
Distributed Work Stealing for
Constraint Solving

(Extended Abstract)

Vasco Pedro and Salvador Abreu

Departamento de Informática, Universidade de Évora and

CENTRIA FCT/UNL, Portugal

{vp,spa}@di.uevora.pt

Abstract. With the dissemination of affordable parallel and distributed
hardware, parallel and distributed constraint solving has lately been the
focus of some attention. To effectually apply the power of distributed
computational systems, there must be an effective sharing of the work
involved in the search for a solution to a Constraint Satisfaction Problem
(CSP) between all the participating agents, and it must happen dynami-
cally, since it is hard to predict the effort associated with the exploration
of some part of the search space. We describe and provide an experimen-
tal assessment of an implementation of a work stealing-based approach
to parallel CSP solving in a distributed setting.

1 Introduction

Constraints are used to model problems with no known polynomial algorithm,
but for which search techniques developed within the field of constraint program-
ming provide viable procedures. Besides classical applications, such as planning
and scheduling, constraints have recently been successfully applied in the con-
texts of bioinformatics and computer network monitoring [11, 12].

Notwithstanding their relative efficiency, constraint solving methods are com-
putationally demanding and good candidates to benefit from multiprocessing.
Moreover, the declarative style of constraint programming frees the programmer
from concerns usually entailed by parallel and distributed programming, such
as control, synchronisation, and communication issues. In fact, the programmer
may not even be aware that there is any parallelism involved in solving the prob-
lem. Given the increasing availability of parallel computational resources, in the
form of multiprocessors, clusters of computers, or both, there is a need for an
effective way to help incorporating that power into the constraint programming
setting.

Constraint solving involves exploring large search spaces. To perform search
using several agents in parallel, the search effort must be shared among them.
In distributed constraint solving, in the context of solving Distributed CSPs [17],
each agent does a part of the work and coordinates with the other agents in
order to find a solution. The present work follows the parallel constraint solving

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 7–18

approach [4, 15, 13, 7, 2], where the search space is partitioned and the search
for a solution is carried out in each of the sub-search spaces by one agent (or
worker), all agents working in parallel. Here the agents are mostly independent
from each other, performing their (non-overlapping) part of the work and hoping
that one of them will find a quicker path to an answer. While the first approach
typically requires significant inter-agent communication, not only for the search
to progress but also for termination detection, in the latter communication can be
limited to an initial dispatching of the agents and to an answer collecting phase
at the end of the procedure. In this case, however, the initial work distribution
may turn out to be quite unbalanced, leaving some agents to bear most of the
effort as others become idle and their contribution is wasted.

This article reports on preliminary results of our experiments in implementing
a work-stealing scheme for overcoming the effect described above. This is a two-
level scheme: work stealing occurs between co-located agents, but when distant
agents are involved, some cooperation is needed to redistribute the work still
left.

The remainder of this paper is structured as follows: we start by establishing
some terminology in the next section. Then, in Sections 3 and 4 we describe the
architecture of the implemented solver and report on some experimental results
obtained with it. Section 5 discusses related work and in Section 6 we conclude
and put forward possible continuation paths for this work.

2 Constraint Solving

A constraint satisfaction problem can be briefly defined as a set of variables
whose values, to be drawn from their domains, must satisfy a set of relations.

Definition 1 (CSP). A Constraint Satisfaction Problem (CSP) over finite do-
mains is a triple P = (X, D, C), where

– X = {x1, x2, . . . , xn} is an indexed set of variables;
– D = {D1, D2, . . . , Dn} is an indexed set of finite sets of values, with Di being

the domain of variable xi, for every i = 1, 2, . . . , n; and
– C = {c1, c2, . . . , cm} is a set of relations between variables, called the con-

straints.

The search space of a CSP consists of all the tuples from the cross product of
the domains, where each variable is assigned a value from its domain. Solving a
CSP amounts to finding some or all of those tuples which satisfy all constraints
of the problem.

Definition 2 (Solution). A solution to a CSP is an n-tuple (v1, v2, . . . , vn) ∈
D1 ×D2 × . . .×Dn such that all constraints are satisfied.

In parallel constraint solving, the problem is divided into subproblems. So-
lutions to these subproblems are also solutions to the original problem.

8 INForum 2010 Vasco Pedro, Salvador Abreu

Definition 3 (Subproblem). A subproblem of a CSP P = (X,D, C) is a
CSP P ′ = (X, D′, C) such that D′ = {D′1, D′2, . . . , D′n} and D′i ⊆ Di, for every
i = 1, 2, . . . , n.

To guarantee completeness of the search, the search spaces of the subproblems
must cover the search space of the original problem. In order to avoid redundant
work, they must also be pairwise disjoint.

Definition 4 (Partition). A set {P ′1, P ′2, . . . , P ′k} of subproblems of a CSP P ,
with P ′i = (X, {D′i1, D′i2, . . . , D′in}, C), is a partition of P if⋃

1≤i≤k

D′i1 ×D′i2 × · · · ×D′in = D1 ×D2 × · · · ×Dn

and (∀ i 6= j) D′i1 ×D′i2 × · · · ×D′in ∩D′j1 ×D′j2 × · · · ×D′jn = ∅.
A partition of a CSP may be dually regarded as a partition of its search

space, the search spaces of the subproblems being sub-search spaces of the orig-
inal problem. In this paper we will only deal with search space partitions that
correspond to some partition of a problem.

3 Solver Architecture

Our constraint solver consists of workers, grouped together as teams (Figure 1).
The search for one or all solutions is carried out by the workers, which implement
a propagator based constraint solving engine, following a domain consistency
oriented approach [1]. Each active worker has a pool of idle search spaces and a
current search space, the one it is currently exploring. In each team there is a
controller, which does not participate in the search, and one of the controllers,
the main controller, also coordinates the teams.

Team 1
Team 2

Team 3

Team 4

Fig. 1. Solver architecture

Structuring the workers this way serves two purposes: the first is that a
workers’ sole task becomes searching, as all communication with the environ-
ment required by the dynamic sharing of work among teams is handled by the

Distributed Work Stealing for Constraint Solving INForum 2010 – 9

controller. The second objective is the sharing of resources enabled by binding
the workers in a team close together. If all workers were on the same level, they
would either have to divide their attention between search and communication
or there would have to be one controller per worker, thereby increasing resource
usage. On the other hand, this structure matches naturally a two-level partition-
ing of the search space and we obtain receiver-initiated decentralised dynamic
load balancing [16].

At the outset of the search process, the problem to be solved is partitioned
and each team is entrusted with trying to solve one of the resulting subproblems.
The controller in each team then partitions the local problem and hands each
sub-search space over to a worker for exploration.

On finishing exploring its assigned search space, a worker tries to steal work
from another worker within its team. If unsuccessful, it then notifies the team
controller that it has become idle. When all the workers in a team are idle, the
controller asks the other teams for more work.

3.1 Partitioning Strategies

The strategy used to partition the search space has a decisive impact on the
number of steps needed to get to a solution, hence on performance.

Partitioning strategies may be designed either to lead to a balanced dis-
tribution of the search work, like the even strategy below and the prime and
greedy strategies from [14], or to produce some subproblems where the search
is expected to be quick (while others may be slow), such as eager partitioning.
In principle, the former strategies will be more suited to situations where all
solutions are requested and the whole search space must be visited, and the
latter will lend themselves better to when one solution is enough. In any case,
the splitting of the problem will introduce a breadth-first component into the
usual depth-first exploration of the search tree, which sometimes gives rise to
superlinear speedups.

In even partitioning, domains are split so as to obtain sub-search spaces of
similar dimensions. If we want to split a problem into k subproblems, then the
first variable with at least that many values in its domain is chosen and its
domain is split as evenly as possible among the subproblems: if the domain
of the chosen variable has d ≥ k values, then it will have bd/kc values in the
first k − d mod k subproblems and bd/kc + 1 values in the remaining d mod k
subproblems.

Eager partitioning corresponds roughly to a partial breadth-first expansion
of the search tree and it will mostly produce subproblems where at least one
of the variables has had its domain reduced to a single value. The splitting is
performed according to the algorithm depicted in Figure 2, whose inputs are
the number of subproblems to create and a sequence of problems from which to
create them. Initially, this sequence only contains the original problem.

The partitioning of the CSP may affect the behaviour of the search, even
to the point of defeating the variable and value selection heuristics which are
usually appropriate to a given problem, as has been noted in [7, Section 6]. This

10 INForum 2010 Vasco Pedro, Salvador Abreu

Notation If P is a CSP and D is a finite set, PDi stands for the CSP which
is identical to P except that the domain of the ith variable is D.

eager-split(k, (P1 P2 · · ·Pq))
(X,D,C)← P1

i← min {j | |Dj | > 1}
d← |Di|
{v1, v2, . . . , vd} ← Di

if k ≤ d then
(P1{v1}i P1{v2}i · · ·P1{vk, . . . , vd}i P2 · · ·Pq)

else
eager-split(k − d+ 1, (P2 · · ·Pq P1{v1}i P1{v2}i · · ·P1{vd}i))

Fig. 2. Eager partitioning algorithm

suggests that the partitioning strategy, introducing another degree of freedom
in the search strategy, needs to be adapted to the problem being solved and
matched with the search heuristics used, and that no overall ‘best’ partitioning
strategy exists. (Notice that, for the present, problem specific heuristics do not
inform problem partitioning.)

As problem partitioning takes place at two points in the process — to dis-
tribute work to all the teams, and, initially within every team, to assign work to
each worker — different splitting strategies can be used, a more balanced one to
allot similar amounts of work to the individual teams, and another to focus the
efforts of the agents. The latter strategy could be finer grained than the former,
the cost of local work stealing being much lower than that of network supported
work sharing.

3.2 Search

The search unfolds as a worker further splits the search space it is working on,
keeping one part as its current search space and adding the other to its pool of
idle search spaces. If the current search space is found to contain no solution,
the worker draws a new search space from the pool and starts exploring it, never
backtracking. Upon finding a solution, the worker communicates it to the team
controller which, in turn, forwards it to the main controller.

The state of a worker with two search spaces currently in the pool is shown
in Figure 3, where solid edges mean that the child search spaces form a partition
of the parent. Notice that the subtree to the left of the current search space
(corresponding to the tuples where both x1 and x2 take value 1) has already
been explored and discarded, and is not displayed.

Figure 4 depicts the main driver algorithm for workers. At each step of the
search process, a worker starts by looking within its current search space for
a variable whose domain is not a singleton (line 3). If none is found, then the
search space contains a single tuple which constitutes a solution to the problem,

Distributed Work Stealing for Constraint Solving INForum 2010 – 11

x1 1..4
x2 1..4
x3 1..4

past
search spaces

���
x1 1
x2 1..4
x3 1..4
�

�
x1 1
x2 2
x3 1..4

current
search space

H
H
x1 1
x2 3..4
x3 1..4

HHH
x1 2..4
x2 1..4
x3 1..4

'

&

$

%Pool

Fig. 3. Search spaces from a worker

and which is returned by the worker (line 10). Otherwise, one of the variables
with a non-singleton domain is selected and the current search space is split into
two subspaces (line 4):

– In the first, which will become the worker’s current search space, the selected
variable is set to an individual value picked from its domain.

– In the other, to be added to the pool of idle search spaces (line 5), that value
is removed from the domain of the variable.

The domains of the other variables remain unchanged in both search spaces.
Following the split, the new current search space goes through a propagation

phase (line 6). If it succeeds, another search step is performed. If the propaga-
tion fails, the worker tries to fetch an idle search space from the pool to become
the current search space (line 7). If this is not possible the worker fails (line 9),
otherwise the search resumes with the retrieved search space undergoing a prop-
agation phase, as the domain of one of its variables shrunk just prior to it being
stored in the idle pool.

1: WORKER(search-space)
2: current ← search-space
3: while var ← select-variable(current) do
4: (current, other) ← split-search-space(var, current)
5: pool-put(other, var)
6: while (current ← revise(var, current)) = FAIL do
7: (current, var) ← pool-get()
8: if current = FAIL then
9: return FAIL

10: return SOLUTION(current)

Fig. 4. Worker main driver algorithm

12 INForum 2010 Vasco Pedro, Salvador Abreu

3.3 Work Stealing

When a worker tries to fetch a new search space from its pool and finds it
empty, it will attempt to obtain one from one of its teammates. In order to
minimise the impact on the performance of the solver, this is achieved with as
little cooperation from the holder of the retrieved search space as possible. In
fact, the idle worker will effectively steal work from a teammate while the latter
continues its task, oblivious to what is being done to its work queue.

The intended discipline of a worker’s pool is that of a deque (double-ended
queue), as depicted in Figure 5. While the owner works on one end of its pool
(lines 2, 8, and 12), a worker whose pool is empty will remove an entry from the
other end (line 20). This way, the only penalty a worker incurs during normal
processing is the cost of an extra check on the size of its pool (line 6). The
protocol used to avoid interference during pool accesses is similar to the one in
[5]. Only when the number of entries in the pool is small, will it be necessary to
enforce mutual exclusion in the accesses to the pool, and even then only when
removing a search space. To reduce contention, work stealing is only allowed
from a pool when the number of entries in it reaches a given threshold (line 17).

1: pool-put(search-space, variable)
2: pool.append(search-space, variable)

3: pool-get()
4: if pool.size = 0 then
5: return steal-work()
6: else if pool.size < SAFE-SIZE then
7: lock(pool)
8: ss ← pool.remove-last()
9: unlock(pool)

10: return ss
11: else
12: return pool.remove-last()

13: steal-work()
14: lock(stealing)
15: v ← worker-with-biggest-pool()
16: lock(v.pool)
17: if v.pool.size < THRESHOLD then
18: ss ← FAIL
19: else
20: ss ← v.pool.remove-first()

21: unlock(v.pool)
22: unlock(stealing)
23: return ss

Fig. 5. Pool insertion and removal, and work stealing algorithm

Stolen work corresponds to locations nearer the root of a worker’s search tree.
The search within the worker’s search space proceeds according to the heuristics
deemed adequate to the problem until it either finds a solution or the work is
exhausted. Upon stealing work from a peer, a worker picks up the search at a
point that the worker it was stolen from would eventually reach, thus subverting
the problem’s search strategy and introducing in it a measure of randomness.
This may be either beneficial or detrimental, depending on the specific problem.

In the event of an idle worker failing to obtain work within its team, it notifies
the team controller and waits, either to be later restarted or to be terminated.
When all the agents in a team have become idle, the team controller broadcasts
a request for more work to the other teams.

Distributed Work Stealing for Constraint Solving INForum 2010 – 13

Inter-team work stealing follows along a simple plan: initially, one of the team
controllers is given the role of fulfilling requests for work. Upon receiving one,
and using the same protocol used by the workers, it tries to steal a search space
from the local pool to be forwarded to the requester, which splits it among its
workers and becomes the new work supplier. If the designated work supplier is
unable to spare a search space, the remaining teams are polled for work, as done
in [13]. When no team is able to supply additional work, the idle team notifies
the main controller and terminates.

3.4 Implementation Notes

One of the main goals behind this work was to build a constraint solver which
could take advantage of the advances in parallel architectures and in clustering
network technology. To better be able to handle the challenges inherent to mul-
tiprocessing, namely memory management and caching issues, C was our choice
for the implementation language, as it allows for very fine-grained control.

Teams are autonomous entities and each team corresponds to a distinct pro-
cess, usually residing on a dedicated machine. As communication, particularly
over a network, may have an adverse impact on system performance, care has
been taken to minimise the number of inter-team messages needed. Teams are
coordinated by way of an IPC library.

A team comprises active components which are the workers and the con-
troller. The controller is, most of the time, waiting for a worker or another team
controller to communicate with it, not disturbing the search process and allow-
ing workers to be mapped to processors. Workers are mostly independent from
each other, except where work stealing is concerned, as explained in Section 3.3.
A worker, to be able to steal work from another one without active cooperation
from the latter, must be able to access all the team pools. To make this possible,
pools are located in shared memory and workers, as well as the controller, are
implemented as lightweight processes (threads).

4 Experimental Results

In this Section, we present some performance results obtained with our solver
on two classic benchmark problems, namely the non attacking queens problem
and the Langford number problem [3, problem 024]. While the queens problem
has many solutions well spread out throughout the search space, the Langford
number problem either has no solution or it also has many solutions but not so
well distributed.

Measurements were made of the time taken to count all solutions for the
two problems and for generating the first solution in the second problem. These
measurements were made on a cluster of Q6600 Intel Core2 Quad CPUs, clocked
at 2.4GHz, with 2–4GB RAM, running Linux, and the code was compiled with
GCC 4.1.1 with the ‘-O3’ flag. The times presented are the average of 12 runs
of each program, with the worst and the best times excluded. When computing

14 INForum 2010 Vasco Pedro, Salvador Abreu

the relative performance with respect to the sequential case, we subtracted the
overhead associated with starting up and terminating the solver, which reached a
maximum of 0.3 seconds in the 6 teams configuration. Unless otherwise indicated,
teams are composed of 4 workers, mirroring the number of CPUs in the shared-
memory multiprocessor systems. For interprocess communication, the Open MPI
MPI-2 implementation [9] was used.

Absolute performance has not, so far, been the top priority goal of this work.
Nevertheless the sequential (1 team with 1 worker) version of our solver already
displays interesting times for solving these problems, as attested by Table 1,
where they are compared with those of Gecode 3.0.2 [6], although there clearly
remains some work to be done in that regard.

Table 1. Times comparison with Gecode (seconds)
Queens Langford

14 15 16 2 11 2 12 2 28 2 31 3 18

Our solver 13.89 86.05 580.36 1.07 8.00 67.56 1.26 2.44

Gecode 17.21 102.18 646.43 36.40 25.01 0.03 0.02 0.42

all solutions first solution

In the remainder of this section, we look at the results obtained with sev-
eral configurations of the solver and analyse them with respect to the speedups
induced by the parallelisation of the search, using the two partitioning strate-
gies. The use of the two strategies helps both to illustrate the consequences of
problem partitioning and to highlight the effect of work stealing.

In the non attacking queens problem, the first observation that can be made
in relation to the speedups obtained, depicted in Figure 6, is that they are fairly
insensitive to the partitioning strategy used. Given that in this problem the
work is very evenly distributed among the possible values from the domains of
the variables, this result is only possible due to effective work sharing.

 1

 22

 4

 8

 12

 16

 20

1/2 1/3 1/4 2/8 3/12 4/16 5/20 6/24

S
p

e
e

d
u

p

Teams/Total workers

Queens
14
15
16

Fig. 6. Speedups for the non attacking queens (all solutions)1

1 In these graphs, solid and dashed lines correspond, respectively, to even and eager
partitioning.

Distributed Work Stealing for Constraint Solving INForum 2010 – 15

The profile of the speedups evolution with the addition of more teams is
quasi-linear for the 16 queens problem, showing good scalability of the approach.
However, the smaller problem starts suffering from the weight of the implemen-
tation early on. Total running times for the three problems in the 6 team setting
are around 1.2, 4.6, and 27.5 seconds, for 14, 15, and 16 queens, respectively.

The Langford number problem, for which we measured both the speedups for
counting all solutions and for obtaining the first solution, is an example of a case
where domain partitioning interacts badly with the heuristics usually used for
guiding the search, as dividing a domain gives rise to more work than that needed
to solve the original problem. This is apparent in Figure 7a, which represents
the results observed in finding the first solution and where some instances of the
problem displayed a marked slowdown when partitioning the domain of the first
variable in two or three similarly sized parts. On the other hand, speedups of
more than 3000 were also obtained in one case.

 0.1

 1

 10

 100

 1000

 10000

1/2 1/3 1/4 2/8 3/12 4/16 5/20 6/24

S
p

e
e

d
u

p

Teams/Total workers

Sets x Size
2 x 28
2 x 31
3 x 18

(a) First solution

 1

 3

 5

 7

 9

 11

 13

1/2 1/3 1/4 2/8 3/12 4/16 5/20 6/24

S
p

e
e

d
u

p

Teams/Total workers

Sets x Size
2 x 11
2 x 12

(b) All solutions

Fig. 7. Speedups for the Langford number problem

Counting all solutions of the Langford problem (Figure 7b) exhibits a pro-
file common to the previous problem, but at some point the implementation
starts overwhelming the potential improvements due to the parallelisation on
the smaller instance. This effect requires further study to identify and solve its
causes.

5 Related Work

Recent years have seen an increase in the interest in parallel solving, as par-
allel architectures become more common. An early language sporting parallel
constraint solving was the CHIP parallel constraint logic programming lan-
guage [15]. It was implemented on top of the logic programming system PEPSys,
whose or-parallel resolution infrastructure was adapted to handle the domain op-
erations needed in parallel constraint solving.

More recent works rely on features of an underlying framework for program-
ming parallel search. The concurrent Oz language provides the basis for the

16 INForum 2010 Vasco Pedro, Salvador Abreu

implementation described in [13], where search is encapsulated into computa-
tion spaces and a distributed implementation allows the distribution of workers.
Work sharing is coordinated by a manager, which receives requests for work from
the workers and then tries to find one willing to share the work it has left. Search
strategies are user programmed and the work sharing strategy is implemented
by the workers.

A similar approach is taken in [7, 8] which show how to program parallel
search controllers in Comet. There, the pool is an active object which is queried
by the idle workers. In case the pool is empty, it asks another worker to generate
yet unexplored sub-search spaces, gives one away and stores the rest. It is not
explained, however, how the worker which supplies work is chosen.

A focus of research has been on the strategies for splitting the work between
workers. These strategies may be driven by the problem structure, such as the
size of the domains [14], or by the past behaviour of the solver, be it related with
properties of the solving process, such as the number of variables already instan-
tiated [10], or with the progress of the search, in what it affects the prospects of
finding a solution in the current subtree [18] or in the subtrees left to explore [2].
Here, a scheme is presented which uses the search heuristics to guide problem
splitting, dampened by a degree of confidence to distribute the workers across
the search tree while maintaining some bias towards the nodes favoured by the
heuristic. It shows good performance on multi-core hardware, and while it has
the drawback of working on a global view of the search process, it seems to point
in a promising direction of research, namely using the work done as a guide to
future search space splitting.

6 Conclusions and Future Work

In spite of the results obtained so far, there should be additional gains with a
more sophisticated work sharing protocol. Several possibilities should be stud-
ied, including having a different work stealing policy for inter-team sharing,
where candidate search spaces undergo a deeper examination to try to deter-
mine whether the cost of their sending is offset by the work saved locally.

Short term development plans comprise improving the internal representa-
tion of the domains, which currently only allows values between 0 and 63, the
inclusion of optimisation constraints, and the improvement of the scalability of
the implementation in two key aspects: the initial work distribution and the
sharing of work between teams, which could both profit from organising the
teams in some way.

We also plan on experimenting with different underlying models and libraries
for thread management and inter-process communication, namely to venture
beyond the present implementation which relies on Posix threads and MPI.

Acknowledgements

The authors wish to acknowledge the FCT/Pessoa grant ‘CONTEMP — CON-
Traintes Exécutées en MultiProcesseurs’ and the members of the partner IN-

Distributed Work Stealing for Constraint Solving INForum 2010 – 17

RIA/Bordeaux RUNTIME team, namely Olivier Aumage, Jérôme Clet-Ortega,
and Cédric Augonnet, for their cooperation and helpful suggestions. Thanks are
due to Miguel Avillez at Universidade de Évora for the valued offer of computa-
tional support. The authors would also like to thank the anonymous reviewers
for their comments and suggestions.

References

1. Bessière, C.: Constraint propagation. In: Rossi et al. [11], chap. 3, pp. 29–83
2. Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in parallel

constraint programming. In: Gent, I.P. (ed.) CP’09. LNCS, vol. 5732, pp. 226–241.
Springer, Lisboa, Portugal (Sep 2009)

3. CSPLib: A problem library for constraints. http://www.csplib.org/.
4. Ferreira, L.: Programação por Restrições Distribúıdas em Java. Ph.D. thesis, Uni-

versidade de Évora, Portugal (2004)
5. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-

tithreaded language. In: PLDI’98. pp. 212–223. ACM, Montreal, Quebec, Canada
(Jun 1998)

6. Gecode: Generic constraint development environment. http://www.gecode.org/.
7. Michel, L., See, A., Van Hentenryck, P.: Parallelizing constraint programs trans-

parently. In: Bessière, C. (ed.) CP’07. LNCS, vol. 4741, pp. 514–528. Springer,
Providence, RI, USA (Sep 2007)

8. Michel, L., See, A., Van Hentenryck, P.: Transparent parallelization of constraint
programming. INFORMS Journal on Computing 21(3), 363–382 (Dec 2008)

9. Open MPI Project: http://www.open-mpi.org/.
10. Rolf, C.C., Kuchcinski, K.: Load-balancing methods for parallel and distributed

constraint solving. In: 2008 IEEE Int. Conf. on Cluster Computing. pp. 304–309
(2008)

11. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Foundations of Artificial Intelligence, Elsevier (2006)

12. Salgueiro, P., Abreu, S.: Network monitoring with constraint programming: Pre-
liminary specification and analysis. In: Abreu, S., Seipel, D. (eds.) INAP2009. pp.
37–52. Évora, Portugal (Nov 2009)

13. Schulte, C.: Parallel search made simple. In: Beldiceanu, N., Harvey, W., Henz, M.,
Laburthe, F., Monfroy, E., Müller, T., Perron, L., Schulte, C. (eds.) TRICS-2000.
pp. 41–57. Singapore (Sep 2000)

14. Silaghi, M.C., Faltings, B.: Parallel proposals in asynchronous search. Tech. Rep.
TR-01/371, Swiss Federal Institute of Technology (EPFL), Lausanne (Aug 2001)

15. Van Hentenryck, P.: Parallel constraint satisfaction in logic programming: Prelim-
inary results of CHIP within PEPSys. In: Levi, G., Martelli, M. (eds.) ICLP’89.
pp. 165–180. The MIT Press, Lisboa, Portugal (Jun 1989)

16. Wilkinson, B., Allen, M.: Parallel Programming. Pearson, 2nd edn. (2005)
17. Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The distributed constraint

satisfaction problem: Formalization and algorithms. Trans. on Knowl. and Data
Eng. 10(5), 673–685 (1998)

18. Zivan, R., Meisels, A.: Concurrent search for distributed CSPs. Artificial Intelli-
gence 170(4–5), 440–461 (Apr 2006)

18 INForum 2010 Vasco Pedro, Salvador Abreu

