utilizada em ambientes Web (através de WebGL).
Assim, esta solução não tira partido da ubiquidade da Web e das potencialidades
colaborativas que esta oferece, dificultando também o acesso multi-plataforma.

2.3 Outras Referências

Este conceito de PCE visual ainda se encontra, aparentemente, em fase em-
brionária. A actividade científica nesta área é muito residual e, quando existe,
geralmente remete para a integração de MCDTs no PCE através de sistemas
de Comunicação e Arquivamento de Imagens melhorados. Na área das aplica-
ções Web, a potencialidade das tecnologias de visualização também parece ter
maior impacto em Sistemas de Informação Geográfica, onde a sua utilização é
predominante.

3 Solução Proposta

3.1 Introdução

Nos últimos anos tem-se vindo a atravessar uma importante evolução na con-
vergência entre aplicações de Desktop e a Web, originando software conhecido
como Rich Internet Applications. Duas das mais importantes características des-
tas aplicações resumem-se a colaboração e interacção. Por colaboração quer-se
mencionar os aspectos sociais que permitem a colaboração entre pessoas e a
partilha de serviços e dados através da Web. Contudo, outro aspecto de igual
importância é a interacção. As novas tecnologias tornam possível a construção de
aplicações Web que se comportam de forma muito semelhante às aplicações de
Desktop, permitindo, por exemplo, a actualização de um elemento de interface
sem ser necessário recarregar toda a página de cada vez que algo muda. Estas
aplicações Web combinam princípios de interface e paradigmas de usabilidade,
em conjunto com tecnologia robusta, para transmitir a sensação de que se está
a executar uma aplicação de Desktop.

Apesar dos progressos na mais recente geração de browsers e na introdução de
novos standards como o HTML5, as soluções actuais para sistemas de informação
na Saúde ainda não tiram total partido das potencialidades da Web. Parca em
contextualização semântica e difícil de inserir, a informação no PCE permanece
parcialmente estruturada e difícil de interpretar. Os novos avanços na tecnologia
Web estão a proporcionar oportunidades incríveis na evolução da qualidade dos
cuidados de saúde prestados e no desenvolvimento de interfaces inovadoras que
agora se expandem para outra área - a da visualização.

Processo Cĺınico Electrónico Visual INForum 2010 – 771

A contextualização gráfica não permitirá apenas aumentar a qualidade do
diagnóstico por parte do profissional de saúde, mas também contribuirá para
melhorar a comunicação com o paciente, que poderá compreender melhor aquilo
que o afecta. Ao entender de forma clara a situação, o paciente também poderá
ter uma resposta mais adequada ao diagnóstico ou à terapêutica.

Estes conceitos serviram como base para o desenvolvimento das soluções já
analisadas, mas ainda foram pouco explorados. É necessário continuar a apostar
no desenvolvimento de novas interfaces Homem-Máquina que procurem ultra-
passar as limitações destas soluções e potencializem as tecnologias existentes.
Foi com este intuito que se desenvolveu o Rokee, nome de código para caso de
estudo que se apresenta de seguida.

3.2 Análise de Requisitos

O QRP da AIDA-PCE prova que a Web já fornece a tecnologia necessária para a
construção de interfaces que melhorem a interacção entre profissionais de saúde e
as aplicações de foro clínico, contribuindo para um aumento da qualidade da in-
formação registada. Com o Rokee procurou dar-se continuidade a este progresso,
mas sobretudo inovar em determinados aspectos para que estes profissionais se
possam concentrar mais na prática clínica e menos na tecnologia que os rodeia.
Para tal, o seguinte conjunto de requisitos foi proposto para que o Rokee acres-
centasse valor às outras soluções já estudas, considerando sempre que o ambiente
de desenvolvimento escolhido é a Web:

– Aceder rapidamente às principais informações relacionados com o paciente,
como dados pessoais, do processo e do Serviço em que se encontra internado.

– Navegar por data entre registos, recorrendo a lógica que permita gerir a
migração de dados do dia anterior para o dia actual.

– Aceder a quadro visual com capacidade para registar procedimentos, lesões
ou traumas, de acordo com a necessidade do acto clínico.

– Navegar em imagens de detalhe, agrupadas por categorias e contextualizadas
com o Serviço em que o paciente se encontre internado.

– Seleccionar ferramentas que variem de acordo com o tipo de registo preten-
dido.

– Enumerar todos os registos efectuados na imagem de trabalho principal e
em imagens secundárias, tendo estas maior nível de detalhe.

– Associar visualmente cada um dos registos gráficos à sua descrição textual
(legendagem).

– Submeter observações de acordo com o registo seleccionado na imagem de
trabalho e consultar o seu histórico.

– Possibilitar a retirada de registos de uma imagem com uma observação as-
sociada, caso seja pretendido.

3.3 Arquitectura do Sistema

O Rokee foi desenvolvido em PHP, com base no paradigmaModelo-Apresentação-
Controlador da Symfony Framework, e implementa uma arquitectura de comu-

772 INForum 2010 Rui Marinho, José Machado, António Abelha

nicação Cliente-Servidor, como demonstrado na Figura 1. A interface é apresen-
tada ao utilizador da primeira vez que é carregada (1) e sempre que é detectado
um evento (p.e. carregar no botão de selecção do tipo de registo) dispara-se um
pedido XMLHttpRequest (2) através de Java Script (jQuery) ao servidor (3).
Este é processado de acordo com a lógica em prática e são devolvidos os respec-
tivos dados da resposta (4). Geralmente este tipo de lógica implica um acesso
ao SGBD onde são gravados os dados, embora esta interacção não seja obri-
gatória. Uma função de callback do pedido XMLHttpRequest trata de analisar
esses dados e de determinar o que fazer com eles (5). Na Figura 1 é indicado um
conjunto de dados muito frequente neste tipo de resposta (HTML e CSS), pois
pode ser directamente injectado no DOM (HTML). Contudo, os dados podem
ser recebidos em XML e JSON, entre outros formatos, e depois processados da
forma mais adequada.

Cliente (Browser) Servidor

Troca de Dados

Servidor Web

SGDB

XMLHttpRequest

XMLHttpRequest
callback()

Interface do
Utilizador

Pedido
JavaScript

Dados HTML
& CSS

Pedido HTTP

Dados

1

5

2
3

4

Figura 1. Arquitectura Cliente-Servidor em funcionamento no Rokee.

Quando se pretende desenvolver uma aplicação Web com interacções com-
plexas e uma experiência rica para o utilizador numa vasta gama de browsers, a
tecnologia Flash da Adobe é frequentemente a escolhida. Contudo, quando se de-
fine como prioritário o acesso multi-plataforma, a acessibilidade e a ubiquidade
numa aplicação Web, a única solução possível é a utilização de standards Web
abertos que não exijam a instalação de software de terceiros. Por este motivo,
entre as diferentes tecnologias de visualização disponíveis na Web, a única que
satisfaz todos estes requisitos é o formato Scalable Vector Graphics (SVG), que
possibilita a visualização de gráficos vectoriais e animações em XML.

Processo Cĺınico Electrónico Visual INForum 2010 – 773

3.4 Funcionamento

A interface deste módulo está dividida numa área de registos e noutra de ob-
servações. Na primeira encontram-se as ferramentas de carácter genérico, como
a selecção de objectos, o desenho de linhas e a inserção de texto, e as clínicas,
que são utilizadas para adicionar registos, e que variam de acordo com o tipo
de registo seleccionado na área de trabalho (lesões, procedimentos ou traumas).
Uma área composta por três separadores, Processo, Registos e Imagens, mostra
a informação clínica relevante em cada um destes contextos. Na segunda área
os profissionais de saúde podem acrescentar e consultar observações aos registos
clínicos efectuados, bem como proceder à retirada destes últimos.

Quando se entra neste modo, todo a informação do paciente é recuperada da
base de dados para preencher o separador Processo. Do seu perfil obtêm-se os
dados biométricos e do processo os dados relativos ao serviço onde se encontra
internado e ao episódio presente.

A área de trabalho é composta uma imagem de fundo que é automaticamente
carregada quando se inicializa este módulo. Esta imagem é recuperada da base
de dados de acordo com o serviço onde o paciente se encontra. Sobre esta imagem
existe um quadro de desenho invisível no qual são registados os actos clínicos
no formato SVG, automaticamente gravados em base de dados, de acordo com
a ferramenta de desenho correspondente.

Cada uma das ferramentas pode ter parâmetros associados que permitem
acrescentar informação complementar relacionada com o acto clínico. Calibre,
Vias, Joules e Localização são exemplos de parâmetros disponíveis. O seu pre-
enchimento é opcional e pode ser efectuado no acto de colocação de um registo.
Podem ser posteriormente consultados e alterados, sendo apenas necessário se-
leccionar o registo clínico na imagem de trabalho no qual se deseja executar esta
acção.

Há um mapeamento interno em Javascript que depois relaciona uma ferra-
menta clínica com um objecto gráfico. Por exemplo, um Cateter Venoso Central
(procedimento) produzirá sempre um círculo de tamanho variável e cor amarela,
enquanto que uma ferida actual (lesão) permitirá construir um polígono irregu-
lar. De forma a facilitar o reconhecimento do tipo de registo em causa, todos os
procedimentos encontram-se mapeados a círculos de diferentes cores, conforme a
categoria em que se encontram, e as lesões e traumas a polígonos, também com
cores distintas..

O reconhecimento programático das acções que o profissional de saúde está a
executar na plataforma (eventos) permite construir uma interface que responda
naturalmente às suas acções, de forma imediata e não intrusiva.

Registos A componente de listagem no separador Registos é constituída por
uma representação textual de todos os registos disponíveis num determinado
contexto. Encontra-se dividido em quatro painéis distintos: registos na imagem
actual (a que está a ser mostrada na área de trabalho), em imagens pertencentes
à mesma categoria, noutras categorias e em imagens, serviços e/ou episódios
diferentes.

774 INForum 2010 Rui Marinho, José Machado, António Abelha

Cada painel contém um título com indicação sobre a categoria a que esses
registos pertencem (p.e. Imagem Actual) e o número total de registos existentes
nesse mesmo tipo. Adicionalmente, na área que serve de contentor aos registos
textuais, a ordem que foram adicionados, o título da ferramenta utilizada e a
data da sua colocação. Caso o registo tenha sido retirado, também é apresentada
a data de remoção a vermelho. Todos os parâmetros também são listados se
tiverem sido preenchidos.

Para terminar, a listagem de registos suporta ainda um mecanismo de over-
flow que permite a introdução contínua de novos registos textuais sem aumentar
a área ocupada pelo contentor principal. Em comparação com as habituações
barras de navegação, este sistema contempla eventos especiais de arrastar e lar-
gar, promovendo a adaptação a dispositivos multi-toque e facilitando o acesso a
conteúdos extensos.

Esta área é actualizada sempre que o contexto da imagem actual é alterado
mediante o uso de pedidos assíncronos.

Imagens Já foi referido o comportamento da imagem na área de trabalho
quando o módulo de edição é inicializado. Contudo, uma das grandes vantagens
do Rokee face às limitações das outras soluções estudadas é permitir o registo
de informação clínica em imagens de detalhe. Esta funcionalidade só é viável se
a estrutura de imagens associada a esse serviço for correctamente configurada
através da interface administrativa, como detalhado mais adiante. Não obstante,
o separador Imagens possibilita a navegação em níveis de detalhe, podendo-se
ir diminuindo sucessivamente a área abrangida, desde que haja suporte imagio-
lógico correspondente na biblioteca anatómica carregada no sistema.

Por exemplo, considerando o serviço de Oftalmologia (nível 0), é possível
ter uma visão global da face quando se inicia o módulo de edição, sendo esta a
imagem de trabalho por omissão. No entanto, no separador Imagens são mostra-
das categorias anatómicas dentro de Oftalmologia, como Olho (nível 1), Retina
(nível 2) e Mácula (nível 2). Se houver necessidade de registar dados clínicos
na Retina, pode-se simplesmente seleccionar uma das imagens disponíveis nessa
sub-categoria.

A ideia é permitir um constante aumento do nível de detalhe à medida que se
vai caminhando na árvore anatómica associada a um serviço. Assim promove-se
o registo rigoroso e de qualidade de informação clínica, por intermédio de uma
interface simples de usar.

Sempre que uma categoria de imagens é seleccionada são automaticamente
obtidas as imagens associadas a essa categoria, bem como as que pertençam
a sub-categorias de primeiro nível (filhos). Desta forma o profissional de saúde
poderá ter sempre a noção se pretende saltar para o nível de detalhe seguinte
ou se está satisfeito com o detalhe apresentado pela actual categoria.

Observações Nas mais variadas situações, um profissional de saúde tem ne-
cessidade de complementar o registo de um acto clínico com observações. Pode
anexar, por isso, notas a um registo clínico, mediante uma interface que envolve

Processo Cĺınico Electrónico Visual INForum 2010 – 775

apenas a introdução do conteúdo da mensagem. A área do histórico de obser-
vações adjacente é automaticamente actualizada após o correcto envio da nota
clínica e sempre que se selecciona um registo na área de trabalho.

Administração Foi também implementada uma interface administrativa para
gerir a biblioteca anatómica em utilização no sistema. Os mecanismos imple-
mentados no âmbito da gestão de imagens permitem que esta plataforma seja
utilizada em vários Serviços na mesma unidade de saúde, com apenas uma base
de instalação. Para tal é necessário que o modelo das categorias de imagens su-
porte múltiplas árvores aninhadas, em que cada uma delas corresponde a um
Serviço da unidade de saúde.

Dentro de cada categoria (ou Serviço), é possível ir construindo uma árvore
com sub-categorias de estruturas anatómicas, de acordo com a organização do
grupo clínico de cada um desses serviços. A grande vantagem deste sistema
é que não requer que seja seguida de forma rígida uma estrutura anatómica
pré-definida, que pode não satisfazer todos os profissionais de saúde. Todas as
estruturas são viáveis e aceites pela plataforma.

A interface administrativa que dá corpo a estes mecanismos foi desenvolvida
com apenas um propósito - o de organizar imagens de forma idêntica a um
gestor de ficheiros num sistema operativo, através da técnica de drag-n-drop. A
primeira acção consiste na activação do serviço na unidade hospitalar, para que
possa ser criada uma raiz dedicada a este serviço. De seguida é necessário gerir
a árvore de categorias e sub-categorias dentro desse serviço, isto é, a estrutura
anatómica pretendida pela equipa de profissionais de saúde. Cada categoria pode
ser renomeada ou apagada caso tenham havido enganos, e arrastada e largada
entre diferentes posições na árvore.

Após a estrutura estar concluída chega o momento de gerir as imagens anató-
micas associadas a esta. Depois de se entrar no serviço pretendido, há três áreas
de merecida importância: a navegação na árvore, a área da estrutura seleccio-
nada e a área da galeria. Através da navegação na árvore é possível ir associando
imagens, bastando arrastar imagens da área da galeria para a área da estrutura
escolhida. O separador Imagens tira de imediato partido destas alterações, sem
ser necessária mais nenhuma intervenção por parte do profissional de saúde.

4 Conclusão e Trabalhos Futuros

Neste artigo foi abordada a problemática da introdução de dados estruturados
no âmbito do PCE e apresentada uma solução possível para diminuir a comple-
xidade que envolve a captação deste tipo de informação. O protótipo daí resul-
tante - Rokee - provou ser uma ferramenta capaz de responder a este desafio,
recorrendo unicamente a tecnologia Web aberta, ubíqua e multi-plataforma. A
utilização de gráficos vectoriais nativos na Web garante o seu correcto funciona-
mento em qualquer dispositivo com acesso a um browser, independentemente de
ser um Desktop ou um equipamento móvel. Esta plataforma de trabalho, ainda

776 INForum 2010 Rui Marinho, José Machado, António Abelha

numa fase de protótipo, abre portas à expansão de muitas outras áreas do conhe-
cimento clínico à era das interfaces ditas naturais. Será interessante testar este
protótipo num ambiente clínico real, com uma biblioteca de imagens adequada,
particularmente em dois cenários: como evolução da solução QRP analisada no
âmbito da AIDA e como uma nova plataforma noutro sistema diferente.

Espera-se que, no futuro, o Rokee venha a tirar ainda mais partido das no-
vas tecnologias do standard HTML5, efectuando caching local de imagens da
biblioteca anatómica, apresentando em tempo real registos colocados por outros
profissionais de saúde e contextualizando a interface conforme a localização física
do paciente. Ao nível das interfaces multi-toque, também se pretende expandir
o suporte a todo o fluxo de trabalho para que funcione de forma transparente na
nova geração de equipamentos móveis (como iOS, Android e Windows Mobile).
O suporte para gráficos 3D na Web começa também a ganhar forma, de modo
que poderão ser implementados mecanismos de visualização que tirem partido
da modelação a 3D, facilitando ainda mais o registo de informação clínica de
detalhe.

Para terminar, a longo prazo é certo que haverá uma convergência entre todos
os sistemas de uma unidade de saúde. A representação de modelos anatómicos
a duas ou três dimensões é um enorme passo face às ilustrações em caneta e pa-
pel, mas o futuro permitirá integrar de forma transparente imagens resultantes
de meios imagiológicos (como ressonâncias magnéticas, por exemplo) directa-
mente nesta plataforma. Não serão então representações anatómicas, mas sim a
verdadeira anatomia de um paciente.

Referências

[1] J. S. Ash et al. «Types of unintended consequences related to computerized
provider order entry». In: Journal of the American Medical Informatics
Association 4.13 (2006), pp. 547–556.

[2] J. Brender, C. Nohr e P. McNair. «Research needs and priorities in health
informatics». In: International Journal of Medical Informatics III.4 (2000),
pp. 257–289.

[3] Centro de Competência em Informática Médica do Departamento de In-
formática da Universidade do Minho. Suite de Produtos AIDA: Poster
AIDA. 2009. url: http://gia1.di.uminho.pt/aida/poster_aida_
files/slide0003.htm (acesso em 13/06/2010).

[4] Centro de Competência em Informática Médica do Departamento de In-
formática da Universidade do Minho. Suite de Produtos AIDA: Poster
AIDA-PCE. 2009. url: http://gia1.di.uminho.pt/aida/poster_pce_
files/slide0003.htm (acesso em 13/06/2010).

[5] Robert N. Charette. Visualizing Electronic Health Records With
"Google-Earth for the Body". 2009. url: http : / / spectrum . ieee .
org / biomedical / diagnostics / visualizing - electronic - health -
records-with-googleearth-for-the-body (acesso em 14/06/2010).

Processo Cĺınico Electrónico Visual INForum 2010 – 777

[6] R. H. Dykstra et al. «The extent and importance of unintended conse-
quences related to computerized provider order entry». In: Journal of the
American Medical Informatics Association 4.13 (2007), pp. 415–423.

[7] P. J. Edwards et al. «Evaluating usability of a commercial electronic health
record: a case study». In: International Journal Human-Computer Studies
66 (2008), pp. 718–728.

[8] European Commission. Connected Health: Quality and Safety for Euro-
pean Citizens. 2006. url: http://ec.europa.eu/information_society/
newsroom/cf/itemdetail.cfm?item_id=2788 (acesso em 13/06/2010).

[9] A.M. van Ginneken. «The computerized patient record: balancing effort
and benefit». In: International Journal of Medical Informatics II.1 (2002),
pp. 97–119.

[10] J. Grimson. «Delivering the electronic healthcare record for the 21st
century». In: International Journal of Medical Informatics II.64 (2001),
pp. 111–127.

[11] P. Hartzband e J. Groopman. «Off the record: avoiding the pitfalls of
going electronic». In: The New England Journal of Medicine 16.358 (2008),
pp. 1656–1658.

778 INForum 2010 Rui Marinho, José Machado, António Abelha

Sistema de Resolução Online de Conflito para Partilhas

de bens – Divórcios e Heranças

Ana Café1, Davide Carneiro2, Paulo Novais2 and Francisco Andrade3

1 Universidade Católica de Angola, Faculdade de Engenharia Informática, Luanda, Angola
aclaudia.cafe@gmail.com

2 Departamento de Informática, Universidade do Minho, Braga, Portugal
 {dcarneiro, pjon}@di.uminho.pt

3 Escola de Direito, Universidade do Minho, Braga, Portugal
fandrade@direito.uminho.pt

Abstract. Em diversos sectores da sociedade, a resolução de litígios pelos
tribunais tem se revelado menos viável, mais morosa e custosa. Para contornar
algumas das imperfeições dos sistemas jurídicos convencionais surgiram os
processos de resolução alternativas de conflito (ADR). Devido aos avanços
tecnológicos, o surgimento da Internet e com isso também novas formas de
conflitos, a ADR teve necessidade de adaptar e melhorar os seus processos a
fim de dar respostas às mudanças provocadas. Assim, sistemas capazes de
suportar diferentes abordagens da ADR foram criados passando a denominar-se
sistemas de resolução online de conflitos (ODR). A negociação assistida é uma
das abordagens da ODR e é utilizada em várias situações de conflitos. O
sistema UMCourt Partilha tem na base esta abordagem e foi desenvolvido para
auxiliar situações de partilhas de bens em caso de divórcios e heranças
contemplando conceitos da lei, técnicas de inteligência artificial e teorias de
jogo.

1 Introdução

Cada pessoa reage de maneira diferente diante de um conflito. Durante muito tempo,
a única solução considerada era levar o caso a tribunal. Assim, existe um demandante
(pessoa que se sente lesada) que apresenta queixa ao tribunal contra um réu dando
início ao processo da litigação. As partes apresentam as suas circunstâncias factuais a
um juiz ou júri que deverá decidir a sentença para o caso. No entanto, a litigação
deveria ser considerada como último recurso para a resolução de conflitos tendo em
conta as suas características menos favoráveis. A Nationwide Academy for Dispute
Resolution (UK) mencionou, a provável experiencia intimidante para as partes, o
dispêndio do tempo com os encontros entre as partes e seus advogados, o quão
afectada uma relação pode ficar – principalmente pelo seu aspecto ganha/perde, o
quão caro este género de processo pode ser – tendo em conta os custos judicias e os
honorários, como sendo algumas delas. Nos finais do século XX, processos mais
amigáveis de resolução de conflitos passaram a ser considerados – os chamados

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 779–790

processos de Resolução Alternativa de Conflitos (ADR2). A ADR proporciona
“alternativa” aos tribunais para a resolução de conflitos com processos que não fazem
parte dos sistemas judiciais governamentais. No entanto, segundo [1] houve uma
evolução no conceito da ADR. Ela deixa de ser simplesmente uma técnica para
resolução de conflitos sem a litigação passando a ser uma técnica apropriada no
contexto de resolução de conflitos no geral. Com esta mudança, a litigação poderia
passar a ser considerada como um dos muitos processos de resolução de conflitos. Os
principais processos da ADR são a mediação, a negociação e a arbitragem.

Posteriormente, a criação da World Wide Web (WWW) causou impacto na
sociedade provocando mudanças de comportamentos quanto à execução de tarefas em
diversos sectores. Especificamente, as maneiras de celebrar contractos progrediram
até ao ponto em que a presença física deixou de ser essencial sendo compensada por
meios tecnológicos. Destes novos comportamentos também advieram novos géneros
de conflitos. Portanto, a ADR precisou de suporte tecnológico para suas abordagens
legais, tendo também em conta os novos casos que surgiram com a evolução
tecnológica. Para dar respostas a estas abordagens, têm vindo a ser desenvolvidos
sistemas focados em ajudar as partes a resolver os seus conflitos através de novos
meios tecnológicos. Estes sistemas de suporte à ADR são denominados sistemas de
Resolução Online de Conflitos (ODR3). Neste sentido, a Inteligência Artificial (AI4)
revela-se bastante interessante a explorar quando associada à ODR, por almejar a
criação de sistemas capazes de optimizar processos complexos para resolução de
conflitos, o que requer consideráveis engenhos e perícia em vários assuntos.

Neste artigo apresentamos uma visão geral da ODR e suas vantagens. De seguida
apresentamos o algoritmo Adjusted Winner, algoritmo este que serve de base para o
algoritmo de partilha apresentado neste protótipo assim como a nossa adaptação e
definição para uso do Raciocínio baseado em casos.

2 Resolução de Conflitos em linha

A ODR tem sido vista como a abordagem da ADR que se apoia nos meios
tecnológicos para facilitar a resolução de conflitos, ou ainda, considerando a
componente "on-line", é vista como um ambiente virtual no qual as partes possam
reunir-se para resolver suas diferenças. Porém, a ODR foi além de permitir o simples
suporte aos processos da ADR. Não se restringiu ao suporte da arbitragem,
negociação e mediação convencionais, mas também explorou processos além do alvo
da ADR (nomeadamente, a negociação automatizada ou blind-bidding

5)[2]. A visão
usual da ODR como sendo o equivalente tecnológico da ADR também tem mudado
com a criação de novos processos baseados em ambientes Web.

Segundo [8], a razão pela qual as pessoas optam pelos métodos alternativos de
resolução de conflitos, é a possibilidade de obter melhores resultados dos que se
pudessem obter sem eles. A definição dos limites aceitáveis num processo, ajuda as

2 Do Inglês Alternative Dispute Resolution
3 Do Inglês Online Dispute Resolution
4 Do Inglês Artificial Intelligence
5 Do Inglês licitação cega

780 INForum 2010 Ana Café, Davide Carneiro, Paulo Novais, Francisco Andrade

partes a definir suas prioridades e interesses básicos. De acordo com esta linha de
pensamento podemos dizer que para um melhor suporte à resolução de conflitos, é
importante que este género de sistema forneça informações sob duas perspectivas: (1)
Ajude a preservar a parte de aceitar um acordo que deveria rejeitar; (2) Ajude a
explorar as vantagens para chegar a um acordo que melhor o favorece. Sendo assim,
principalmente nas negociações baseadas em interesses, as partes precisam saber qual
a sua BATNA – Melhor Alternativa para um Acordo Negociado (Best Alternative to a
Negotiated Agreement) e WATNA – Pior Alternativa para um Acordo Negociado
(Worst Alternative to a Negotiated Agreement) [13]. Isso ajudará as partes a ter
melhor percepção sobre os possíveis acordos que surgirem, no que toca aceitá-los ou
recusá-los. Isto é, por um lado tomando conhecimento de sua BATNA, cada parte fica
“mais protegida contra acordos que devam ser rejeitados" estando em melhores
condições para "alcançar um acordo que melhor satisfaz seus interesses" [14]. Por
outro lado, conhecer a sua WATNA permite às partes ter noção dos piores resultados
que poderiam advir de um confronto judicial [13], reduzindo expectativas
excessivamente optimistas.

Existem hoje diferentes géneros de sistemas de ODR. [4] classifica os sistemas de
ODR em duas categorias: primeira e segunda geração. A primeira geração é
caracterizada por sistemas sem autonomia quanto à resolução dos processos. O
homem continua a ter um papel importante neste género de sistema onde a tecnologia
actua apenas como uma ferramenta de suporte à decisão, estabelecendo a
comunicação entre as partes ou automatizando tarefas simples [3]. Por exemplo, o
CyberSettle6 é um sistema de resolução de conflito automatizado que permite às
partes resolver os seus conflitos de maneira rápida e confidencial.

A segunda geração é a expectativa dos novos sistemas ODR que terão como meta a
resolução de conflitos de forma autónoma. Estes sistemas deixam de ser meras
ferramentas e passam a fazer análise de casos e definição de estratégias e soluções. O
objectivo é o de reduzir a intervenção humana na resolução de conflitos [4].
Brevemente estes sistemas poderão actuar como agentes autónomos. Claramente este
género de sistema necessita de uma componente “inteligente” e conhecedora das áreas
de conflitos para atingir este requisito. Assim, a inteligência artificial é uma das áreas
de conhecimento que tem sido explorada e já são visíveis resultados neste sentido.
Tomando como exemplo a área do direito de família, é possível identificar os
seguintes sistemas: Family_Winner [10] que utiliza teoria de jogos e heurísticas;
Expertius [5] que combina inteligência artificial e leis; e Smartsettle [3] que é um
sistema de negociação online.

3 UMCourt

UMCourt é uma plataforma para ODR que está a ser desenvolvida na Universidade
do Minho no contexto do projecto TIARAC (Telematics and Artificial Intelligence in

Alternative Conflict Resolution). O principal objectivo do projecto é o de analisar o

6 CyberSettle blind bidding system é promovido e comercialmente disponível em
www.cybersettle.com. O Cybersettle foi integrado no estado de arte dos sistemas disponíveis na
web em 1998.

Sistema de Resolução Online de Conflito ... INForum 2010 – 781

papel que as técnicas da Inteligência Artificial, mais particularmente as técnicas
baseadas em agentes, podem ter no domínio da ODR com o objectivo de tornar o
processo mais rápido, simples e proveitoso para as partes. Assim, UMCourt
numa arquitectura na qual serviços orientados ao ODR
usando como suporte as ferramentas des
desenvolvidas instâncias do UMCourt no domínio do direito laboral
e da família. Neste artigo vamos focar
direito da família e das sucessões

A partilha dos bens comuns consiste no acto através do qual um património deixa
de ser indivisível [6]. A partilha conjugal consiste na atribuição definitiva aos
cônjuges de sua meação dos bens comuns, enquanto
atribuição definitiva dos bens do finado aos seus herdeiros por lei (sucessão legitima)
ou por acto de última vontade (sucessão testamentária)
conflito quando existe desacordo entre as part
um cabe. O objectivo desta instância
dos tribunais, recorrendo à ODR
para obter uma partilha justa, equitativa e sati
algoritmo Adjusted Winner (AW)
[9] que consiste na divisão de bens entre duas partes da maneira mais justa possível.

3.1 Arquitectura do UMCourt

A estrutura do UMCourt Partilhas está organizada com três componentes principais
(fig. 1). O componente AWV (Adjusted Winner by Value)
algoritmo para o processamento da proposta para a partilha de bens. Este componente
é responsável pela determinação da BATNA e WATNA de cada parte
específico. Os restantes dois componentes, CBR
(Argumentation) assentam na arquitectura
UMCourt (figura 2).

Fig.

Esta arquitectura é composta por uma série de agentes que disponibilizam serviços
específicos que podem ser usados independentemente ou em sequências específicas
bem definidas para implementar comp
vamos apenas fazer uma breve descrição desta arquitectura uma vez que esta se

que as técnicas da Inteligência Artificial, mais particularmente as técnicas
, podem ter no domínio da ODR com o objectivo de tornar o

processo mais rápido, simples e proveitoso para as partes. Assim, UMCourt resulta
numa arquitectura na qual serviços orientados ao ODR podem ser implementados,
usando como suporte as ferramentas desenvolvidas no âmbito do projecto. Estão a ser
desenvolvidas instâncias do UMCourt no domínio do direito laboral, direito comercial

este artigo vamos focar-nos no trabalho desenvolvido no domínio do
direito da família e das sucessões, mais especificamente na partilha de bens.

A partilha dos bens comuns consiste no acto através do qual um património deixa
A partilha conjugal consiste na atribuição definitiva aos

cônjuges de sua meação dos bens comuns, enquanto a partilha hereditária consiste na
atribuição definitiva dos bens do finado aos seus herdeiros por lei (sucessão legitima)
ou por acto de última vontade (sucessão testamentária). A partilha de bens é fonte de
conflito quando existe desacordo entre as partes envolvidas sobre a metade que a cada

O objectivo desta instância é o de dar suporte à definição das partilhas fora
à ODR, baseando-se em técnicas de AI e teoria de jogos

para obter uma partilha justa, equitativa e satisfatória. Para tal foi explorado o
(AW) desenvolvido por Steven J. Brams e Alan D. Taylor

que consiste na divisão de bens entre duas partes da maneira mais justa possível.

Arquitectura do UMCourt

A estrutura do UMCourt Partilhas está organizada com três componentes principais
(fig. 1). O componente AWV (Adjusted Winner by Value) contém os mecanismos e o
algoritmo para o processamento da proposta para a partilha de bens. Este componente

l pela determinação da BATNA e WATNA de cada parte, neste contexto
Os restantes dois componentes, CBR (Case Based Reasoning) e ARG

assentam na arquitectura de agentes previamente definida do

Fig. 1. Estrutura do UMCourt Partilhas

Esta arquitectura é composta por uma série de agentes que disponibilizam serviços
específicos que podem ser usados independentemente ou em sequências específicas
bem definidas para implementar comportamentos complexos. No âmbito deste artigo
vamos apenas fazer uma breve descrição desta arquitectura uma vez que esta se

que as técnicas da Inteligência Artificial, mais particularmente as técnicas
, podem ter no domínio da ODR com o objectivo de tornar o

resulta
ser implementados,

envolvidas no âmbito do projecto. Estão a ser
, direito comercial

o trabalho desenvolvido no domínio do

A partilha dos bens comuns consiste no acto através do qual um património deixa
A partilha conjugal consiste na atribuição definitiva aos

hereditária consiste na
atribuição definitiva dos bens do finado aos seus herdeiros por lei (sucessão legitima)

. A partilha de bens é fonte de
es envolvidas sobre a metade que a cada

fora
AI e teoria de jogos

oi explorado o
Steven J. Brams e Alan D. Taylor

A estrutura do UMCourt Partilhas está organizada com três componentes principais
os mecanismos e o

algoritmo para o processamento da proposta para a partilha de bens. Este componente
, neste contexto

e ARG
previamente definida do

Esta arquitectura é composta por uma série de agentes que disponibilizam serviços
específicos que podem ser usados independentemente ou em sequências específicas

ortamentos complexos. No âmbito deste artigo
vamos apenas fazer uma breve descrição desta arquitectura uma vez que esta se

782 INForum 2010 Ana Café, Davide Carneiro, Paulo Novais, Francisco Andrade

encontra definida em [13]. Os agentes da arquitectura encontram-se organizados em
dois grupos principais: os agentes primários e os agentes secundários. Os agentes
primários são caracterizados por ter uma maior autonomia e maiores capacidades de
comunicação. Os agentes secundários são apenas responsáveis por suportar a
execução dos agentes primários através da prestação de serviços básicos.

Neste sentido, os agentes secundários implementam serviços como a ligação à base
de casos, a leitura de casos a partir de ficheiros, a selecção de casos similares, regras
que regem o comportamento dos agentes, interligação com agentes externos, entre
outros. Estes serviços permitem que os agentes primários implementem
comportamentos complexos, nomeadamente o processo de CBR. São também estes
serviços genéricos desenvolvidos no âmbito do UMCourt que suportam o
funcionamento do UMCourt partilhas, aumentando a reutilização de funcionalidades e
simplificando o desenvolvimento.

Fig. 2. A arquitectura de base do UMCourt. Os agentes centrais constituem os agentes
primários enquanto os restantes constituem agentes secundários.

3.2 Adjusted Winner

O algoritmo Adjusted Winner permite a divisão de um número de itens entre duas
partes em conflito. AW utiliza técnicas de teorias de jogos e chega a ilustrar o
equilíbrio de Nash. Este algoritmo utiliza a atribuição “secreta” de pontos pelos itens
a dividir pelas partes para a divisão dos mesmos. Cada parte deverá alocar um total de
100 pontos pelos itens em causa, o que definirá o seu nível de preferência entre os
itens. Os pontos das preferências são de seguida submetidos a uma manipulação
matemática que determina a distribuição dos itens pelas partes. Este processo pode ser
considerado livre de inveja porque cada parte recebe a meação dos itens de acordo
com as preferências atribuídas, i.e. eles recebem os itens ou a metade mais “valiosa” –
de acordo com a sua própria avaliação – o que os deixa satisfeitos com a sua metade e
não provoca a cobiça para a metade do outro. A divisão é também equitativa porque

Sistema de Resolução Online de Conflito ... INForum 2010 – 783

cada parte recebe pelo menos 50% dos itens desejados que em alguns casos
conseguem mais [7] e elas acreditam que a sua metade vale o mesmo que a da outra
parte (tendo em conta os pontos atribuídos).

Considerando o contexto do nosso sistema, vamos exemplificar a partilha de bem
para um divórcio utilizando o AW a fim explicar a sua execução. Supondo que Jo e
Berta se estão a separar e precisam definir a partilha de bens. O primeiro passo é a
definição dos itens ou bens em causa. A seguir cada parte irá distribuir os 100 pontos
de preferência entre os bens de acordo com a importância ou valor que cada um
atribui aos bens. Suponhamos que a atribuição dos pontos foi feita como apresentado
na tabela 1.

Tabela 1. Exemplo da distribuição de pontos

Itens Jo Bertha
Vivenda 45 30
Apartamento 20 35
Carro 15 20
Títulos bancários 20 15
Total 100 100

A execução do AW é dividida em duas fases: a fase do vencedor e a fase do

ajustamento. A fase do vencedor consiste na alocação do item à parte que lhe atribuiu
maior pontuação. Para o nosso caso, nesta fase, a partilha será definida pelo seguinte:
Jo ficará com a vivenda e os títulos bancários e Bertha ficará com o apartamento e o
carro, totalizando 65 e 55 pontos respectivamente. Desta forma Jo tem mais pontos
que Bertha. Quando os pontos adquiridos não são equitativos, existe a necessidade de
se transferirem os pontos excedentes da parte que os tem para a parte que deficitária
em pontos a fim de equiparar a divisão em pontos. A transferência é feita item a item,
o quanto for necessário, até se obter uma divisão equitativa. Esta é a chamada fase do
ajustamento. Considera-se o quociente vencedor-perdedor (nº de ponto atribuídos para
o item pelo vencedor/ nº de ponto atribuídos para o item pelo por vencedor) para
definir a ordem dos itens pela qual os pontos serão transferidos. A ordem é definida
pelos quocientes em ordem crescente, indicando os menores valores os itens mais
valorizados ou desejado sendo por estes que a transferência deve começar. Assim o
quociente da casa é de 45/30 = 1.5 e o dos títulos é de 20/15 = 1.33, e a transferência
começa então pelos títulos. A definição da percentagem dos títulos transferidos é feita
pelo seguinte:

45 + 20p = 35 + 20 + 15(1- p)
45 + 20p = 70 – 15p
p = 25/35 ≈ 0.714

Assim, Jo ficará com a casa e 71.4% dos títulos bancários o que faz um total de
59.285 pontos (45 + [20 * 0.714]), e Bertha ficará com o apartamento, o carro e
receberá 28.5% dos títulos o que faz um total de 59.285 pontos (35 + 20 + [15 *
0.285]). Podemos assim ver com este exemplo que as partes vão recebendo os itens de
acordo com suas preferências até que totalizam o mesmo número de pontos. Segundo
[7], AW é eficiente por não haver uma melhor divisão para as partes, i.e. cada um
recebe uma metade acima do esperado (59.285 pontos > 50 pontos) e é equitativa
porque cada uma delas recebe exactamente o mesmo numero de pontos.

784 INForum 2010 Ana Café, Davide Carneiro, Paulo Novais, Francisco Andrade

3.3 Adjusted Winner by Value – Algoritmo para UMCourt Partilhas

UMCourt Partilhas é o protótipo de um sistema de negociação assistida que está a ser
desenvolvido para suportar a partilha de bens em casos de divórcios e heranças. O
processo utilizado para definir a partilha baseia-se essencialmente no AW e o
objectivo é proporcionar uma divisão ainda mais justa. AW é facilmente enquadrado
em situações de divórcio por ser uma partilha entre duas entidades. No entanto seu
uso para casos de herança já não foi tão linear, visto poder se tratar de uma partilha
com duas ou mais partes e nem todas com quotas iguais.

Considerando o resultado acima mencionado, a partilha parece justa por ter sido
medida pelos pontos. No entanto, nada garante que as partes são totalmente honestas
no acto da alocação de seus pontos. Por exemplo, se uma das partes fizer a alocação
considerando o valor monetário dos itens, i.e. atribuindo mais pontos aos itens mais
caros e a outra parte não ter noção dos preços dos mesmos ou simplesmente optar
pelo critério preferencial (desconhecendo a má vontade da outra parte), em termos
monetários esta parte sai a perder. Analisando o exemplo anterior, a divisão aparenta
ser de facto justa, porém se for chamado um avaliador para definir o valor monetário
dos itens e a divisão ser analisada numa perspectiva monetária, a nossa conclusão
pode ser bem diferente. Assumindo que o valor definido de cada item foi: vivenda –
100000, apartamento – 500000, Carro – 30000 e títulos bancários – 70000. De acordo
com os itens e respectivas porções recebidas anteriormente, fez-se uma analogia do
valor monetário que cada parte irá receber. Assim, Jo que ficou com a totalidade da
casa e 71.4% dos títulos bancários, tinha bens num valor aproximado a 149980 e que
ficou com a totalidade do apartamento e do carro e 28.5% dos títulos bancários, tinha
bens num valor aproximado a 549950. Se pelos pontos a divisão parecia equitativa,
considerando o valor monetário dos bens, esta não parece mais.

Para resolver este problema de divisão justa considerando a vertente monetária
fizemos algumas alterações ao AW adicionando a componente do valor monetário
para cada item, fazendo as manipulações matemáticas nesta vertente. Segue-se uma
descrição formal do algoritmo Adjusted Winner by Value.

3.3.1 Adjusted Winner by Value para divórcios

Definição do problema. Seja I = {i1, i2, …, 1n} o conjunto de n itens com os
respectivos valores V={v1, v2, …, vn} que se pretende dividir pelos cônjuges
H(usband) e W(ife). H e W fazem a distribuição dos 100 pontos de preferência por
cada item i. Assim teremos:

 �� � ∑ ��� � 100 e 	� � ∑ 	�� � 100 onde i Є {1, 2, …, n} (1)

Onde WP e HP representam os pontos atribuídos por W e H respectivamente.

Fase do vencedor. Nesta fase o procedimento é semelhante ao AW. A atribuição de
cada item é feita à parte que maior pontuação tiver sobre o item.

Se 	�� � ��� então 	�� � � senão ��� � � (2)

Sistema de Resolução Online de Conflito ... INForum 2010 – 785

Onde ∑ 	���
��� e ∑ ����

��� representam o valor monetário alocado pelas partes W
e H respectivamente, de acordo com os itens recebidos. Para todo item i não recebido,
	�� e ��� recebem o valor 0.

Fase do ajustamento. Ao contrário de como se procede no AW, a equidade da
partilha não é determinada pelos pontos, mas pelos valores monetários dos itens.
Assim, depois da alocação dos itens pelas partes, comparam-se os valores monetários
que cada um recebeu pela partilha mediante os pontos. Caso o total monetário de
ambas partes for igual, consideramos divisão equitativa, caso contrário deve-se
proceder a transferência dos valores excedentes da parte avantajada para a parte
deficitária. É importante referir que esta transferência é feita mediante as preferências
de ambas partes, i.e. é definido o conjunto Q dos quocientes vencedor-perdedor
através dos quais será determinada a ordem dos itens transferidos. Assim teremos:

Se ∑ 	�� � ∑ ��� � Partilha equitativa

Senão se 	� � �� então �� � 	��/��� senão �� � ���/	�� (3)

 Ordena-se o conjunto Q por ordem crescente e colocam-se os respectivos itens i
no conjunto O para todo �� � 1. Assim os valores dos itens de O vão sendo
transferidos para a parte até que se igualem os valores de ambas partes.

Utilizando o AW by value no exemplo acima mencionado, a partilha ficará como se
segue: Jo ficará com a totalidade da vivenda, do carro e dos títulos e deverá receber
30% do apartamento. Bertha receberá 70% do apartamento. Cada parte fica assim
com bens avaliados em 350000, para uma divisão 50-50. De acordo com os pontos de
preferência e o valor monetário esta partilha pode ser considerada justa.

3.3.2 Adjusted Winner by Value para cenários de heranças

Para garantir uma partilha justa e equitativa com o AW by value em casos de
herança o procedimento é o mesmo tendo a necessidade de adaptar a partilha pelo
número de pessoas e ter em conta as quotas da herança que cabe a cada herdeiro.

Assim na fase do vencedor, o item é atribuído ao herdeiro que maior preferência
(pontos) exprimir pelo item. No entanto, por ser uma partilha com duas ou mais
partes, algumas regras (apoiada na lei) devem ser inseridas para evitar um resultado
que provoque inveja. Assim, antes de se começar a distribuição inicial dos bens,
devem ser definidos os herdeiros com atribuição de preferência sobre os itens (art.
2103º-A,B e C) e com bens doados por colação (art. 2104º e 2115º). A estes, é-lhes
atribuído um grau de primazia sobre o item em causa. No acto da atribuição dos itens
às partes, se houver empate nos pontos, o item vai para o herdeiro com maior
primazia. Se nenhum dos herdeiros empatados tiver primazia sobre o item, os
herdeiros envolvidos no empate perdem o direito sobre ele que passa para o herdeiro
com a maior pontuação logo a seguir. O critério da primazia é definido pelos
herdeiros, i.e. herdeiros com primazia legal podem solicitar que a atribuição inicial
dos itens seja determinada preferencialmente pelos pontos ou directamente pela
primazia.

Na fase do ajustamento, verifica-se se cada herdeiro tem o valor monetário de itens
equivalente a sua quota. A transferência dos excessos começará pelo herdeiro com
maior excedente em relação à sua quota, para o herdeiro com o menor quociente

786 INForum 2010 Ana Café, Davide Carneiro, Paulo Novais, Francisco Andrade

vencedor-perdedor do item em causa em relação aos outros herdeiros, com défice na
sua quota.

4 Demonstração do Caso de Estudo para a Divisão de Bens em

Caso de Divórcio

Para o desenvolvimento deste protótipo, ainda não foi preocupação criar interfaces
que garantam a privacidade de cada parte por formas a facilitas os seus testes de
funcionamento.

Numa primeira etapa as partes são identificadas e é definido o número de itens que
pretendem dividir. De seguida, são especificados quais os itens em causa, os seus
valores e as preferências de cada parte. A segunda etapa consiste na geração da
proposta de divisão dos bens. De acordo com a informação fornecida, são
apresentadas na fase do vencedor as respectivas alocações em valores monetários
mediante os pontos de preferência. Se o valor inicial não for equitativo passa-se para a
fase do ajustamento.

Fazendo alusão ao nosso exemplo, na fase do vencedor, a alocação inicial dos itens
pelos valores monetários apresenta uma disparidade onde Jo fica com a vivenda e os
títulos bancários num valor total de 170.000 e Bertha fica com o apartamento e o
carro num valor total de 530.000. Não sendo equitativo o resultado, na fase do
ajustamento, alguns bens de Bertha têm de ser transferidos para Jo por ela possuir
bens com maior valor monetário. Assim, suportados pelas preferências inicialmente
indicadas, Jo recebe a totalidade do carro e 30% do apartamento equiparando os
valores de ambas partes em 350.000. Jo ficará então com a totalidade da vivenda, do
carro e dos títulos bancários e 30% do apartamento. Bertha ficará com 70% do
apartamento com o valor equivalente aos bens de Jo.

Para este resultado ser considerado livre de inveja é necessário que ambas as partes
conheçam os valores dos itens a dividir, fazendo assim uma atribuição de pontos
conscientes do trade-off que implica com o valor monetário. Assim, consciente de que
a divisão é feita tendo em conta as preferências e o valor monetário dos itens, a
atribuição das preferências de Jo e Bertha será provavelmente diferente.

Consideremos um segundo exemplo com a atribuição dos pontos feita mediante
ponderação dos valores monetários como segue:

Tabela 2. Nova distribuição de pontos em relação ao valor

Itens Jo Bertha Valores
Vivenda 20 30 100.000
Apartamento 45 40 500.000
Carro 15 20 30.000
Título bancários 20 10 70.000
Total 100 100 700.000

Depois do processamento com os dados acima apresentados, a proposta de divisão

é formada pela totalidade da vivenda e do carro e 44% do valor do apartamento para
Bertha, e para Jo, a totalidade dos títulos bancários e 56% do valor do apartamento.

Sistema de Resolução Online de Conflito ... INForum 2010 – 787

Ambos ficam com os bens de acordo com suas preferências no valor de 350.000. Esta
partilha é considerada equitativa, por ambas as partes receberem 50% dos bens; livre
de inveja, por cada parte ir recebendo os bens mediante suas próprias preferências; e
eficiente, pelo facto de não haver outra partilha equitativa e livre de inveja
considerando os mesmos parâmetros.

5 Trabalho Futuro

Embora a divisão apresentada pelo AW by value seja considerada equitativa e justa,
monetária e preferencialmente, as partes podem não aceitá-la tal como é proposta e
para resolver a questão pode ser necessário criar-se mecanismos de negociação e
apresentar outras alternativas. A constituição de outras alternativas conta com a
exploração do raciocínio baseado em casos (CBR7). O CBR pode ser descrito como
uma metodologia para resolução de problemas que se baseia em experiencias e
conhecimentos passados para a tomada de decisões presentes [11]. O uso do CBR é
muito usual no comportamento humano, consciente ou inconscientemente. Na área da
lei também é comummente identificada esta metodologia, onde para estimar ou
definir uma sentença, os advogados ou juízes recorrem a casos anteriores fazendo
analogias ao caso presente. O CBR é também conhecido como uma das técnicas da AI
capaz de utilizar conhecimento previamente adquirido para resolução de questões e
problemas concretos (casos), assim novos casos são resolvidos pelo conhecimento e
reutilização de casos similares anteriores [12]. Explorando a combinação do CBR na
área da AI e da lei, o UMCourt Partilhas pretende auxiliar e suportar a negociação
entre as partes.

A fim de melhor o fazer considerou-se essencial fornecer-se as respectivas
BATNA e WATNA a cada parte. Sendo definidos estes extremos para cada parte e
considerando que frequentemente a BATNA de uma parte é a WATNA da outra, é
delimitada de forma menos custosa a ZOPA – zona de possível acordo (Zone of
Possible Agreement) [13] (Fig. 3). O componente CBR que contém a base de casos e
os mecanismos que permitem a recuperação, reutilização, revisão ou correcção e a
actualização da informação contida na base, ou seja a manipulação dos casos.
Considera-se ainda a determinação da MLATNA - mais provável alternativa para um
acordo negociado (Most Likely Alternative to a Negotiated Agreement). A MLATNA
é calculada utilizando a probabilidade de ocorrência dos casos similares da base.

O suporte para a argumentação está a ser implementado no componente ARG que
contém os mecanismos que possibilitam a troca de argumentos entre as partes no acto
da negociação propriamente dita, a fim de permitir as partes de argumentarem e
convencer a outra a mudar de posição. Através do ARG serão disponibilizadas
ferramentas capazes de suportar todo processo de negociação organizado de acordo
com o contexto de contestação e o tipo de diálogo.

O processo de suporte à negociação, que se encontra neste momento em
desenvolvimento, decorre em duas etapas: (1) Alimentação e propostas – que engloba
os componentes AWV e CBR e (2) Diálogo e negociação. Na primeira etapa o
sistema apresenta as propostas de soluções mediante as entradas apresentadas por

7 Do Inglês – Case Base Reasoning

788 INForum 2010 Ana Café, Davide Carneiro, Paulo Novais, Francisco Andrade

cada parte, e os prováveis limites de acordos. Na segunda etapa, o sistema
disponibiliza mecanismos para o diálogo entre as partes e sempre que necessário volta
a calcular possíveis soluções, pelos desacordos ocorridos. Este trabalho que está agora
a ser desenvolvido visa usar o CBR para aumentar a eficiência dos processos de
negociação e consequentemente do processo de ODR.

Fig. 3. Representação dos possíveis resultados para cada parte. (Fonte: [13])

6 Conclusões

Os sistemas ODR têm se revelado muito úteis para a resolução de conflitos. Cada
sistema apoia áreas específicas e a tendência é o uso da inteligência artificial para
torna-los cada vez mais autónomos, com capacidade de apresentar estratégias
próprias. As pesquisas na área da inteligência artificial para ODR estão longe de estar
esgotadas, mas cremos que os primeiros passos já foram dados. A inteligência
artificial possui diversas técnicas e acreditamos que algumas delas precisam de ser
combinadas para a obtenção de resultados eficientes.

A justiça da partilha de bens feita com o AW by value assenta na importância que
cada parte atribui aos itens e nos seus respectivos valores monetários. Embora o
sistema apresenta uma proposta de divisão, a decisão final cabe às partes. No exemplo
mencionado no texto, Bertha pode querer ficar com o carro apesar de monetariamente
ficar com um valor superior à de sua metade, para isso seria necessário compensar Jo
de outra forma. Daí a necessidade de implementar um mecanismo que permita às
partes de negociar e argumentar possíveis ajustes. A proposta de partilha apresentada
pelo sistema serviria de ponto de partida para a negociação em torno dos pontos de
discórdia.

Como foi acima referido, para melhor apoiar as partes, um sistema de suporte a
negociação precisa fornecer-lhes informações sobre sua posição e possíveis resultados
no conflito em causa, e parece-nos relevante a definição e apresentação do BATNA
pelo sistema para cada parte. Acreditamos que o BATNA ajudará as partes a
reconhecer uma partilha vantajosa e a se concentrarem nas suas melhores alternativas
para chegarem ao acordo. O CBR é a técnica da AI que está a ser explorada para
enriquecer o processo de negociação utilizando conhecimentos anteriores para
fornecer informações mais precisas.

Sistema de Resolução Online de Conflito ... INForum 2010 – 789

Agradecimentos

O trabalho descrito neste artigo foi suportado pelo projecto TIARAC - Telematics and

Artificial Intelligence in Alternative Conflict Resolution Project
(PTDC/JUR/71354/2006).

Referências

1. Fiadjoe, Albert. Alternative Dispute Resolution: A Developing World Perspective,
Routledge-Cavendish (2004)

2. POBLET, M. 2008. Introduction: Bringing a new vision to online dispute resolution. In
Expanding the Horizons of ODR, Proceedings of the 5th International Workshop on Online
Dispute Resolution (Workshop 08), M. Poblet, Ed. CEUR-Workshop Proceedinkg Series,
vol. Volume 430. 1_7.

3. Carneiro D., Novais P., Andrade F. 2009. Artificial Intelligence in Online Dispute
Resolution, Relatório Técnico TIARAC Project, Universidade do Minho.

4. Peruginelli, G. 2002. Artificial Intelligence in Alternative Dispute Resolution. In Convegno
Lea Workshop 2002. Rapporto tecnico n. 18/2002.

5. Cáceres, E. 2008. EXPERTIUS: A Mexican Judicial Decision-Support System in the Field
of Family law. In Francesconi, E. B. E., Sartor, G., & Tiscornia, D. (Eds.), Legal
Knowledge and Information Systems (pp. 78-87). IOS Press.

6. Esperança Pereira Mealha, Acordos Conjugais para partilha de bens comuns, 2004, Livraria
Almedina

7. Brams, Steven J. (2006). “Fair Division.” In Barry R. Weingast and Donald Wittman
(eds.), Oxford Handbook of Political Economy. Oxford, UK: Oxford University Press, pp.
425-437.

8. Fisher, R., Patton, B., and Ury,W. 1981. Getting to Yes: Negotiating Agreement Without
Giving In. Boston.

9. Brams, S.J. and Taylor, A.D. 1996. Fair Division: From cake cutting to dispute resolution.
Cambridge University Press.

10. Zeleznikow, J. and Bellucci, E. 2003. Family Winner: Integrating Game Theory and
Heuristics to Provide Negotiation Support. Proceedings of sixteenth International
Conference on Legal Knowledge Based Systems, IOS Publications, Amsterdam,
Netherlands: 21-30

11. Kolodner, J. L. (1992). An introduction to case-based reasoning. Artificial Intelligence
Review, 6(1), 3-34. doi: 10.1007/BF00155578.

12. A. Aamodt, E. Plaza (1994); Case-Based Reasoning: Foundational Issues, Methodological
Variations, and System Approaches. AI Communications. IOS Press, Vol. 7: 1, pp. 39-59.

13. Andrade F., Novais P., Carneiro D., Zeleznikow J., Neves J., Using BATNAs and
WATNAs in Online Dispute Resolution, in JURISIN 2009 - Third International Workshop
on Juris-informatics, Tokyo, Japan, ISBN 4-915905-38-1, pp 15-26, 2009.

14. De Vries BR., Leenes, R., Zeleznikow, J., Fundamentals of providing negotiation support
online: the need for developping BATNAs. Proceedings of the Second International ODR
Workshop, Tilburg, Wolf Legal Publishers (2005) 59-67.

790 INForum 2010 Ana Café, Davide Carneiro, Paulo Novais, Francisco Andrade

Sistema Inteligente de Pesquisa de Eventos
em Enfermagem

António Morais, José Machado, António Abelha, and José Neves

Departamento de Informática, Universidade do Minho,
Braga, Portugal

A44636@alunos.uminho.pt,

{jmac,abelha,jneves}@di.uminho.pt

http://www.di.uminho.pt/

Resumo Actualmente, a qualidade dos cuidados de saúde é uma priori-
dade. Para tal, as Instituições de Saúde têm de adquirir práticas e siste-
mas de controlo capazes de aumentarem a qualidade dos seus serviços. As
Instituições têm ao seu dispor um conjunto de indicadores. Estes indica-
dores dividem-se segundo os serviços e eventos que se pretendem avaliar.
Na área da enfermagem foi dada especial atenção aos indicadores de
queda e úlcera de pressão. Para avaliar estes indicadores foi criado o Sis-
tema de Pesquisa de Eventos em Enfermagem. Este sistema é composto
por um conjunto de procedimentos PL/SQL e por uma interface Web.
Os resultados obtidos pelo sistema foram os esperados, sendo iguais aos
provenientes das consultas SQL previamente utilizadas pelos profissio-
nais de saúde. A obtenção destes indicadores torna-se, assim, mais rápida
e liberta recursos quando comparada com a anterior. O sistema desen-
volvido é facilmente expanśıvel para outros indicadores e parâmetros de
pesquisa.

Keywords: Enfermagem, Indicadores, Queda, Úlcera de Pressão, Sis-
tema de Pesquisa

Abstract. Currently, the healthcare quality is a priority. To this end,
the Healthcare Facilities must acquire practices and control systems ca-
pable of increasing the quality of their services. The institutions have at
their disposal a set of indicators. These indicators are divided according
to the services and events which are to be assessed. In the nursing field
was given special attention to falls and pressure ulcers indicators. To
assess these indicators an Event Search System in Nursing was created.
This system consists on a set of PL/SQL procedures and a Web interface.
The system results were the expected, being equal to those previously
obtained from the SQL queries used by healthcare professionals. Thus,
achieving these indicators becomes more quickly and frees resources when
compared with the previous method. The developed system is easily ex-
pandable to other indicators and search parameters.

Keywords: Nursing, Indicators, Fall, Pressure Ulcers, Search System

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 791–802

1 Introdução

A qualidade dos cuidados de saúde tornou-se um assunto de grande debate den-
tro e fora das Instituições de Saúde (IS). Muito deste interesse na qualidade dos
cuidados de saúde cresceu devido às recentes transformações dos sistemas de
saúde, acompanhadas de novas estruturas e estratégias organizacionais que afec-
tam a qualidade do atendimento. Todavia, ainda existem falhas no que respeita
à recolha sistemática de informação nos sistemas de saúde capaz de produzir
conhecimento relativo à qualidade dos cuidados prestados. Para a colmatação
dessas falhas torna-se necessário analisar a seguinte questão: o que se sabe so-
bre a qualidade dos cuidados de saúde? Através de uma análise da literatura
[1,2,3,4] constata-se que existe uma grande falta de documentação sobre a forma
como são tratadas as principais doenças e episódios na maioria dos sistemas
de cuidados de saúde; uma falta de avaliação de resultados sistemáticos; uma
falta de avaliação dos recursos relacionados à qualidade de cuidados e situações
espećıficas que ocorrem nos sistemas de saúde, persistindo variações entre pres-
tadores de cuidados a pacientes similares; e, por fim, a não existência de sistemas
de controlo em vigor nas instituições prestadoras de cuidados de saúde ou re-
guladoras. Existem ainda dificuldades adicionais, como a falta de conhecimento
e interesse em muitos páıses sobre os problemas relacionados com a qualidade
dos seus serviços e a sua potencial interferência na melhoria e credibilidade da
vida das IS. Casos como estes vêm impor entraves à implementação de sistemas
capazes de produzir informação acerca da qualidade das IS e dos seus serviços.
O acesso a padrões de qualidade tornou-se muito importante para as IS, or-
ganizações reguladoras e para os próprios utentes. Cada vez mais, os utentes
começam a exigir às IS indicadores de qualidade e diferenciação relativamente
aos serviços por elas fornecidos, dando bastante ênfase à relação custo-eficiência
dos cuidados prestados. Os indicadores de performance permitem fazer a ava-
liação da qualidade dos cuidados e serviços de saúde. Esta avaliação pode ser
feita através da criação de indicadores de qualidade que descrevem o desempe-
nho para um determinado tipo de cuidado de saúde e permitem avaliar se está
de acordo com os indicadores standards dos cuidados de saúde [5].
A qualidade dos cuidados de saúde pode ser definida como “o grau em que os
serviços de saúde de indiv́ıduos e populações aumentam a probabilidade de re-
sultados de saúde desejados e são consistentes com o conhecimento profissional
actual” [6] e pode ser dividida em diferentes dimensões de acordo com os cuidados
a ser avaliados [7]. Os indicadores podem ser definidos de diversas formas: como
medidas que avaliam um processo especial dos cuidados de saúde ou o seu resul-
tado [8]; como medidas quantitativas que podem ser usadas para monitorizar e
avaliar a qualidade da administração e gestão, prestação de cuidados e funções
de suporte que afectam os pacientes [9]; e, como instrumentos de medição, mo-
nitorização, ou alerta que são utilizados como guias para monitorizar, avaliar
e melhorar a qualidade dos cuidados dos pacientes, serviços de apoio cĺınico e
função organizacional que afectam os pacientes [10].

Os indicadores fornecem uma base quantitativa para os profissionais de saúde
e organizações atingirem os objectivos de melhorarem os cuidados de saúde e

792 INForum 2010 António Morais, José Machado, António Abelha, José Neves

os processos pelos quais estes são fornecidos. A monitorização e medição dos
indicadores permite atingir muitos propósitos. Os indicadores permitem: a do-
cumentação da qualidade dos cuidados de saúde; a possibilidade de comparação
de resultados ao longo do tempo e entre instituições; definir prioridades e tomar
decisões (e.g. a escolha de uma IS ou mesmo de um profissional de saúde); a
responsabilização, regulamentação e acreditação; a possibilidade de melhoria da
qualidade; e, o suporte para a escolha dos prestadores de saúde por parte do pa-
ciente. O uso de indicadores permite aos profissionais de saúde e às organizações
monitorizar e avaliar o que acontece aos seus pacientes em função da forma
como são prestados os seus serviços. Porém, ao contrário do que pode acontecer
é errado pensar que os indicadores são uma avaliação directa da qualidade dos
serviços e da própria IS. O conceito de qualidade é algo multidimensional, pelo
que compreender e avaliar este conceito requer várias análises distintas.
Os indicadores são baseados em standards da área da saúde. Estes podem ser
baseados em provas e derivar da literatura ou, então, quando é verificada a ne-
cessidade da existência ou criação de um indicador, este pode ser determinado
através de um grupo de profissionais de saúde de acordo com a sua experiência.
Assim sendo, os indicadores e standards podem ser descritos de acordo com
a sua importância para obter e prever resultados relevantes [11]. Os indicado-
res encontram-se divididos em vários grupos abrangendo um elevado número
de funcionalidades das IS. No entanto, no presente estudo apenas interessam
os indicadores referentes às taxas de risco de acontecimento de um fenómeno,
como quedas e úlceras de pressão. Após verificar-se o correcto tratamento destes
fenómenos por parte do sistema criado, será extremamente fácil e rápido o seu
alargamento aos restantes fenómenos. A escolha destes fenómenos prende-se com
a urgência que existe em travar estes acontecimentos dentro das IS, uma vez que
têm uma elevada taxa de ocorrência.

2 Risco de Queda

A existência de quedas nas IS é considerado um sério problema de saúde. As
quedas de pacientes não só levam ao aumento dos custos de saúde como também
interferem gravemente na qualidade de vida dos pacientes e impedem a sua in-
dependência ambulatória [13]. As consequências advindas das quedas incluem
lesões f́ısicas e traumas emocionais, podendo atingir valores mais graves no caso
de pacientes com idades elevadas, como a própria morte. Torna-se assim van-
tajoso o investimento de conhecimento e recursos para identificar os pacien-
tes com risco de sofrerem quedas e implementar um sistema compreensivo de
educação e prevenção desse acontecimento. As quedas de pacientes são um dos
eventos adversos registados mais comuns nas IS [14,15]. Estudos previamente
realizados referem que estes eventos representam cerca de 40% dos incidentes
relatados com pacientes internados e ocorrem em mais de 7% das admissões
hospitalares [16,17,18,19]. Mais de um terço das quedas de pacientes internados
resulta em uma ou mais lesões [20,16,21,17,19]. Enquanto que a maioria das
lesões são insignificantes (por exemplo, abrasões, lacerações, hematomas, e con-

Sistema Inteligente de Pesquisa de Eventos em Enfermagem INForum 2010 – 793

tusões), aproximadamente 3% das quedas resultam em fracturas [16,21,17,19].
Devido à frequência de quedas e à associação de morbidez, as IS começaram a
incentivar o desenvolvimento de sistemas e politicas de prevenção de quedas [14].
Desde 2005, a Joint Commission for Accreditation of Healthcare Organizations
(JCAHO) informou que a prevenção de quedas é um dos objectivos da National
Patient Safety. De acordo com estes valores é de fulcral importância que as IS
comecem a adquirir estratégias e sistemas capazes de travar estes resultados.
Porém, mais importante que a sua existência é a sua adequação à complexidade
das base de dados das IS onde a informação se encontra armazenada.
Associado ao evento queda existem várias formas de cálculo de indicadores, sendo
que algumas referem-se à razão da ocorrência do evento em relação à ocorrência
dos restantes eventos na IS, e outras à capacidade de prevenção da ocorrência
desse evento, denominado de taxa de eficácia na prevenção de quedas. O cálculo
da taxa de eficácia na prevenção de quedas é determinado através da seguinte
fórmula:

TEPQ1=
no episódios de queda, com risco prévio
no total de episódios de risco de queda

[22], (1)

Através desta fórmula pretende-se averiguar a taxa de eficácia na prevenção
de quedas, através da razão entre os registos com risco prévio da ocorrência
de queda e o número total de registos de risco de quedas registadas no mesmo
peŕıodo. É muito importante ter em conta o aspecto anteriormente referido, pois
para o numerador apenas se pode ter em conta os casos de ocorrência de queda
que tiveram associado previamente um registo de risco da sua ocorrência. Esses
são os casos que importam para poder medir com eficácia a capacidade da IS em
dar resposta às necessidades dos seus pacientes. Neste caso, a necessidade refere-
se à capacidade de não ocorrerem episódios de queda sabendo que o paciente
tem uma possibilidade elevada de que isso aconteça.

3 Risco de desenvolvimento de Úlceras de Pressão

Tal como os episódios de queda o desenvolvimento de úlceras de pressão é bas-
tante comum nas IS [23]. A importância do seu tratamento e da melhoria da
qualidade dos cuidados de saúde onde este fenómeno ocorre levou a que asso-
ciações como a Hospital Quality Alliance e England’s National Health Service
(NHS) propusessem como um indicador chave da prestação dos cuidados de
saúde [24].
No Reino Unido estudos conclúıram que a prevalência de úlceras de pressão em
pacientes hospitalizados situava-se entre os 9.6% e os 11.90% em 2007, sendo que
em pacientes acamados o seu valor subia para 12% e em paciente idosos o seu
valor atingia o máximo de 22.07% [25]. O tratamento destes episódios requer o

1 Taxa de Eficácia na Prevenção de Quedas.

794 INForum 2010 António Morais, José Machado, António Abelha, José Neves

uso de recursos (equipamento e profissionais de saúde) da IS, para além de ser
dispendioso. No Reino Unido a National Health Service (NHS) estima que anu-
almente sejam gastos nestes cuidados cerca de 1.7 a 2.1 biliões de euros. Tendo
um custo de tratamento por paciente de 1 273 euros em casos de úlceras de grau
1 e 9 275 euros no caso de úlceras de grau 4 [26]. Muitos destes casos podem ser
evitados, uma vez, que ocorrem como resultado de negligências por parte das IS.
Devido a situações como estas as associações reguladoras da saúde começaram
a pressionar as IS para adquirirem sistemas capazes de ajudar na prevenção de
fenómenos como as úlceras de pressão.
No sistema desenvolvido foi dada especial atenção a este indicador, sendo um
dos primeiros a ser inclúıdo no sistema. A fórmula de cálculo utilizada para o
cálculo do risco de desenvolvimento de úlcera de pressão é similar à utilizada
para o cálculo de risco de queda.

TEPUP2=
no episódios de úlceras de pressão, com risco prévio
no total de episódios de risco de úlcera de pressão

[22]. (2)

4 Desenvolvimento do Sistema Inteligente de Pesquisa de
Eventos em Enfermagem - SIPEE

O SIPEE foi pensado e desenvolvido de forma a que possa corrigir erros ou in-
coerências de registos. A inserção da informação nas BD hospitalares está muitas
vezes sujeitas a situações de incoerência. A incoerência de registos pode ocorrer
no registo da especificação do acontecimento (queda, risco de queda, úlcera de
pressão, risco de úlcera de pressão), uma vez que este campo é de texto livre. Para
resolver estes problemas no sistema, introduziram-se regras de validação que fa-
zem a associação dos registos efectuados pelos utilizadores com os indicadores de
qualidade. Desta forma, quando um utilizador acrescenta um novo episódio de
internamento com uma especificação referente a uma queda ou úlcera de pressão
o sistema faz a sua validação e associa esse episódio ao respectivo indicador,
tendo em conta se ele corresponde a um caso de risco de acontecimento ou ape-
nas acontecimento. Através deste tipo de validação salvaguardam-se incoerências
de registo de dados e de deturpação de resultados finais dos indicadores, confe-
rindo ao sistema um carácter inteligente.
O sistema desenvolvido consiste num motor de pesquisa e numa interface gráfica
de apresentação e interacção com o sistema. Para o desenvolvimento do motor
de pesquisa do SIPEE recorreu-se ao uso da linguagem PL/SQL.

4.1 PL/SQL

A informação necessária para o tratamento e obtenção dos valores de medição
associada aos indicadores de qualidade necessita de ser tratada e posteriormente

2 Taxa de Eficácia na Prevenção de Úlceras de Pressão.

Sistema Inteligente de Pesquisa de Eventos em Enfermagem INForum 2010 – 795

submetida a um sistema capaz de obter esses valores. Desta forma, torna-se im-
prescind́ıvel recorrer ao uso de uma linguagem com capacidade para a execução
de instruções directas sobre os dados. Para atingir tal objectivo recorreu-se ao
uso da linguagem PL/SQL (Procedural Language/Structured Query Language).
Esta linguagem traz enormes vantagens e permite a manipulação eficiente dos
dados armazenados [12]. A linguagem PL/SQL surge como uma ampliação à
linguagem SQL incluindo caracteŕısticas das linguagens de programação e man-
tendo posśıvel a manipulação de dados e instruções de consulta SQL dentro das
unidades processuais do código criado [12].

PL/SQL é uma linguagem processual desenvolvida pela Oracle. Esta lingua-
gem veio trazer recursos de engenharia de software, tais como o encapsulamento
de dados, manipulação de excepções e orientação a objectos. PL/SQL incorpora
muitos dos recursos avançados feitos em linguagens de programação concebidas
durante os anos 1970 e 1980. Permite a manipulação de dados e a inclusão de
instruções de consulta de SQL no bloco de estruturas e unidades processuais
do código, tornando a linguagem PL/SQL numa linguagem de processamento
de transacções. Com PL/SQL, podem-se usar instruções SQL para limpeza de
dados e declarações de controle PL/SQL para processar os dados [12].

4.2 SIPEE

O SIPEE foi desenvolvido com o intuito de ser testado no Centro Hospitalar do
Tâmega e Sousa (CHTS), desta forma foi necessário primeiramente estudar quais
as tabelas com interesse existentes na BD de registos de enfermagem do CHTS
e, mais importante ainda, compreender a forma como estas se relacionam. De
entre todas as tabelas presentes na IS apenas foram necessárias as tabelas status
e fenomenos, presentes no schema enfin e a tabela int transferencias pertencente
ao schema sgd. As tabelas anteriores relacionam-se como representado na figura
1.

O motor do sistema tem como função proceder à pesquisa de eventos segundo
os parâmetros que lhe são fornecidos através da interface. Para qualquer evento
pretendido a forma de pesquisa é sempre igual. Esta consiste em calcular dois
valores: o numerador e o denominador. O numerador corresponde ao número
de casos ocorridos em que foi declarado no sistema o seu risco de ocorrência. O
denominador corresponde ao número total de casos ocorridos no mesmo peŕıodo
em que foi declarado risco de ocorrência.
O motor de pesquisa é composto por um conjunto de quatro procedimentos: dois
para o cálculo do numerador e do denominador, indice mes e indice ano (um re-
ferente à pesquisa por mês e outro referente à pesquisa por ano, respectivamente),
e dois para a selecção dos casos que estão presentes no denominador e não se
encontram no numerador, denominador mes e denominador ano, também eles
referentes à pesquisa por mês e por ano. Os procedimentos de pesquisa por mês e
por ano são em tudo idênticos apenas diferenciando-se na pesquisa do parâmetro
data de ocorrência (to char(data, ’yyyymm’) = ’anomes’ e to char(data, ’yyyy’)
= ’ano’, respectivamente). No caso dos procedimentos indice mes e indice ano,
primeiramente é feito um select desse evento na tabela status, tendo em conta

796 INForum 2010 António Morais, José Machado, António Abelha, José Neves

Figura 1. Esquema parcial da base de dados de registos de enfermagem do CHTS.

que a data de ocorrência do evento tem de ser superior à data em que foi decla-
rado o risco da sua existência. No caso de terem ocorrido as duas declarações,
risco e evento, na mesma data tem de se efectuar o mesmo racioćınio em relação
à hora, ou seja:

Condição 1

fenomeno.data >fenomeno.data risco
e fenomeno.hora >fenomeno.hora risco.

Nos casos em que a condição anterior se verifica é então usado o parâmetro
fenomenoid para aceder ao valor correspondente ao episódio de internamento
(int episodio) na tabela fenomenos. Desta forma, através do episódio de interna-
mento é posśıvel fazer uma pesquisa diferenciada tendo em conta a especialidade
e a unidade em que o evento ocorreu. Esta pesquisa é, então, feita na tabela
int transferencias e necessita de ter em conta dois aspectos muito importantes.

Sistema Inteligente de Pesquisa de Eventos em Enfermagem INForum 2010 – 797

Tal como na pesquisa inicial, no caso da pesquisa do evento por especialidades e
unidades a data do acontecimento tem de ser superior à data de entrada do pa-
ciente na especialidade ou unidade e tem, também, de ser inferior a sua data de
sáıda na respectiva especialidade ou unidade. O mesmo acontece para o campo
hora. A segunda condição é que data de sáıda do paciente de uma especialidade
ou unidade nunca pode ser nula. Assim sendo, as duas condições que têm de se
verificar sempre são:

Condição 2

data entrada >fenomeno.data >data saida
e hora entrada >fenomeno.hora >hora saida

Condição 3

data saida is not null.

Desta forma, conseguem-se obter os valores pertencentes ao numerador da
equação.
O passo seguinte é o cálculo do denominador. Este é calculado de forma idêntica
ao numerador, diferenciando-se apenas no passo inicial que neste caso não é
necessário. Neste ponto os episódios de internamento já estão agrupados segundo
as respectivas especialidades e unidades onde ocorreram, sendo apenas necessário
fazer a sua contagem. Esta contagem é feita quer para os casos presentes no
numerador quer para os casos presentes no denominador.
A fase final consiste na apresentação destes valores na interface do sistema.

A informação é apresentada na forma de uma tabela onde pode ser visuali-
zada para cada especialidade e unidade o respectivo total de eventos ocorridos.
É, ainda, posśıvel consultar as informações detalhadas dos eventos ocorridos que
não foram declarados no numerador.

Para a apresentação destas informações são utilizados os procedimentos de-
nominador mes e denominador ano, dependendo se a pesquisa foi feita por mês
ou por ano, respectivamente. Estes procedimentos utilizam a informação gerada
pelos procedimentos indice mes e indice ano, respectivamente, que é gravada em
duas tabela temporárias. Esta informação está dividida nas tabelas em casos per-
tencentes ao numerador (tabela temporária numerador) e em casos pertencentes
ao denominador (tabela temporária denominador). Os procedimentos anteriores
apenas usam essa informação para seleccionar os casos da tabela denominador
que não estão presentes na tabela numerador. De referir que como estas tabelas
são temporárias sempre que o sistema fecha a ligação à base de dados elas são
eliminadas. Isto torna-se bastante vantajoso visto que não fica a ocupar espaço
desnecessário em disco.

5 Resultados

O sistema desenvolvido foi submetido a testes com dados de uma IS Portuguesa
(CHTS) e o seu resultado foi comparado com as consultas SQL previamente

798 INForum 2010 António Morais, José Machado, António Abelha, José Neves

utilizadas pelos profissionais de saúde para obterem esse mesmos dados.
Para a comparação de resultados foi tido em conta que para a obtenção de cada
uma das taxas de eficácia utilizadas pelos profissionais de saúde são necessários
4 passos:

1. Abrir ficheiro onde se encontram as consultas SQL;
2. Copiar as consultas SQL para cálculo do numerador e do denominador;
3. Executar as consultas SQL;
4. Calcular a taxa de eficácia.

Em relação ao SIPEE apenas é necessário inserir qual o fenómeno que se
pretende pesquisar e o intervalo de tempo, consistindo assim num conjunto de 2
passos.
Os resultados obtidos, para o numerador e denominador, através dos dois métodos
foram iguais comprovando a veracidade do sistema desenvolvido. Porém, com a
utilização do sistema a pesquisa de indicadores torna-se muito mais eficaz e intui-
tiva, poupando tempo e recursos. Os dois métodos foram testados com pesquisas
para os indicadores: risco de queda e risco de úlceras de pressão, obtendo
os seguintes resultados.

Indicador risco de queda

Para os parâmetros Fenómeno=queda; Ano=2009 e Mês=01, os resultados
obtidos foram os apresentados na tabela 1.

Tabela 1. Resultados para o indicador queda.

Ensaio (tempo(s))

Método 1 2 3 4 5 Média(s)

SIPEE 10.7 10.0 10.0 11.4 09.6 10.3
SQL 22.5 20.4 21.6 23.3 22.0 22.1

Após a comparação dos valores obtidos pelos dois métodos é posśıvel cons-
tatar que o tempo necessário para o cálculo da taxa de eficácia na prevenção
do risco demora, segundo o método tradicional, em média mais do dobro do
que através do SIPEE.
Utilizando os parâmetros Fenómeno=queda; Ano=2009, ou seja, calculando
os tempos dos dois métodos para o ano inteiro, obtém-se os valores apresen-
tados na tabela 2.

Mais uma vez após a comparação dos valores provenientes das consultas SQL
com os valores do sistema chegou-se à conclusão que o SIPEE é mais rápido

Sistema Inteligente de Pesquisa de Eventos em Enfermagem INForum 2010 – 799

Tabela 2. Resultados para o indicador queda.

Ensaio (tempo(s))

Método 1 2 3 4 5 Média(s)

SIPEE 23.6 14.1 13.2 13.0 13.4 20.2
SQL 34.0 32.6 31.0 32.8 33.2 32.8

para executar o cálculo da taxa de eficácia na prevenção de quedas para o
ano inteiro.

Indicador risco de úlcera de pressão

Para os parâmetros Fenómeno=úlcera de pressão; Ano=2009 e Mês=01, os
resultados obtidos para os dois métodos foram os representados na tabela 3.

Tabela 3. Resultados para o indicador úlcera de pressão.

Ensaio (tempo(s))

Método 1 2 3 4 5 Média(s)

SIPEE 15.0 14.7 13.0 15.4 14.3 14.5
SQL 25.4 27.2 28.7 27.3 26.3 27.0

Utilizando a pesquisa do parâmetro úlcera de pressão mas para todo o ano
de 2009 os resultados obtidos foram os apresentados na tabela 4.

Tabela 4. Resultados para o indicador úlcera de pressão.

Ensaio (tempo(s))

Método 1 2 3 4 5 Média(s)

SIPEE 16.9 15.6 14.8 12.7 17.3 15.5
SQL 33.1 28.2 31.6 30.3 30.8 30.8

Através dos resultados obtidos anteriormente é posśıvel concluir que o SIPEE
é mais eficaz no cálculo das taxas de prevenção de eficácia de quedas e úlceras
de pressão.

6 Conclusões e Trabalho Futuro

Embora, neste momento o sistema desenvolvido apenas permita calcular os indi-
cadores de risco de queda e risco de úlcera de pressão, uma vez que se encontra

800 INForum 2010 António Morais, José Machado, António Abelha, José Neves

na fase de teste, este corresponde em todo ao que tinha sido inicialmente pro-
gramado. O sistema é capaz de fazer a pesquisa dos indicadores de risco de
queda e risco de úlcera de pressão e devolver os seus resultados de acordo com os
parâmetros pretendidos. A utilização deste sistema vem poupar tempo e recursos
para a obtenção destes valores. Desta forma, não é necessário estar a correr as
consultas SQL directamente cada vez que se pretende obter estes indicadores.
Embora as diferenças se situem na ordem de segundos entre os dois métodos de
cálculo em termos de recursos o SIPEE traz mais vantagens. Qualquer pessoa
com o mı́nimo conhecimento sobre indicadores de enfermagem e capacidade de
manuseamento de um computador é capaz de obter os valores para os indicado-
res pretendidos, não sendo necessário recorrer ao uso de técnicos especializados
para procederem ao cálculo dos indicadores.
A forma como o sistema se encontra estruturado permite que a sua integração
com os restantes indicadores de enfermagem seja bastante simples, dado que
estes funcionam na mesma base dos desenvolvidos. O sistema está também ca-
pacitado para ser constantemente actualizado no que respeita à adição de in-
dicadores, uma vez que apenas é necessário adicionar o procedimento PL/SQL
para o cálculo do mesmo.
Contudo, o sistema ainda apresenta algumas limitações, nomeadamente no que
se refere ao aspecto de apresentação dos dados. A apresentação das especiali-
dades e unidades na interface ainda é feita através do código interno da IS não
havendo a sua conversão para o nome normalmente utilizado para a designar.
Isto traz alguns inconvenientes uma vez que torna-se menos intuitivo saber qual
a unidade ou especialidade a que o código se refere, levando a que seja necessário
estar sempre a consultar uma tabela de conversão. Contudo, esta limitação é fácil
de resolver bastando para isso ter acesso à tabela que permite fazer a conversão
entre o código e o nome da unidade e especialidade e adicionar nos procedimentos
essa conversão.

Referências

1. Schuster M., McGlynn E., Brook R.: How good is the quality of health care in The
United States?. Milbank Q. 76, 517–563 (1998)

2. Chassin M., Galvin R.: The urgent need to improve health care quality. Institute
of Medicine National Roundtable on Health Care Quality. J Am Med Assoc. 280,
1000—1005 (1998)

3. President’s Advisory Commission on Consumer Protection and Quality First. Better
Health Care for All Americans. Final Report to the President of the United States.
Washington, DC: President’s Advisory Commission on Consumer Protection and
Quality First (2000)

4. Mainz J., Bartels P., Laustsen S. et al. The National Indicator Project for monitoring
and improving medical technical care. Ugeskr Laeger. 163, 6401—6406 (2001)

5. Mainz, J.: Defining and classifying clinical indicators for quality improvement. In-
ternational Journal for Quality in Health Care. Volume 15. Number 6, 523—530
(2003)

6. Lohr, KN.:Kesselman, C.: Medicare: A Strategy for Quality Assurance.Vols I and
II. Morgan Kaufmann. National Academy Press, Washington, DC (1990)

Sistema Inteligente de Pesquisa de Eventos em Enfermagem INForum 2010 – 801

7. Donabedian, A.: The quality of medical care. Science. 200, 856—864 (1987)
8. Worning, A.M., Mainz, J., Klazinga, N., Gotrik, JK., Johansen, K.S.: Policy on qua-

lity development for the medical profession. Ugeskr Laeger. 154, 3523—3533 (1992)
9. JCAHO.: Characteristics of clinical indicators. Qual. Rev. Bull. 11, 330–339 (1989)
10. Canadian Council on Health Services Accreditation.:A guide to the development

and use of performance indicators. Canadian Council on Health Services Accredita-
tion, Ottawa (1996)

11. Mainz, J.: Developing clinical indicators. Int. J. Qual. Health Care. 15, i5—i11
(2003)

12. Oracle, http://www.oracle.com/technology/tech/pl_sql/
13. Morse, J., Morse, R., Tylko, S.: Development of a scale to identify the fall-prone

patients. Canadian Journal on Aging. 8 (4), 366—377 (1989)
14. Oliver, D.: Assessing the risk of falls in hospitals: time for a re-think?. Can. J.

Nurs. Res. 38, 89–94 (2006)
15. Sutton, J.C., Standen, P.J., Wallacem W.A.: Patient accidents in hospital: inci-

dence, documentation and significance. Br. J. Clin. Pract. 48, 6–63 (1994)
16. Halfon, P., Eggli, Y., Van Melle, G., Vagnair, A.: Risk of falls for hospitalized

patients: a predictive model based on routinely available data. J. Clin. Epidemiol 54,
66–1258 (2001)

17. Morse, J.M., Prowse, M.D., Morrow, N., Federspeil, G.: A retrospective analysis
of patient falls. Can. J. Public Health. 76, 8–116 (1985)

18. Nakai, A., Akeda, M., Kawabata, I.: Incidence and risk factors for inpatient falls
in an academic acute-care hospital. J. Nippon Med. School. 73, 70–265 (2006)

19. Schwendimann, R.,Buhler, H.,De Geest, S., Milisen, K.: Falls and consequent inju-
ries in hospitalized patients: effects of an interdisciplinary falls prevention program.
BMC Health Serv. Res. 6, 69 (2006)

20. Ash, K.L., MacLeod, P., Clark, L.: A case control study of falls in the hospital
setting. J. Gerontol Nurs. 24, 7–15 (1998)

21. Krauss, M.J., Evanoff, B., Hitcho, E., Ngugi, K.E., Dunagan, W.C., Fischer, I.,
et al: A case-control study of patient, medication, and care-related risk factors for
inpatient falls. J. Gen. Intern. Med. 20, 22–116 (2005)

22. Ordem dos Enfermeiros, http://www.ordemenfermeiros.pt/

documentosoficiais/

23. McGlynn, E.A., Cassel, C.K., Leatherman, S.T., DeChristofaro, A., Smits, H.L.:
Establishing national goals for quality improvement. Medical Care. 41, I16—I29
(2003)

24. Griffiths, P., Jones, S., Maben, J., Murrells, T.: State of the Art Metrics for Nursing:
A Rapid Appraisal. King’s College London, London (2008)

25. Papanikolaoua, P., Lynea, P., Anthony, D.: Risk assessment scales for pressure
ulcers. International Journal of Nursing Studies 44, 285—296 (2007)

26. Bennett, G., Dealey, C., Posnett, J.: The Cost of pressure ulcers in the UK. Age
and Aging. 33, 230—235 (2004)

802 INForum 2010 António Morais, José Machado, António Abelha, José Neves

Índice de Autores

Ângelo Sarmento, 79

Abel Soares, 403

Alberto Rodrigues da Silva, 461

Alberto Simões, 209

Alysson Bessani, 623, 649

Ana Café, 779

Ana Paula Afonso, 443

Ana Paula Cláudio, 303

André Almeida, 317

André Coelho, 365

André M. Rodrigues da Silva, 519

André Rocha, 197

André Rosa, 447

André Santos, 197

Antónia Lopes, 55

António Abelha, 757, 766, 791

António Carlos da Rocha Costa, 719

António Casimiro, 715

António Coelho, 415

António Morais, 791

Bastian Cramer, 113

Bruno Quaresma, 623

Bruno Teixeira, 99

Carlos Carloto, 502

Casiano Rodriguez-Leon, 173

Cesar Analide, 745

Cláudio Diniz, 573

Daniel Rocha, 197

Daniel Santos, 549

Daniela da Cruz, 137, 197, 209

Davide Carneiro, 745, 779

Diogo Sousa, 99

Duarte Vieira, 599

Dulce Domingos, 611

Eduardo Brito, 477

Eric van Wyk, 213

Eric Vial, 687

Eva Maia, 515

Flávio Cruz, 201

Francisco Andrade, 779

Francisco Martins, 599

Frutuoso G. M. Silva, 341

Gilberto Melfe, 255

Gonçalo Fontes, 353

Hélder Silva, 197

Heitor Ferreira, 391

Helder Coelho, 719

Helena Rodrigues, 439

Hernani Costa, 537

Hugo Areias, 209

Hugo Gonçalo Oliveira, 537

Hugo Miranda, 379, 427

Hugo Ribeiro, 365

Ines C̆eh, 185

Irene Pimenta Rodrigues, 561

Jan Hoogervorst, 473

Jan Wolter, 113

João Alverinho, 217

João Barreto, 291

João Bispo, 699

João Cardoso, 149

João Costa Seco, 19, 31

João Craveiro, 673

João D. Pereira, 573

João de Sousa Saraiva, 461

João Ferreira, 757

João Leitão, 217, 279

João Lourenço, 99

João M. P. Cardoso, 699

João Matos, 379

João Muranho, 255

João Paiva, 217

João Paulino, 243

João Pestana, 19

João Saraiva, 213

João Seco, 91

João Soares, 95

João Sobral, 67

João Sousa, 649

João Tomé da Silva Laranjinho, 561

Joaquim Rosa, 673

Joaquim Tojal, 502

Joel Gonçalves, 711

Jorge Baptista, 549

803

Jorge Carvalho Gomes, 303

Jorge Mendes, 197

Jorge Sousa Pinto, 137

José Delgado, 585

José Freitas, 197

José Machado, 757, 766, 791

José Miguel Faria, 502

José Neves, 791

José Pereira, 231

José Rufino, 673

José Tribolet, 473

Leonel Dias, 415

Lúıs Alexandre, 733

Lúıs Marques, 715

Lúıs Paulo Santos, 328

Luis Garcia-Forte, 173

Luis Lino Ferreira, 711

Luis Machado, 745

Luis Rodrigues, 217, 279

Luis Veiga, 243, 267

Márcio Coelho, 197

Mário Calha, 687

Mário Ferreira, 279

Mário J. Silva, 523

Mário Silva, 365

Margarida Mamede, 79

Maria Beatriz Carmo, 303, 443

Marjan Mernik, 185

Matej C̆repins̆ek, 185

Matheus Almeida, 67

Miguel Araújo, 231

Miguel Areias, 205

Miguel Correia, 661

Miguel Costa, 523

Miguel Domingues, 91

Miguel Henriques, 473

Miguel M. Almeida, 439

Miguel Miranda, 757

Miguel Monteiro, 149

Miguel Raposo, 585

Miguel Regedor, 197

Nelma Moreira, 317, 515

Nestor Catano, 19

Nuno Correia, 447

Nuno Gaspar, 491

Nuno Mamede, 549, 573

Nuno Oliveira, 125

Nuno Preguiça, 95, 391

Nuno Rodrigues, 125

Paula Prata, 255

Paulo André, 161

Paulo Ferreira, 243, 267

Paulo Gomes, 537

Paulo Mariano, 95

Paulo Novais, 745, 779

Paulo Pombinho, 443

Paulo Sousa, 623, 649
Paulo Trigo, 719

Pedro Crispim, 55

Pedro Ferreira, 611
Pedro Rangel Henriques, 125, 137, 197, 209

Pedro Salgueiro, 637
Pedro Santos, 403

Raoul Felix, 267

Ricardo Filipe, 291
Ricardo Guerreiro, 447

Ricardo J. Dias, 31

Ricardo Marques, 328
Ricardo Martinho, 611

Ricardo Mascarenhas, 427
Ricardo Pesqueira, 255

Ricardo Rocha, 201, 205

Ricardo Rodrigues, 31
Rogério Reis, 317, 491, 515

Rui José, 365, 403, 439

Rui Marinho, 766

Sérgio Areias, 137

Sérgio Duarte, 391
Sérgio Nunes, 661

Salvador Abreu, 5, 161, 353, 637, 733

Simão Melo de Sousa, 491, 502
Simona Posea, 149

Tiago Santos, 43
Tomaz̆ Kosar, 185

Uwe Kastens, 113

Vasco Amaral, 447

Vasco M. A. Santos, 341

Vasco Pedro, 5
Vasco Sousa, 447

Vasco T. Vasconcelos, 55

	Prefácio
	Conferências Convidadas
	Distributed coordination
	Hands on a verification challenge: proving a journaled file system correct
	Grammar inference technology applications in software engineering

	Ciência e Engenharia de Software
	Distributed Work Stealing for Constraint SolvingVasco Pedro, Salvador Abreu
	 JFly: A JML-Based Strategy for Incorporating Formal Specications into the SoftwareDevelopment ProcessNestor Catano, João Pestana, Ricardo Rodrigues
	 Snapshot Isolation Anomalies Detection in Software Transactional MemoryRicardo J. Dias, João Costa Seco, João M. Lourenço
	Lightweight Type-Like Hoare-Separation Specs for JavaTiago Santos
	Monitorização da Correcção de Classes GenéricasPedro Crispim, Antónia Lopes, Vasco T. Vasconcelos
	Separation of Concerns in Parallel Applications with Class RefinementMatheus Almeida, João Sobral
	Uma Estrutura de Dados Métrica Genérica, Dinâmica, em Memória SecundáriaÂngelo Sarmento, Margarida Mamede
	LiveWeb - Core Language for Web ApplicationsMiguel Domingues, João Seco
	Replicated Software Components for Improved PerformancePaulo Mariano, Nuno Preguiça, João Soares
	Compiladores e Linguagens de Programação
	A Static Approach for Detecting Concurrency Anomalies in Transactional MemoryBruno Teixeira, João Lourenço, Diogo Sousa
	Animation of Tile-Based Games Automatically Derived from Simulation SpecificationsBastian Cramer, Jan Wolter, Uwe Kastens
	Domain-Specific Language for Coordination PatternsNuno Oliveira, Nuno Rodrigues, Pedro Rangel Henriques
	GammaPolarSlicer: A Contract-based Tool to help on ReuseSérgio Areias, Daniela Cruz, P. R. Henriques, J. S. Pinto
	Identification and Characterization of Crosscutting Concerns in MATLAB SystemsMiguel Monteiro, João Cardoso, Simona Posea
	Producing EAM code from the WAMPaulo André, Salvador Abreu
	Solving Difficult LR Parsing Conflicts by Postponing ThemLuis Garcia-Forte and Casiano Rodriguez-Leon
	Using ontology in the development of domain-specific languagesInes Ceh, Matej Crepinsek, Tomaz Kosar, Marjan Mernik
	AGile, a structured editor, analyzer, metric evaluator, and transformer for Attribute GrammarsAndré Rocha et al
	Efficient Retrieval of Subsumed Subgoals in Tabled Logic ProgramsFlávio Cruz, Ricardo Rocha
	Mixed-Strategies for Linear Tabling in PrologMiguel Areias, Ricardo Rocha
	Parser Generation in Perl: an Overview and Available ToolsHugo Areias, Alberto Simões, P. R. Henriques, Daniela Cruz
	Realizing Bidirectional Transformations in Attribute GrammarsJoão Saraiva, Eric van Wyk
	Computação Distribuída e de Larga Escala
	Curiata: Uma arquitectura P2P auto-organizável para uma localização flexível e eficiente de recursosJoão Alverinho, João Leitão, João Paiva, Luis Rodrigues
	Evaluating Data Freshness in Large Scale Replicated DatabasesMiguel Araújo and José Pereira
	Exploring Fault-tolerance and Reliability in a Peer-to-peer Cycle-sharing InfrastructureJoão Paulino, Paulo Ferreira,Luís Veiga
	Impacto da Organização dos Dados em Operações com Matrizes Esparsas na GPUPaula Prata, Gilberto Melfe, Ricardo Pesqueira, João Muranho
	Scalable and Efficient Discovery of Resources, Applications, and Services in P2P GridsRaoul Felix, Paulo Ferreira, Luís Veiga
	Thicket: Construção e Manutenção de Múltiplas Árvores numa Rede entre ParesMário Ferreira, João Leitão, Luis Rodrigues
	Towards full on-line deduplication of the WebRicardo Filipe, João Barreto
	Computação Gráfica
	Construção Interactiva de Exposições VirtuaisJorge C. Gomes, Maria Beatriz Carmo, Ana P. Cláudio
	GUItar and FAgoo: Graphical interface for automata visualization, editing, and interactionAndré Almeida, Nelma Moreira, Rogério Reis
	Instant Global Illumination on the GPU using OptiXRicardo Marques, Luís Paulo Santos
	Projecções Interactivas na Sala de AulasVasco M. A. Santos, Frutuoso G. M. Silva
	WAACT - Widget Augmentative and Alternative Communication ToolkitGonçalo Fontes, Salvador Abreu
	Computação Móvel e Ubíqua
	A system for coarse-grained location-based synchronisationAndré Coelho, Hugo Ribeiro, Mário Silva, Rui José
	Ad Hoc Routing Under Randomised Propagation ModelsJoão Matos, Hugo Miranda
	Decentralized Processing of Participatory Sensing DataHeitor Ferreira, Sérgio Duarte, Nuno Preguiça
	Displaybook - Bringing online identity to situated displaysAbel Soares, Pedro Santos, Rui José
	Novos Serviços Turísticos para Mobile AdvertisingLeonel Dias, António Coelho
	Um Sistema Publicador/subscritor com Subscrições Geograficamente Distribuídas para RSSFsRicardo Mascarenhas, Hugo Miranda
	Bluetooth Hotspots for Smart Spaces InteractionMiguel M. Almeida, Helena Rodrigues, and Rui José
	Indoor Positioning Using a Mobile Phone with an Integrated Accelerometer and Digital CompassPaulo Pombinho, Ana Paula Afonso, Maria Beatriz Carmo
	Engenharia Conduzida por Modelos
	UbiLang: Towards a Domain Specific Modeling Language for Specification of Ubiquitous GamesRicardo Guerreiro et al
	Web-Application Modeling With the CMS-ML LanguageJoão de Sousa Saraiva, Alberto Rodrigues da Silva
	Enterprise Governance and DEMO: Guiding enterprise design and operation by addressing DEMO competence, authority and responsibility notionsMiguel Henriques, José Tribolet, Jan Hoogervorst
	Especificação, Verificação e Teste de Sistemas Críticos
	A (Very) Short Introduction to SPARK: Language, Toolset, Projects, Formal Methods & CertificationEduardo Brito
	Timing Analysis - From Predictions to CertificatesNuno Gaspar, Simão Melo de Sousa, Rogério Reis
	Towards a Formally Verified Kernel ModuleJoaquim Tojal, Carlos Carloto, José Faria, Simão Sousa
	Inferência de tipos em PythonEva Maia, Nelma Moreira, Rogério Reis
	Reasoning about time-critical reactive systems: A case-studyAndré M. Rodrigues da Silva
	Gestão e Tratamento de Informação
	A Search Log Analysis of a Portuguese Web Search EngineMiguel Costa, Mário J. Silva
	Extração de conhecimento léxico-semântico a partir de resumos da WikipédiaHugo Gonçalo Oliveira, Hernani Costa, Paulo Gomes
	Extraction of Family Relations between EntitiesDaniel Santos, Nuno Mamede, Jorge Baptista
	O impacto de diferentes fontes de conhecimento na marcação de Nomes Próprios em PortuguêsJoão Tomé da Silva Laranjinho, Irene Pimenta Rodrigues
	RuDriCo2 - a faster disambiguator and segmentation modifierCláudio Diniz, Nuno Mamede, João D. Pereira
	Internet das Coisas e Serviços
	Bridging the Browser and the ServerMiguel Raposo, José Delgado
	Execução de Fluxos de Trabalho com Simulação de Redes de SensoresDuarte Vieira, Francisco Martins
	IoT-aware business processes for logistics: limitations of current approachesPedro Ferreira, Ricardo Martinho, Dulce Domingos
	Segurança de Sistemas de Computadores e Comunicações
	Melhorando a Fiabilidade e Segurança do Armazenamento em CloudsBruno Quaresma, Alysson Bessani, Paulo Sousa
	On using Constraints for Network Intrusion DetectionPedro Salgueiro, Salvador Abreu
	TYPHON: Um Serviço de Autenticação e Autorização Tolerante a IntrusõesJoão Sousa, Alysson Bessani, Paulo Sousa
	Web Application Risk Awareness with High Interaction HoneypotsSérgio Nunes, Miguel Correia
	Sistemas Embebidos e de Tempo-Real
	Exploiting AIR Composability towards Spacecraft Onboard Software UpdateJoaquim Rosa, João Craveiro, and José Rufino
	Resilient Middleware for a Multi-Robot TeamEric Vial, Mário Calha
	Using the MegaBlock to Partition and Optimize Programs for Embedded Systems at RuntimeJoão Bispo, João M. P. Cardoso
	A Framework for QoS-Aware Service-based Mobile SystemsJoel Gonçalves, Luis Lino Ferreira
	Dependable Perception in Wireless Sensor NetworksLuís Marques, António Casimiro
	Sistemas Inteligentes
	Decision Making for Agent Moral ConductsHelder Coelho, António Carlos da Rocha Costa, Paulo Trigo
	Development of an Adaptive Interface for the Electronic School NotebookLuís Alexandre, Salvador Abreu
	Jogos de Papéis e Emoções em Ambientes AssistidosLuis Machado, Davide Carneiro, Cesar Analide, Paulo Novais
	O Processo ETL em Sistemas Data WarehouseJoão Ferreira, Miguel Miranda, António Abelha, José Machado
	Processo Clínico Electrónico VisualRui Marinho, José Machado, António Abelha
	Sistema de Resolução Online de Conflito para Partilhas de bens - Divórcios e HerançasAna Café, Davide Carneiro, Paulo Novais, Francisco Andrade
	Sistema Inteligente de Pesquisa de Eventos em EnfermagemAntónio Morais, José Machado, António Abelha, José Neves

	Índice de Autores

