
Lightweight Type-Like Hoare-Separation
Specs for Java

Tiago Santos

Departamento de Informática FCT/UNL, Lisboa, Portugal
tiago.santos@fct.unl.pt

Abstract. Type systems are effective but not very precise, while pro-
gram logics tend to be very precise, but undecidable. The aim of this
work is extend the expressiveness of more familiar type-based verifica-
tion towards more informative logical reasoning, without compromising
soundness and completeness. We thus investigate a lightweight speci-
fication language based on propositional logic for Java and describe a
prototype implementation on top of Polyglot. The verification process is
modular and based on Dijkstra’s weakest precondition calculus, which
we extend to a large fragment of the Java object-oriented language. A
distinguishing aspect of our approach is a novel “dual” separation logic
formulation, which combines Hoare logic with separation logic reasoning
in a unified way, allowing us to handle aliasing through a separation of
pure from linear properties.

Keywords: Lightweight Specifications, Static Analysis, Verifying Com-
piler, Hoare Logic, Separation Logic, Weakest Precondition Calculus

1 Introduction

Over the past decades, specification, verification and validation of software present
a very important role in software development, since they guarantee correctness
and the absence of runtime errors statically, reducing maintenance and devel-
opment costs. Last year marked the fortieth anniversary of Hoare’s article that
contributed to the revolution of this subject [1, 2].

The use of formal methods for verifying program properties has witnessed
an impulse recently, with tools and programming languages (e.g. ESC/Java2 [3],
JACK [4], Spec# [5]) that have great expressiveness power and allow static
verification of programs. However, most of them require user interaction and
have very complex specification language, which are obstacles for their use.

Lightweight specification languages, on the other hand, thought presenting
less expressiveness, still allow reasoning about interesting properties of a system
with less effort, thus making its usage compelling in software development.

Figure 1 illustrates a simple example of how to specify the absolute value of
a number, ensuring that the result is never negative (ensures !return:neg).
Other motivating examples are the specification of a buffer, where one can write
only if there are free positions and read if the buffer has data; protocols that

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 43–54

public int abs(int x)

ensures !return:neg

{

if (x > 0) return x;

else return -x;

}

Fig. 1. Specification – Absolute Value of a Number

follow a similar approach, such as specifying an FTP session; and simpler situa-
tions, like ensuring that a given variable is not null, avoiding invalid dereferences.
With our solution, these checks can be specified in a simple way and with little
impact on the compilation process.

This paper presents a lightweight specification language and its integration
into the Java programming language, by extending its type system and creating
a verifying compiler. This extension, called SpecJava, allows the use of assertions
in the Java language, providing developers a way to write correct programs ac-
cording to their specifications. The specifications can be expressed in a simple
way when compared to existing tools and the verification process is fully auto-
matic. The main contributions of this paper are:

– a lightweight specification language for Java and the underlying logic (Sect. 2);
– the technique used to verify a SpecJava program (Sect. 3);
– the implementation of SpecJava (Sect. 4).

2 Lightweight Specification Language

SpecJava’s specification language is similar to JML [6] and Spec# [5], but is
lightweight and based on a monadic dual logic. It is simpler, not presenting, for
example, quantifiers and reference to the value of an expression in its precondi-
tion and uses a novel approach to handle aliasing by separating pure from linear
properties. Like JML and Spec#, we use the reserved keywords requires and
ensures to describe, respectively, pre and postconditions of a procedure. As for
class and loop invariants, we use also the keyword invariant.

2.1 Dual Hoare-Separation Logic

In this section we present the underlying logic of the developed specification
language denoted dual logic. The purpose of defining a new logic comes from
the need of having aliasing control on our specification language, since we are
extending an object-oriented language where alias can occur. The original Hoare
Logic was designed for an imperative programming language with only simple
values, where therefore aliasing does not cause any problems.

As the name suggests, a dual logic formula is composed by two components
(Fig. 2): the left side (φ), named pure formula, composed by a single formula in
propositional logic, states properties of immutable objects, or objects that cannot

44 INForum 2010 Tiago Santos

ψ ::= φ+ ϕ (Dual Formula)
ϕ ::= ∅ | φ | φ ∗ ϕ (Linear Formula)
φ ::= (Classic Formula)

⊥ (Bottom)
| φ lc φ (Binary Formula)
| ¬φ (Negation)
| (φ) (Parenthesized Formula)
| P (t1, t2, · · · , tn) (Predicate Symbols)

lc ::= ∨ | ∧ | ⇒ | ⇔ (Logical Connectives)
t ::= (Terms)

c (Constants)
| x (Variables)
| f(t1, t2, · · · , tn) (Function Symbols)

Fig. 2. Dual Logic Syntax

be aliased (e.g. primitive types of Java) and the right side (ϕ), named linear
formula, composed by a set of classic formulas in propositional logic, models the
linear part of the heap (inspired by separation logic [7]). The formulas in the
linear side are disjoint, in the sense that two formulas can not refer to a same
linear object, and each formula only talks about a single linear object. Note
the existence of predicates and functions that allow, respectively, to express
properties (such as relations between two terms for e.g. >(2, 3)) and compose
constants and variables with operators to do certain computations (e.g. −(2, 3)).

We can also state specific zones of the heap on which we want to mention
properties by using heap restriction, defined as follows.

Definition 1 (Heap Restriction). Let ϕ be a linear formula and x1, x2, · · · , xn

linear variables, then ϕ ↓ {x1, x2, · · · , xn} is named restricted linear formula to
x1, x2, · · · , xn, that is, the subset of formulas contained in ϕ that correspond to
the variables x1, x2, · · · , xn.

In addition to this definition, we can exclude parts of the heap over which we
do not intend to refer properties.

Definition 2 (Heap Exclusion). Let ϕ be a linear formula and x1, x2, · · · , xn

linear variables, then ϕ − {x1, x2, · · · , xn} is named linear formula excluding
x1, x2, · · · , xn, that is, the subset of formulas contained in ϕ that do not contain
information of variables x1, x2, · · · , xn.

As an example, in Fig. 3, we define a linear formula (ϕ) and apply the two
previous definitions.

ϕ ≡ P1(x) ∗ P2(y) ∗ P3(z)
ϕ↓{x, z} = P1(x) ∗ P3(z)

ϕ− {x, z} = P2(y)

Fig. 3. Heap Restriction and Exclusion Example

Lightweight Type-Like Hoare-Separation INForum 2010 – 45

2.2 Assertions

In this section we present the abstract syntax of SpecJava’s assertions. As we can
see in Fig. 4, this allows to describe the state in which certain objects or primi-
tive types are, specifically, fields (fn), procedures parameters (pn) and methods
return (return), or the state of the class itself (this). States are composed
by a set of basic states, which apply to primitive types. For primitive boolean
variables, we associate the states true and false and for numeric variables, we
associate pos, neg or zero. With regard to object references, these can be null
references (null), or refer to states defined in the class of the object type (sn).

D ::= CF + SLF (Dual Formula)
SLF ::= CF | CF * SLF (Sep. Formula)
CF ::= true | false | CF bop CF | !CF | b : S (Classic Formula)
bop ::= && | || | => | <=> (Logical Connectives)
b ::= fn | this | return | pn (Properties/States – Target)
S ::= true | false | pos | neg | zero | null | sn (Properties/States)

pn, sn, fn ∈ parameter/state/field names

Fig. 4. Abstract Syntax – Assertions

2.3 Classes

In this section we present the abstract syntax for classes. As we can see in Fig. 5
the novelty is the class specification. An invariant declared as invariant D
express a property that all classes instances must satisfy. A class preserves its
invariants if all methods preserve those invariants. However, contrarily to Spec#,
where we can only temporarily break invariants via an explicit statement, in our
solution invariants can be broken during a method’s execution, as long as they
are restored at the end. The constructors must guarantee also, in addition to
their postconditions, the invariants of the class.

In addition to class invariants, class level specifications are composed by two
other constructions, to define states/properties associated to the class. These can

classDecl ::= class cn { classMember∗ } (Class Declaration)
classMember ::= . . . | field | method | constructor | classSpec (Class Member)
classSpec ::= (Class Specification)

define sn; (Abstract Definition)
| define sn = D; (Concrete Definition)
| invariant D; (Class Invariant)

field ::= T fn (= E)? ; (Instance Variable)

mn, cn, sn, fn ∈ method/class/state/field names

Fig. 5. Abstract Syntax – Classes

46 INForum 2010 Tiago Santos

be concrete or abstract, and are declared as define sn = D and define sn, re-
spectively. Concrete definitions are built based on states/properties observed in
class instance variables and/or other definitions at class level (abstract or con-
crete). Abstract definitions represent class abstract states/properties, without
using other definitions and/or states observed in class instance variables.

2.4 Procedures

In this section we present the abstract syntax for procedures. Methods and
constructors specification consists of two formulas concerning to preconditions
and postconditions, declared as requires D, ensures D, respectively (Fig. 6).

method ::= modifier T mn(arg) spec { ST } (Method Declaration)
constructor ::= modifier cn(arg) spec { ST } (Constructor Declaration)
modifier ::= static | . . . | pure (Modifiers)
spec ::= (Procedure Specification)

requires D (Precondition)
| ensures D (Postcondition)

ST ::= ... (Statement)
| assume D (Assume)
| sassert D (Static Assert)

mn, cn ∈ method/class names

Fig. 6. Abstract Syntax – Procedures

The preconditions of a procedure specify conditions that must be true at the
beginning of its execution. In these conditions we can refer to properties from
the class, fields, and method parameters. With respect to postconditions, they
designate the object state after performing the operation, and may involve, in
their conditions method’s return state.

In addition to these specifications, assume and assert statements are also
supported, with the usual meaning of assuming or verifying a condition at a
given point by using assume D and sassert D, respectively. Last but not least,
to specify that a procedure do not change the state of an object, Java modifiers
are extended with the keyword pure.

As an example, in Fig. 7 we create a buffer class with the states full and
empty (Fig. 7a) and the respective constructor with a specification to ensure
that the buffer is created empty (Fig. 7b).

3 Program Verification

This section presents the verification process of a SpecJava program. Our ap-
proach is based on the weakest precondition calculus (wp-calculus, Definition 3),
initially proposed by Dijkstra [8, 9], that extended Hoare Logic [1] by creating

Lightweight Type-Like Hoare-Separation INForum 2010 – 47

public class Buffer {

define empty = count:zero;

define full;

private int buffer[];

invariant + !buffer:null;

...

private int count;

invariant !count:neg;

...

}
(a) Class Specification

public Buffer(int size)

requires size:pos

ensures + empty && !full

...

{ ...

assume + empty && !full;

}

public pure int dataSize()

ensures return:zero

|| return:pos

{ sassert !count:neg;

return count;

}
(b) Procedures Specification

Fig. 7. SpecJava – Buffer Specification Example

a method to define the semantics of an imperative programming language, as-
signing to each statement a predicate transformer, allowing validity verification
of a Hoare Triple. In this work, we propose an extension to that calculus, for an
object-oriented language, in this case Java. According to the properties referred
in [9, pp. 18:19], to prove that a SpecJava program is correct against its specifi-
cation, it is necessary to associate to each statement its predicate transformer.

Definition 3 (Weakest Precondition). Let S be a sequence of statements
and R its postcondition, then, the corresponding weakest precondition is repre-
sented as:

wp (S, R)

Figures 8 and 9 illustrate the more relevant weakest preconditions rules,
which concern to loops, object creation and non-void method invocation.

Figure 8 presents wp-calculus for pure statements. In loops, the loop con-
dition (ε) must be pure, composed only by constants or variables of primitive
types. Regarding to object creation, these have to be immutable or pure. In this
approach an object is considered pure if all methods of the object class are pure.
For non-void method invocation the return value is also pure. We can see that
the weakest precondition rule for loop is quite simple and corresponds to its
invariant, since the invariant must hold in every iteration of the loop and it also
must be valid at the beginning of the loop, corresponding to the premises of the
rule.

Concerning to object creation, it is necessary to have as its weakest precon-
dition, on the pure side of the result, in respect to a postcondition C + S the
class constructor precondition of the object that we are instantiating, and also
that we end in a state whose constructor postcondition implies C. For the linear
part of the result, since we can have linear arguments we must assure as weakest
precondition the constructor precondition, remaining all the facts of elements

48 INForum 2010 Tiago Santos

[loop]

(I ∧ ¬ε)⇒ R (I ∧ ε)⇒ wp(ST, I)

wp

(
while (ε)

invariant I
ST

, R

)
= I

[pure creation]

S↓{z} = ∅

wp(x = new cn(y, z), C+S) =

QcnA

[p1/y]
∧ f 6= null

∧
RcnA

[this/f, p1/y]

⇒ C[x/f]

+

(
QcnB

[p2/z]
∗

S − {z}

)

[pure non-void call]

S↓{z} = ∅

wp(x = k.mn(y, z), C+S) =

k 6= null ∧QmnA

[this/k, p1/y]
∧ k 6= null

∧
RmnA

[this/k, p1/y, return/f]

⇒ C[x/f]

+

(
QmnB

[p2/z]
∗

S − {z}

)

Qmn/Qcn ∈ method/constructor precondition
Rmn/Rcn ∈ method/constructor postcondition

ε ∈ pure expression
p1/y ∈ pure formal/concrete parameters
p2/z ∈ linear formal/concrete parameters

f ∈ fresh name

Fig. 8. WP Calculus – Pure Rules

that are not affected by the procedure call on the heap, through heap exclusion
(cf. Definition 2) of the constructor linear parameters. For non-void method in-
vocation the weakest precondition is similar to object creation, but in addition
we must guarantee that we are not doing a null reference invocation (k 6= null).
We can see also that we replace x and the return variable by a fresh name f
in the pure side, because the result is pure and we are assigning a new value
to the variable x that corresponds to the newly created object or the result of
the method. Last but not least, we also need to have the auxiliary condition in
the premise, which allow us to check that the postcondition S does not refer to
states of the linear parameters, assuring the linearity of our calculus.

Figure 9 shows weakest precondition calculus for linear statements. As we can
see these rules are quite similar to pure statements weakest precondition calculus.
For procedures we must exclude variable x from the heap (cf. Definition 2)
because now x is linear and we are assigning it a new value that does not exist
at the precondition state. For methods we must also guarantee that we exclude
information about the object where we are calling the method because since the
call is not pure we assume that the state of the object changes. In respect to
linear assignment, this is similar to Hoare assignment rule and we must guarantee
as precondition that variable y acquire x properties by replacing all occurrences
of x by y.

As for the auxiliary conditions in the premises, we must check in object
creation and method call that after the invocation we end in a state where the

Lightweight Type-Like Hoare-Separation INForum 2010 – 49

[linear assign]

S↓{y} = ∅
wp(x = y, C+S) = C+S[x/y]

[linear creation]

S↓{z} = ∅ true+

((
x 6= null ∧ RcnB

[this/f]
)
⇒ S↓{x, z}[x/f]

)

wp(x = new cn(y, z), C+S) =

(
QcnA

[p1/y] ∧(
RcnA

[p1/y]⇒ C
))+

(
QcnB

[p2/z] ∗ S−{x, z}
)

[linear non-void call]

S↓{z} = ∅ true+

((
k 6= null ∧ RmnB

[this/k, return/f]
)
⇒ S↓{k, x, z}[x/f]

)

wp(x = k.mn(y, z), C+S) =

(
QmnA

[p1/y] ∧(
RmnA

[p1/y]⇒ C
))+

((
k 6= null ∧QmnB

[this/k, p2/z]
)
∗

S − {k, x, z}

)
Qmn/Qcn ∈ method/constructor precondition
Rmn/Rcn ∈ method/constructor postcondition

p1/y ∈ pure formal/concrete parameters
p2/z ∈ linear formal/concrete parameters

f ∈ fresh name

Fig. 9. WP Calculus – Linear Rules

procedure’s postcondition implies the linear zone of the heap modified by the
procedure, by restricting the heap (cf. Definition 1) and that the postcondition
S does not refer to states of the linear parameters. It is still necessary to verify,
in linear assignment that we do not have information of variable y on the linear
side of the heap, since our calculus is linear and the state of y is transfered to x
after the assignment, removing all the facts of y from the heap.

To verify that a program is correct according to its specification, the following
Hoare Triples must be valid:

∀mn : { Qmn ∧ Ic } ST { Rmn ∧ Ic }
∀cn : { Qcn } ST { Rcn ∧ Ic } ,

where ST is the procedure body, composed by a sequence of statements and
Ic corresponds to class invariants. Thus, methods must preserve class invariants
and constructors in addition to its postconditions must assure also the class
invariants.

Supposing that we have a SpecJava program, we want to verify that it is
valid against its specification using the above mentioned weakest precondition
calculus. The verification process is modular, that is, only one procedure at a
time is verified. Considering the body of a procedure of this language as the
statements sequence s1, s2, . . . , sn with precondition { Q } and postcondition
{ R }, by applying wp-calculus rules, we obtain as a final result the more general
precondition ({ Q0 }). After this process, for the program to be valid according
to its specification, the precondition of the procedure has to imply the more
general one (Q⇒ Q0).

50 INForum 2010 Tiago Santos

The formulas obtained in the verification conditions generation process are
formulas in propositional logic, unlike other situations where are generated for-
mulas in first order logic, due to quantifiers, which are not present in the devel-
oped specification language, therefore reducing them to a propositional calculus.
A formula in propositional logic is said to be satisfiable if we can assign logical
values to its variables so that the formula is true. This boolean satisfiability
problem is NP-complete, thought is decidable and can be solved using a SAT-
Solver. However, the formulas obtained by our calculus contain, uninterpreted
predicates and functions that require specific background theories to be solved.
For obtaining solutions to these problems, is common to use SMT-Solvers [10].

Despite of an NP-complete problem, there are finite algorithms for obtaining
solutions to these problems. However these algorithms execution time may be
too high due to the size of the formulas to be verified. Although, we think that
this is not a problem to this solution, since it is modular, procedure by procedure,
and the size of the formulas is not very high.

4 Implementation

This section presents some implementation details of our system. The extension
of the Java language was implemented using the Polyglot tool [11], which im-
plements an extensible compiler for Java 1.4. This tool is also implemented in
Java and, in its simplest form only, performs semantics verification of Java. How-
ever, it can be extended in order to define changes in the compilation process,
including changes in the abstract syntax tree (AST) and semantic analysis.

Polyglot has been used in several projects and has proved to be quite useful
when developing compiler extensions to Java-like languages. This work’s speci-
fication language was fully integrated in the Java compiler, extending the Java
syntax with the language proposed in Sect. 2.

The verification process of a program was integrated into Polyglot compila-
tion passes. In addition we extended the semantics verification and typification
with new conditions, like not allowing to state a linear property on a pure for-
mula, properties that are not declared, assuring that primitive types only refer to
base properties, etc. We developed an internal representation for propositional
and dual logic formulas aiming an independent format that can be used by
any SMT-Solver. We have also implemented a visiting architecture over formu-
las to perform operations needed by wp-calculus, such as variable substitution,
conversion to conjunctive normal form, obtaining pure and linear variables of
a formula, etc. As for the wp-calculus, it is realized in a new pass, after type
checking, that goes through each procedure generating the corresponding verifi-
cation conditions. After this step another pass translates the generic formulas to
the SMT-Solver representation and submits it for validity proof. Thus by using
this architecture the verification process is independent from a particular SMT-
Solver until the submission point, allowing further extensions to any SMT-Solver
just by adding a class that translates the generic formulas to the solver’s input
format or the recently used SMT-lib format. The current SMT-Solver used is

Lightweight Type-Like Hoare-Separation INForum 2010 – 51

SpecJava
Source
Code

SpecJava
AST

Java AST
+

Serialized
Type Information

Bytecode
+

Serialized
Type Information

SpecJava
Parser

Compiler
Passes

Code
Generation

Type Builder, Imports,
Type Checking, Exceptions

Checking, VC Generation, etc

Fig. 10. SpecJava Compiler Architecture

CVC3, it is efficient and has the necessary built-in theories (equality over unin-
terpreted function and predicate symbols, real and integer linear arithmetic) to
prove our verification conditions.

We illustrate the compiler architecture of the developed language in Fig. 10.
First, the source code is parsed, generating the corresponding AST. Next, sev-
eral passes are performed over the AST, including the passes described above. In
these passes, if any error occurs (e.g. typing, invalid specification), the compila-
tion process terminates showing the cause of the error, the location in the source
code and a counter-example, in case of invalid specification. In a next stage, the
AST is translated into a Java AST with type information serialized, preserving
new types created by the extension. Finally, the Java code obtained from the
previous pass is compiled to bytecode by a standard Java code compiler (e.g.
javac).

5 Related Work

There are lots of tools and programming languages that support program verifi-
cation according to its specification (e.g. ESC/Java2 [3], Eiffel [12], Spec# [5]).
Some of them, like Eiffel, transform program specification into executable code
and perform those verifications at runtime, while others also support formal veri-
fication of a program with static analysis (e.g. Spec#). There are four properties
that characterize these tools: specification language used, programming language
coverage, verification techniques and verification mode.

Regarding the specification language used, tools like ESC/Java2, LOOP [13],
JACK [4] and Forge [14] use JML. In KeY [15] specifications are written in OCL.
Spec# programming language and jStar [16] tool, have their own specification
language. Spec#’s specification language is similar to JML and jStar’s is far-
most different from the others. In our approach, the specification language is
closer to Spec# and JML, but with the novelty of separating pure from linear
properties, modeling the heap on the linear side of a formula to track aliasing
problems, that cannot be expressed on those languages. Spec#, instead, uses a
ownership model to deal with aliasing and specifies frame conditions explicitly
by using a modifies clause denoting which pieces of the program state a method
is allowed to modify.

As for programming language coverage, Spec# and ESC/Java2 cover most of
their respective target languages’ constructions. In ESC/Java2 it is also possible

52 INForum 2010 Tiago Santos

to detect synchronization errors such as race conditions and deadlock situations
at compile time. Certain tools do not support some features of Java such as
dynamic class loading or multithreading (e.g. KeY, Forge, LOOP). In this ver-
sion of our solution some features of Java are not supported, like inheritance,
exceptions, break, continue and switch statements, interface specifications.

With regard to verification techniques, there are several approaches. ESC/-
Java2, LOOP, JACK and Spec# use Dijkstra weakest precondition calculus or
variants to generate verification conditions. KeY tool uses dynamic logic, where
deduction is based on symbolic execution of the program. Forge uses a tech-
nique named limited verification that uses symbolic execution and reduces the
problem to boolean variables satisfiability. As for jStar, it combines abstract
predicate family with symbolic execution and abstraction using separation logic.
LOOP defines a denotational semantics in PVS, in contrast to the approaches
followed by ESC/Java2, JACK and Spec# that depend directly on an axiomatic
semantics. Our approach is based on a variant of Dijkstra wp-calculus to object-
oriented languages resembling ESC/Java2, JACK and Spec# and also depends
on an axiomatic semantics.

Finally, with regard to verification mode, in ESC/Java2, Forge, jStar and
Spec# the verification process is fully automatic, as our SpecJava. LOOP tool
needs user intervention. KeY and JACK support both modes.

With these tools we can verify a program against its specification. They have
high expressiveness level and allow very complex specification. However, this is
the main reason for its rejection by developers, who in general do not have high
expertise in logic, nor intend to deal with all the complex mechanisms that are
associated with most of these tools. Another point is the fact that most tools
are not native to the respective programming language, which forces the use of
separated tools in the software development process. On the other hand, our
work has less expressive power, but still allows interesting specifications to be
written, and its simplicity is appealing to developers.

6 Concluding Remarks and Future Work

In this paper we presented a lightweight specification language for Java, its inte-
gration in the compilation process, extending the checks carried out by the type
system, and the underlying calculus of the verification process of a SpecJava
program. The lightweight specification language developed is closer to JML and
Spec#, it is based on propositional logic and is quite intuitive, allowing devel-
opers to specify their programs easily and check them automatically at compile
time.

This work contributes for a better and easier integration of program verifica-
tion during its development by augmenting the programming language design.
For future work we highlight the following points:

– extend wp-calculus to support inheritance and exception mechanisms;
– support specification at interface level and in separated files, allowing core

Java classes specification;

Lightweight Type-Like Hoare-Separation INForum 2010 – 53

– support break and continue statements, that change the execution flow of
a program.

Acknowledgments. I would like first to thank Prof. Lúıs Caires for his guid-
ance throughout the development of this work. I thank to Mario Pires and Lúısa
Lourenço for their comments on previous versions of this paper.

References

1. C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communications
of the ACM, 12(10):576–580, October 1969.

2. C. A. R. Hoare. Retrospective: An Axiomatic Basis for Computer Programming.
Communications of the ACM, 52(10):30–32, 2009.

3. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, et al. Extended Static
Checking for Java. In PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Confer-
ence on Programming language design and implementation, pages 234–245. ACM,
New York, NY, USA, 2002.

4. G. Barthe, L. Burdy, J. Charles, et al. JACK – a tool for validation of security
and behaviour of Java applications. Lecture Notes in Computer Science, 4709:152,
2008.

5. Mike Barnett, Leino, and Wolfram Schulte. The Spec# Programming System: An
Overview, volume 3362/2005 of Lecture Notes in Computer Science, pages 49–69.
Springer, Berlin / Heidelberg, January 2005.

6. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A Notation for Detailed
Design, 1999.

7. John C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures.
Logic in Computer Science, Symposium on, 0:55–74, 2002.

8. Edsger W. Dijkstra. Guarded Commands, Nondeterminacy and Formal Derivation
of Programs. Communications of the ACM, 18(8):453–457, August 1975.

9. Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Inc., October
1976.

10. L. De Moura and N. Bjørner. Satisfiability Modulo Theories: An Appetizer. Formal
Methods: Foundations and Applications, pages 23–36, 2009.

11. Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: An
Extensible Compiler Framework for Java. In 12th International Conference on
Compiler Construction, pages 138–152. Springer-Verlag, 2003.

12. Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall PTR, sec-
ond edition, March 2000.

13. B. Jacobs and E. Poll. Java Program Verification at Nijmegen: Developments and
Perspective. Lecture Notes in Computer Science, pages 134–153, 2004.

14. G.D. Dennis. A Relational Framework for Bounded Program Verification. PhD
thesis, Massachusetts Institute of Technology, 2009.

15. Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, et al. The KeY tool. Software
and Systems Modeling, pages 32–54, April 2004.

16. Dino Distefano and Matthew. jStar: Towards practical verification for Java. SIG-
PLAN Not., 43(10):213–226, 2008.

54 INForum 2010 Tiago Santos

