
JFly: A JML-Based Strategy for Incorporating
Formal Specifications into the Software

Development Process

Nestor Catano1, João Pestana2, and Ricardo Rodrigues2

1 The University of Madeira, M-ITI, CMU-Portugal
ncatano@m-iti.org

2 The University of Madeira, Portugal
{joao.pestana,ricardo.rodrigues}@max.uma.pt

Abstract. This paper presents JFly, a JML-based strategy for incor-
porating formal specifications into the software development of object
oriented programs. The strategy consists in evolving functional require-
ments into a semi-formal requirements form, and then expressing these
requirements as JML formal specifications. What makes our strategy
different from existing strategies is the particular use of JML we make
all along the way from requirements to validation-and-verification. We
validate our strategy with the formal development of a smart card ap-
plication for managing medical information.

1 Introduction

Although software engineering methods provide a disciplined approach to soft-
ware development, it is still quite common to find flawed software systems. A
way to construct correct programs is through the use of formal specifications as
part of a software engineering practice. In this paper, we propose JFly, a strat-
egy that incorporates formal specifications into the software development process
of object oriented programs by evolving informal functional requirements into
formal specifications (Section 2). Having informal functional requirements mod-
elled in a formal specification language allows for the use of formal methods tools
for checking program correctness. We use JML [11] as the formal specification
language for writing our specifications. Our strategy consists in evolving infor-
mal functional software requirements written in natural language (e.g. English
or Portuguese) into semi-formal requirements, i.e. requirements written in nat-
ural language, yet in a more mathematical style. Hence, informal requirements
are written as semi-formal functional requirements of the form if <event> then
<restriction>, or as semi-formal class and system invariants. Semi-formal require-
ments are then written as JML method specifications and JML class invariants
respectively. We validate our strategy with the development of a HealthCard
smart card application (Section 3). We used the JML Common tools [3] to check
the HealthCard for correctness. Neither using formal specifications to increase
confidence in a system implementation nor gradually transforming software re-
quirements from a high level of abstraction to a more concrete level are new

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 19–30

ideas [6, 8, 10]. What makes our strategy different from others is the particu-
lar use of JML specifications we make all along the way from requirements to
validation-and-verification.

L. Shaoying et al. in [15] propose the SOFL methodology for software devel-
opment. The SOFL language integrates Data Flow Diagrams, Petri Nets, and
VDM-SL. Likewise JFly, in SOFL, the process of writing formal specifications is
the result of a 3-step process that evolves informal specifications into an abstract
formal specification. The SOFL methodology has established a much more ma-
ture technique for developing formal design specifications for software systems
than the JFly strategy presented by us. Nonetheless, having formal specifications
expressed directly in JML, rather than using an abstract general form, allows the
direct use of JML tools, which implement various formal checking techniques.
JML is a formal specification language that uses a syntax close to Java syntax
and hence Java programmers find JML easy to use, which helps to bridge the
gap between mathematical formalisms and software engineering techniques [4].

Supplementary to our work, V. T. Vasconcelos et al. have implemented the
ConGu tool [16], which reduces the problem of checking algebraic specifications
to the run-time monitoring of contracts described in JML. Their work extend our
work in a way that further considers algebraic specifications to express correct
software components.

Finally, M. G. Ilieva and O. Ormandjieva have studied the automatic trans-
lation of software requirements written in natural language into formal specifi-
cations [9]. Our work is less ambitious, yet more practical.

1.1 The Java Modeling Language (JML)

JML is a behavioral interface specification language for Java, which means that
the only correct implementation of a JML class specification is a Java class im-
plementation with the specified behavior. JML is now an academic community
effort with many groups developing tools to support JML [3]. In JML, methods
are specified using requires, modifies, and ensures clauses, which give the pre-
condition, the frame (what locations may change from the pre- to the poststate),
and the postcondition respectively. A method specification can also include an
exsures or signals clause to specify conditions under which the method could
throw an exception. Class invariants can also be written to constrain the states
of objects. JML specifications use Java syntax and are embedded in Java code
between special comments /*@ ... @*/ or after //@. A simple JML specification
for a Java class consists of pre- and post-conditions added to its methods, and
class invariants restricting the possible states of class instances. Specifications
for method pre- and post-conditions are embedded as comments immediately be-
fore method declarations. JML predicates are first-order logic predicates formed
of side-effect free Java boolean expressions and several specification-only JML
constructs. Because of this side-effect restriction, Java operators like ++ and --
are not allowed in JML specifications. JML provides notations for forward and
backward logical implications, ==> and <==, for non-equivalence <=!=>, and for

20 INForum 2010 Nestor Catano, João Pestana, Ricardo Rodrigues

logical or and logical and, || and &&. The JML notations for the standard uni-
versal and existential quantifiers are (\forall T x; E) and (\exists T x; E),
where T x; declares a variable x of type T, and E is the expression that must
hold for every (some) value of type T. The expressions (\forall T x; P; Q) and
(\exists T x; P; Q) are equivalent to (\forall T x; P ==> Q) and (\exists
T x; P && Q) respectively.

1.2 The JML Common Tools

The JML common tools [3, 2] is a suite of tools providing support to run-time as-
sertion checking of JML-specified Java programs. The suite includes jml, jmlc,
jmlunit and jmlrac. The jml tool checks the JML specifications for syntax
errors. The jmlc tool compiles JML-specified Java programs into a Java byte-
code that includes instructions for checking JML specifications at run-time. The
jmlunit tool generates JUnit [12] unit tests code from JML specifications and
uses JML specifications processed by jmlc to determine whether the code being
tested is correct or not. Test drivers are run by using the jmlrac tool, a modi-
fied version of the java command that refers to appropriate run-time assertion
checking libraries.

The JML common tools make possible the automation of regression test-
ing from the precise, and correct JML characterisation of a software system.
The quality and the coverage of the testing carried out by JML depend on the
quality of the JML specifications. The run-time assertion checking with JML is
sound, i.e., no false reports are generated. The checking is however incomplete
cause users can write informal descriptions in JML specifications, e.g., (* x is
positive *). The completeness of the checking performed by JML depends on
the quality of the specifications and the test data provided.

2 JFly: the Proposed Strategy

We have developed a strategy for evolving informal functional requirements into
formal specifications, which can be employed as part of existing object-oriented
software development methodologies [14] (Chapter 28). Hence, software devel-
opers must define precise interface specifications for underlying software com-
ponents, based on data types and the conceptual metaphor of the design-by-
contract [13]. The strategy consists in incorporating informal, semi-formal, and
formal specifications all along an existing object-oriented software engineering
methodology. In Figure 1, we do not restrict any phase to occur before or af-
ter any other phase, so that arrows convey information on usage rather than
on precedence in time. Software development phases are iterative so that they
can be revisited at later phases to obtain a correct implementation of the sys-
tem. During the analysis phase, “informal” functional requirements are written
(functional requirements written in natural language). As informal functional
requirements are expressed in a natural language, inconsistencies can be in-
troduced during the analysis phase. Hence, informal functional requirements are

JFly: A JML-Based Strategy ... INForum 2010 – 21

Fig. 1. The Software Development Process

first evolved into “semi-formal” requirements (see Arrow 1), and then ported into
JML formal specifications (see Arrow 4). Having formal specifications expressed
in JML makes it possible to use JML-based formal methods tools to check for
flaws. The semi-formal requirements are divided into three parts, namely the
semi-formal functional requirements (ported into JML method specifications),
the class invariants, and the system invariants (these two are ported into JML
class invariant specifications). Evolving the informal functional requirements into
semi-formal ones involves expressing informal requirements into an if <event>
then <restriction> form (see Section 3.3 for details).

During the design phase, the requirements gathered from the analysis phase
are used to define the structure of the system (see Arrow 2), which is later used to
write classes, their attributes, their methods, and the relations among them (see
Arrow 3). These classes are specified with JML as described above. During the
implementation, we start by writing Java interfaces and Java abstract classes.
From the semi-formal requirements, JML functional specifications are written
for abstract methods in Java interfaces and abstract classes, and JML class
invariants are written, modelling global properties of the system. Finally, JML
abstract variables are defined to describe the distinct abstract data types used
in the application, and how they are manipulated through class inheritance (see
Section 3.5). JML specifications provide support to the writing of correct code
for concrete classes that implement the interfaces and the abstract Java classes.
JML specifications also provide support to a business contract programming
style of programming, in accordance with Bertrand Meyer’s design-by-contract
principles.

22 INForum 2010 Nestor Catano, João Pestana, Ricardo Rodrigues

During the validation-and-verification phase, the implementation is checked
against the JML specifications (Arrow 5), using the JML Common Tools [3]. If
they issue an error, then the implementation or the specifications are evolved
accordingly. Therefore, it is possible to go back to a previous phase and make
amendments to the JML specifications or the implementation itself. Notice that
inconsistencies can be detected before an implementation for the system is writ-
ten. For instance Java interfaces and Java abstract classes are checked against
JML specifications before writing an implementation for these classes and inter-
faces, or JML specifications can be validated in isolation [5].

3 A Running Example

3.1 The HealthCard Application

In the following, we describe the HealthCard smart card application we used
to validate our strategy. HealthCard stores people’s medical information. Smart
cards are pocket-sized plastic cards with embedded integrated circuits that pro-
cess data. A typical smart card application includes on-card applets (the applets
running on the card), a card reader-side, and off-card applications (e.g. a com-
puter program communicating with the card applets). HealthCard is written in
Java Card, a subset of Java used to program card applets. We used the Java
Card Remote Method Invocation (JCRMI) model for communication between
off-card applications and on-card applets. This model implements a client-server
setting with the HealthCard acting as server, and off-card applications as clients,
communicating via APDU (Application Protocol Data Unit) messages. Figure
2 shows the structure of the HealthCard. A patient can use his HealthCard to
furnish accurate medical information to general practitioners in medical centres
with the appropriate system to read it. The HealthCard manages the patient’s
personal details, his allergies, his historical record of vaccines, diagnosis, treat-
ments and prescribed medicines. The HealthCard is divided in several modules
for managing medical information. Each module has a remote interface and an
implementation class that serves the appropriate services. All the remote inter-
faces are referenced in a single remote interface named CardServices whereby an
external client can invoke services. Hence, if an external client calls the method
getApp() in CardServices, it gets a reference to the Appointments remote in-
terface. This reference is then used to invoke appropriate methods implementing
services.

3.2 Informal Functional Requirements

Informal functional requirements define, in an informal way, the inputs, the
behavior, and, in general, functional restrictions of the system to develop. In
the following, we present a small example from the HealthCard system that
shows how informal functional requirements are evolved into the three kind of
semi-formal requirements described in Section 2. We present below some of the
informal requirements of the HealthCard application.

JFly: A JML-Based Strategy ... INForum 2010 – 23

Fig. 2. The Health Card System Structure

IFR1 There must not exist duplicated entries for allergies with the same designa-
tion code.

IFR2 A fixed number of allergies can be introduced in the card only.
IFR3 All allergy designation codes must have a stipulated length.
IFR4 The prescription date of a medicine must be bigger than or equal to the date

of the appointment in which the medicine was prescribed.

The following sub-sections show how the informal requirements above are
evolved into semi-formal requirements. Evolving informal requirements into semi-
formal requirements is not a deterministic process, nonetheless it obeys general
guidelines that proved to be practical in the development of the HealthCard.
Informal requirements involving several domain concepts (e.g. medicine and ap-
pointment in IFR4) are evolved into system invariants; informal requirements
involving or restricting a single domain concept (e.g. allergy in IFR3) are evolved
into class invariants; informal requirements functionally restricting a single do-
main concepts under certain events (e.g. IFR1 and IFR2) are evolved into semi-
functional requirements that follow an if <event> then <restriction> mathemat-
ical form, which is close to a JML method specification style.

Because of the ambiguous essence of natural language, our guidelines to trans-
form informal requirements into semi-formal ones is neither sound nor complete,
nonetheless our experience shows that is useful in practice. We have implemented
a prototype script shell based tool doing the transformation automatically (see
Section 3.8).

3.3 Semi-Formal Functional Requirements

The informal functional requirement IFR1 is transformed into if <a new allergy
is to be added to the list of referenced allergies and the allergy designation has
already been referenced>, then <the new allergy is not inserted>. We show below
the semi-formal requirements obtained from the first two informal requirements
above.

24 INForum 2010 Nestor Catano, João Pestana, Ricardo Rodrigues

SFR1 From IFR1. If a new allergy is to be added to the list of referenced allergies
and the allergy designation has already been referenced, then the new allergy
is not inserted.

SFR2 From IFR2. If an allergy is to be added to the list of referenced allergies and
the limit of the number of referenced allergies has already been attained,
then the state of the card remains unchanged.

3.4 Class and System Invariants

Class invariants are written from informal requirements that describe limitations
or constraints on a small-scale, e.g. limitations of properties that eventually will
restrict or describe a certain domain concept only. Hence, the informal functional
requirement IFR3: “All allergy designation codes must have a stipulated length”,
restricts the length of the designation code of any “allergy”. To write this class
invariant (see CI1 below), we use a variable des to represent the designation code
of the allergy. This variable can be modelled as a JML abstract variable (see
Section 3.5). CI1 describes a property about the length of the code of an allergy,
so that eventually it will become a class and the code a static field of it.

CI1 invariant size(des) == CODE LENGTH

Unlike class invariants, system invariants describe invariant properties re-
lating several domain concepts. For instance, IFR4 describes a property on
medicines, managing information on prescribed medicines in appointments, and
appointments, managing information about appointments scheduling. IFR4 be-
comes the semi-formal system invariant requirement SI1 below.

SI1 For all object m of type medicine, and all object a of
type appointment such that appointment(m) is equals
to a, then date(m) is bigger than or equal to date(a).

3.5 Design and Implementation

During the design phase, the structure of the application is created from the
requirements. This structure encompasses class diagrams for interfaces, abstract
classes, and concrete classes. In parallel to this phase, semi-formal functional
requirements and class and system invariants are written (Sections 3.3 and 3.4).
Semi-formal specifications are later ported to JML specifications (Section 3.6).
During the implementation phase, from the structure of the application gener-
ated in the design phase, Java abstract classes, Java interfaces, and Java classes
are written. In a first stage, the implementation only contains code skeletons,
so no method in any concrete class is implemented. JML specifications are em-
bedded within the code. Hence, the JML Common Tools can be used to check
the code during early stages of the implementation (i.e. before fully implement-
ing concrete Java classes). Therefore, the Java code can be evolved so as to
conform to the JML specifications, or the specifications can be evolved so as

JFly: A JML-Based Strategy ... INForum 2010 – 25

to conform to an expected behavior. Checking that one conforms to another
is done automatically with the JML Common Tools. JML eliminates program-
mers’ responsibility of keeping track of how properties a program must respect
are affected by changes in the code.

Furthermore, to have a high level of abstraction in specifications, JML pro-
vides support to the use of abstract variables, which exist at the level of the
specification, but not in the implementation. Declarations of abstract variables
are preceded by the JML keyword model and are related to Java code by a
represents clause3. This clause specifies how the value of an abstract variable
is calculated from the values of concrete variables (see Section 3.6). Abstract
variables are useful in describing properties about interfaces because these are
not allowed to declare (concrete) variables in Java. Within an interface, an ab-
stract variable describes the state of the implementing classes. Abstract variable
specifications for interfaces and for abstract classes do not need to be written
down again in implementing classes or sub-classes, since JML specifications are
inherited. This ensures behavioral sub-typing through which a sub-class object
can always be used where a super-class object is expected.

3.6 JML Formal Specification

Semi-formal functional requirements SFR1 and SFR2 relate to method addAllergy
in interface Allergies (see below). In Java, interfaces cannot declare attributes,
hence Allergies declares an abstract JML variable as, modelling stored refer-
enced allergies. The JML JMLEqualsSequence type models a sequence of objects
that can be compared using the standard method equals. We declare two addi-
tional abstract variables, size and maxsize, modelling the number of referenced
allergies and the maximum number of referenced allergies. A normal behavior
specification expresses that if all the pre-conditions hold (clauses requires) in
the pre-state of the method, it will terminate in a state in which all the post-
conditions (clauses ensures) hold. SFR2 is expressed as the JML pre-condition
size < maxsize. SFR1 appears in two separated normal postconditions that
make use of the abstract method existsAllergy (not shown here) for check-
ing whether the designation of an allergy has already been stored in as or
not. Therefore, if the designation has already been stored, the list of allergies
remains unchanged, as.equals(\old(as)), otherwise the allergy designation is
stored at the end of the list, as.equals(\old(as).insertBack(desigRepr(-
designation))). JML abstract method desigRepr (not shown here) maps an
array of bytes to a unique value. JML only allows side-effects free methods within
specifications. This is enforced by using the JML keyword pure. All the meth-
ods used within specifications in our examples are pure, e.g. existsAllergy
and insertBack (which uses an auxiliary clone() method) in addAllergy.

//@ model instance JMLEqualsSequence as;

//@ model instance short size;

3 JML also provides ghost, a more limited variation of model variables.

26 INForum 2010 Nestor Catano, João Pestana, Ricardo Rodrigues

//@ model instance short maxsize;

/*@ public normal_behavior

@ requires size < maxsize;

@ requires designation != null && date != null;

@ requires existsAllergy(designation);

@ ensures as.equals(\old(as));

@ also

@ public normal_behavior

@ requires size < maxsize;

@ requires designation != null && date != null;

@ requires !existsAllergy(designation);

@ ensures as.equals(\old(as).insertBack(

@ desigRepr(designation)));

@*/

public abstract void addAllergy (byte[] designation,

byte[] date)

throws RemoteException, UserException;

Abstract specifications are related to actual Java code through the use of the
JML represents clause. Hence, as, declared in Allergies, is related to code in
the Allergies Imp, which implements Allergies. The abstract variable size
is represented as the concrete field nextFree, and maxsize as the static variable
MAX ITEMS. The pure method allergiesRepr represents as as a JMLEquals-
Sequence produced by the insertion of all the elements in allergies. In JML,
pure methods are side-effect free methods.

//@ represents size <- nextFree;

//@ represents maxsize <- MAX_ITEMS;

//@ represents as <- allergiesRepr();

/*@ pure model JMLEqualsSequence allergiesRepr() {

@ JMLEqualsSequence r = new JMLEqualsSequence();

@ for (short i=0; i < nextFree; i++) {

@ r = r.insertBack((Object)(allergies[i]));

@ }

@ return r;

@ }

@*/

JML Class and System Invariants The Class invariant CI1 is expressed as the
JML invariant below. This invariant is declared in class Allergy.

//@ instance invariant des.size == CODE_LENGTH;

The System invariant SI1 is expressed as the JML invariant below. This
invariant suggests that a global access to medicines and appointments in the
card must exist. Following the Java Card Remote Method invocation (JCRMI)

JFly: A JML-Based Strategy ... INForum 2010 – 27

approach for communication, in which the Java Card applet is the server, the
HealthCard application defines an interface CardServices that declares all the
services available for remote objects. Class CardServices Imp, an implementa-
tion of this interface in Java, accesses the information and the state of any re-
mote object in the card. CardServices Imp declares two variables med and app
for keeping track of medicines and medical appointments respectively. Method
getData() returns an array of objects of type Medicine. Method getApp()
returns an array of objects of type Appointment.

/*@ invariant

@ (\forall int i; i<med.getData().length & i>=0;

@ (\forall int k; k<app.getApp().length & k>=0;

@ med.getData()[i].getAppID() ==

@ app.getApp()[k].getID()

@ ==>

@ med.getData()[i].getDate() >=

@ app.getApp()[k].getDate()))

@*/

3.7 Validation and Verification

We used the JML Common Tools suite [3] to check our implementation of the
HealthCard. This suite provides support to the run-time assertion checking of
JML specifications. Checking an application with this suite is an iterative process
of checking the implementation with respect to the JML specifications, and then
evolving either the specification or the implementation (or both) when a run-
time error is produced. Errors can be detected before a concrete implementation
for the application is written. For instance, Java interfaces and Java abstract
classes are checked against JML specifications before writing full implementa-
tions for those interfaces and abstract classes. At this point, programmers can go
back to an earlier development phase, e.g. modifying some informal functional
requirements; thereafter JML specifications are evolved accordingly.

3.8 A JFly Prototype Tool

We have built a prototype tool that automates the process of writing JML formal
specifications from simple semi-formal specifications. The prototype tool builds
on the idea that semi-formal specifications can be written as requirements of
the form if <event> then <restriction>. Therefore, after if and before end, a
method precondition exists; and after then a method postcondition occurs. The
tool can be reached at http://www.knowmydream.com/Projects/jfly/. This is
just a prototype tool; it demonstrates how our ideas on JML-based strategy for
incorporating formal specifications to the software development of programs can
be automated. For instance, the prototype tool transforms the specification if
<date is NOT EQUAL TO null AND date’s length is EQUAL TO date model’s
length> then <date is EQUAL TO date model>.

28 INForum 2010 Nestor Catano, João Pestana, Ricardo Rodrigues

/*@ public normal_behavior

@ requires date != null &&

@ date.length == date_model.length;

@ ensures date == date_model;

@*/

4 Conclusion

We propose a strategy for evolving informal requirements into formal specifica-
tions as part of a software engineering methodology. However, evolving informal
requirements into formal specifications is not a linear process: it requires great
ingenuity and experience. Although we presented our ideas through the devel-
opment of a smart card application, we consider that our strategy is suitable
for developing correct applications that implement a client-server architecture
with a need of a light-weight server specification in general. In this client-server
setting, validations of methods’ pre-conditions are not carried out within meth-
ods’ implementations. It is the client’s responsibility to ensure that methods are
called with the right parameters. This reduces the size of implemented methods.
This is particularly important for smart cards whose generated byte-code can-
not be bigger than a certain limit to be installed on the smart card. We used
JML tool machinery to check that the methods are always called with the right
parameters throughout the whole application. This prevents programmers from
making validations both inside and outside methods, a common programming
mistake. Yet, we chose JML as the formal specification language, our ideas can
also be adapted to the development of C++ programs, with formal specifications
written in the ACSL (ANSI/ISO C Specification Language) [1] language instead,
and the verification work accomplished with the Frama-C Tool [7].

We want to emphasise the importance of thinking of invariant properties
when developing software. Thinking about invariants prior to writing code is a
practice to which programmers do not easily adhere. Having a formal specifi-
cation of an application and systematically using a tool, i.e. the JML Common
Tools, for checking the correctness of the code as it is written forces programmers
to think about how the written code affects the consistency and the correctness
of the whole program. It is our experience that invariants are the key notion in
formal software development that makes a difference with respect to traditional
(non formal methods based) software engineering methodologies [4]. In general,
programmers feel intimidated by the idea of coming up with an invariant. Often,
they design code that can make their programs be in an inconsistent state. We
strongly believe JML helps in this sense, from furnishing a friendly Java-like syn-
tax, to making it possible to use first-order logic predicates in JML specifications
naturally.

Finally, the HealthCard application consists of 20 interfaces, 16 concrete
classes, and 174 KB in total, with about 4300 lines of code, of which 50% are
specifications, 42% are code, and 8% include both specifications and code. The
whole development can be reached at https://sourceforge.net/projects/-
healthcard/. It took about 4 months time to the second and third authors to

JFly: A JML-Based Strategy ... INForum 2010 – 29

write the HealthCard, supervised by the first author, who has a large experience
with JML.

References

1. P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto.
ACSL: ANSI/ISO C specification language. http://frama-c.cea.fr/download/-
plug-in development guide.pdf.

2. C. Breunesse, N. Catano, M. Huisman, and B. Jacobs. Formal methods for smart
cards: An experience report. Science of Computer Programming, 55(1-3):53–80,
March 2005.

3. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino,
and E. Poll. An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer (STTT), 7(3):212–232, June 2005.

4. N. Catano, F. Barraza, D.Garćıa, P. Ortega, and C. Rueda. A case study in JML-
assisted software development. In P. Machado, A. Andrade, and A. Duran, editors,
Brazilian Symposium on Formal Methods (SBMF), pages 5–21, August 2008.

5. N. Catano and T. Wahls. Executing JML specifications of java card applications: A
case study. In 24th ACM Symposium on Applied Computing, Software Engineering
Trac (SAC), Waikiki Beach, Honolulu, Hawaii, March 8-12 2009.

6. E. W. Dijkstra. A Discipline of Programming. Series in Automatic Computation.
Prentice Hall, Englewood Cliffs, New Jersey 07632, 1976.

7. The Frama-C Tool. http://frama-c.cea.fr.
8. M. Fraser, K. Kumar, and V. K. Vaishnavi. Strategies for incorporating formal

specifications in software development. Communincations of ACM, 37(10):74–86,
1994.

9. M. G. Ilieva and O. Ormandjieva. Automatic transition of natural language soft-
ware requirements specification into formal presentation. In Applications of Natural
Language to Information Systems (NLDB), pages 392–397, 2005.

10. R. A. Kemmerer. Integrating formal methods into the development process. IEEE
Software, 7(5):37–50, 1990.

11. G. Leavens, A. Baker, and C. Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. ACM SIGSOFT Software Engineering
Notes, 31(3):1–38, 2006.

12. J. Link. Unit Testing in Java. Morgan Kaufmann, 2003.
13. B. Meyer. Applying “design by contract”. Computer, 25(10):40–51, October 1992.
14. B. Meyer. Object Oriented Software Construction. Prentice Hall PTR, 1997.
15. L. Shaoying, A. Offutt, C. Ho-Stuart, Y. Sun, and M. Ohba. SOFL: a formal

engineering methodology for industrial applications. IEE Transactions on Software
Engineering, 24, 1998.

16. V. T. Vasconcelos, I. Nunes, and A. Lopes. Monitoring java code using ConGu.
In 19th International Workshop on Algebraic Development Techniques (WADT).
Universit di Pisa, 2008.

30 INForum 2010 Nestor Catano, João Pestana, Ricardo Rodrigues

