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Abstract. Parallel programming is becoming increasingly important
since the popularization of multi-core processors. Traditional program-
ming techniques that take advantage of these processors lack structure
in the sense that the parallelization artefacts are mixed with the base
code. This leads to problems in reusing, debugging and maintaining both
the base code and the parallelization code. This paper presents and com-
pares a new approach to separate those concerns. This approach is based
on the concept of Object-Oriented Programming inheritance and it is
called Class Refinement. Since the concepts and abstractions are similar
to those on Object-Oriented, the learning curve is much smaller than
using, for instance, the Aspect Oriented (AOP) approach.
We show that the performance overhead of using Class Refinement is
close to the AOP approach and minimal compared to the traditional
programming style.

1 Introduction

The solution adopted to overcome the problems of the increase of frequency in
processors [1] is to integrate into a single CPU a set of independent processing
units (cores). With this approach, processor designers no longer need to raise
clock frequencies to increase computational power. The trend is the continue
increase of the number of cores.

The older variant of parallel computing but still very important today is
related to distributed computing (eg.: Cluster) where the computation is per-
formed across a number of nodes connected by a network. The most important
benefits of this approach are the large number of nodes that can be intercon-
nected and the fact that each node can be composed by commodity hardware
making it a low cost solution.

Both multi-core and cluster computing require a different programming style
from sequential programming, as programmers need to specify parallel activi-
ties within applications. Thus, the development of parallel applications requires
knowledge of traditional programming and expertise in parallel execution con-
cerns (eg.: data partition, thread/process communication and synchronization).
Generally, these two concerns are mixed because the code that supports the
parallel execution is injected into the core functionality (coded sequentially),
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resulting in tangled code. The lack of structure of this approach also leads to
scattered code since the code to enable parallel execution is spread over different
classes/modules of the base/domain code. The main drawbacks of that approach
are mostly noticed in the greater effort that is necessary to understand both the
parallel structure of the program and the base algorithm and in the difficulty to
reuse or debug functionalities.

Previous studies [2,3] argue the separation of the core functionality from the
parallelization structure which allows :

1. better maintenance and reuse of the core functionality, reducing or eliminat-
ing the problem of code tangling and scattering ;

2. easier understanding of the parallel structure and better reuse of the parallel
code;

3. enhancement of the parallelization structure by promoting incremental de-
velopment.

Aspect Oriented Programming [4] aims to separate and modularize crosscut-
ting concerns that are not well captured by the Object-Oriented (OO) approach.
It was already used successfully to separate the parallelization structure from
the base/domain code [2, 3, 5]. The experience gained led us to investigate the
use of Class Refinement to achieve a similar goal. The main purpose is to ease
the migration of programmers since the rules and abstractions are similar to the
ones found in Object-Oriented programming (OOP).

The remainder of this document is structured as follows. Section 2 gives an
overview and a comparison of the techniques studied in this paper to separate
concerns in parallel applications. The next section shows the implementation
of a case study and the overhead caused by the separation of concerns. The
conclusion and the future work are presented in Section 4.

2 Tangled, AOP and Class Refinements

This section introduces the problems with the traditional approach for the par-
allelization of applications and compares two other approaches that allow sep-
aration of concerns. AOP and Class Refinement allow the separation of the
parallelization into well defined modules promoting modularization [6–8]. Both
approaches need that the base code exposes entry points where additional code
can be appended. In other words, some functionalities in the base code have to
be separated into methods to support the attachment of code in the new units
of modularity. When those entry points are not available, code refactoring is
needed.

2.1 Traditional Approach

Traditional techniques to parallelize applications are invasive. Program 1 illus-
trates the problem of invasive modification by showing the simplified cluster
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oriented parallelization of a molecular dynamics simulation [9] that will be de-
tailed in section 3. In black it can be seen the base code and in red (italic) the
parallelization statements.

Once the domain code is populated with artefacts regarding the paralleliza-
tion concerns, modularity is lost. This doesn’t allow, for instance, to change
the parallelization to match other target platforms (eg.: Shared Memory) or to
perform incremental development to enhance the parallelization or the domain
code. Both codes are glued and dependent on each other.

public class MD {
Particle [] one; // Vector with all particles

int mdsize; // Problem size (number of particles)

int movemx; // Number of interactions

//Declare auxiliary variables to MPI parallelization

double [] tmp_xforce;

double [] tmp_yforce;

double [] tmp_zforce;

...

public void runiters throws MPIException {

for (move = 0; move < movemx; move++) { // Main loop

for (i = 0; i < mdsize; i++) {
one[i].domove(side); // move the particles and

} // update velocities

...

MPI.COMM_WORLD.Barrier();

computeForces(MPI.COMM_WORLD.Rank(),MPI.COMM_WORLD.Size());

MPI.COMM_WORLD.Barrier();

for (i = 0; i < mdsize; i++) { //Copy forces to temp vector

tmp_xforce[i] = one[i].xforce; // to use in MPI operation

tmp_yforce[i] = one[i].yforce;

tmp_zforce[i] = one[i].zforce;

}
//Global reduction

MPI.Allreduce(tmp_xforce,0,tmp_xforce,0,mdsize,MPI.DOUBLE,MPI.SUM);

MPI.Allreduce(tmp_yforce,0,tmp_yforce,0,mdsize,MPI.DOUBLE,MPI.SUM);

MPI.Allreduce(tmp_zforce,0,tmp_zforce,0,mdsize,MPI.DOUBLE,MPI.SUM);

//Update forces based in reducted values

//Scale forces and calculate velocity

Program 1: MD cluster based parallelization.
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2.2 AOP Technique

Aspect Oriented Programming [4] aims to separate and modularize crosscutting
concerns that are not well captured by the Object-Oriented (OO) approach.
Aspects are units of modularization that encapsulate code that otherwise would
be scattered and tangled with the base code.

Crosscutting concerns can be either static or dynamic. Static crosscutting
allows the redefinition of the static structure of a type hierarchy. For instance,
fields of a class can be added or an arbitrary interface can be implemented. For
dynamic crosscutting, AOP introduces the concepts of join point and advice. Join
point is a well defined place in the base code where arbitrary behaviour can be
attached and advice is the piece of code to execute when a join point is reached.
A set of join points can be defined by the use of the pointcut designator that
allows the use of logical operators to define an arbitrary point in the program
flow.

In program 2 an Aspect example is shown. This aspect traces all calls to the
method Deposit defined in Bank class that have one argument of type int (line
3). Before that method being called (line 5), a piece of advice is executed. Lines
6 and 7 correspond to the advice.

Weaving is the mechanism responsible to compile the aspects. It merges
both the aspects and the base classes. This process can be done either in the
compilation phase or during class loading.

In the remainder of this paper whenever we’ll use the term AOP we will be
referring to the most mature and complete AOP implementation, AspectJ [10].

1 public aspect Logging {

2 int call = 0;

3 pointcut deposit() : call (void Bank.Deposit(int));

4

5 before() : deposit() {

6 Logger.log(...);

7 call ++;

8 }

9 }

Program 2: AOP logging example. AspectJ syntax.

2.3 Class Refinement Technique

Object-Oriented languages allow the extension of classes by means of inheritance.
The new class (subclass) inherits a subset or the complete set of the superclass
state and behaviour. The subclass has the ability to override that behaviour or
introduce a new one. This mechanism can be seen as a layer where additional,
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more specific behaviour can be attached. Thus, the fact that the subclass needs
to be instantiated does not solve entirely the problem of separation of concerns.
The access of the new behaviour or state defined in the subclass has to be done
explicitly by using, for instance, the name of the subclass. Clearly, this solution
does not scale if we want to encapsulate others parallelization mechanisms, each
in its own module (eg.: subclass) because it is required to make changes to client
modules to compose them.

Batory [11] proposed that refinement “is a functionality addition to a pro-
gram, which introduces a conceptually new service, capability, or feature, and
may affect multiple implementation entities”. Others definitions are more re-
strictive and thus specific to a particular area1.

In this study, we define Class Refinement as the ability to extend a class by
means of inheritance but instead of creating a new scope (subclass), the refined
class takes the name of the original class. In terms of implementation, the original
class is rewritten to include the modifications defined in the refinements. Com-
position order becomes important since refinements are class rewritings (note:
the composition order is also important in traditional OO inheritance, although
it is implicitly specified by the inheritance chain and method lookup).

1 public class Logging refines Bank {

2 int call = 0;

3 @Override

4 public void Deposit(int value){

5 Logger.log(...);

6 call ++;

7 super.Deposit(value);

8 }

9 }

Program 3: Class Refinement example.

In program 3 the same example is given but using the Class Refinement
approach. The similarities with Object-Oriented inheritance are huge and besides
the word refines in Line 1, this piece of code could belong to a Bank’s subclass.
The main difference is that the class Logging does not need to be explicitly
instantiated because it will rewrite the class Bank. This means that calls to the
Deposit method in a Bank object will trigger the execution of lines 5 and 6 when
the refinement is applied to the base code.

For the rest of this paper, we’ll present Class Refinements implemented with
GluonJ [12] (although, we do not strictly follow GluonJ’s syntax). GluonJ sup-
ports refinements by means of inheritance using Java annotations. This allows
the use of a standard Java compiler (eg.: javac) to compile both the base code

1 One example belongs to formal methods (eg.: Refinement Calculus)
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and the refinements. When more than one refinement is applied, it is necessary
to define an order of composition because different refinements can be applied to
the same class (eg.: two refinements can override the same method). Refinements
are applied in load-time by the GluonJ mechanism [13] using the order defined
in a specific container called Glue class.

2.4 Comparison

In this section we present a comparison among the approaches previously dis-
cussed to separate concerns against the traditional (tangled) parallel program-
ming approach. We compare each approach using a set of properties that we
think are fundamental to a major acceptance by the community and to build
better and modular applications.

ClassRefinement AOP (AspectJ) Traditional

OO − Like Y es No Y es
Modularity Good Good Poor
Context V eryGood V eryGood Excellent

Composition Good Average Poor
Reusability Average V eryGood Poor
Usability V eryGood Hard Excellent

Performance V eryGood V eryGood Excellent
UnanticipatedEvolutions Y es Y es No

Table 1: Comparison of Approaches.

Being OO-Like is important for a major acceptance from the community.
The AOP approach is the weaker in this case because programmers need to learn
new concepts different from Object-Oriented Programming and it also requires
an Aspect compiler (eg.: ajc). Class Refinement, on the other hand, shares the
same concepts with the Object-Oriented approach and it can be compiled with
a standard compiler like javac.

Class Refinement and AOP allow improvements in modularity since new
concerns are localized in new units of modularity (Refinement and Aspect).
Traditional parallel programming techniques present poor modularity due to
the mentioned code tangling.

Context information is the ability to access behaviour or information defined
in the base code. Since method overriding is the finest grain to change the base
class, Class Refinements can access almost everything except local information
in methods. For instance, method overriding doest not allow to reuse parts of
the overridden method. The same situation happens with AOP but with the
difference that some context information can be retrieved using reflection (eg.:
thisJoinPoint) bringing performance penalties. On the other hand, the tangled
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approach, where code can be inserted anywhere, has excellent context informa-
tion access.

In terms of composition, the order in which the refinements and the aspects
are applied plays an important rule and can be tricky. Nevertheless, both ap-
proaches are superior to the tangled version, as it is not possible to compose code
that is not made in a modular manner. Composition using Class Refinements
is better than with AOP since we explicitly specify which refinements must be
applied to the base code. For instance, in GluonJ, a specific Glue class specifies
the set and order of refinements. AOP lacks such kind of explicit composition
step and clear composition rules.

Re-usability is a topic still in research in the case of Class Refinements. First
implementations of reusable mechanisms using Class Refinement share the prob-
lem of explicitly defining the name of the class to refine making it an average
solution. There are reusable implementations of concurrency mechanisms imple-
mented using AOP [14] and the base code can be reused as well. In the tangled
approach, the base code and the parallelization structure cannot be reused be-
cause they are intrinsically glued.

The tangled version is the easiest to use because it is the simplest approach.
Class Refinement, since it is OO-like and based on inheritance, borrows most of
its concepts in Object-Oriented Programming, making it easier to learn and use.
AOP is the hardest because it introduces new concepts (eg.: join-point model,
pointcuts) and it even changes some Object-Oriented properties (eg.: methods
with body in Interfaces).

The change of the parallelization to match a new target platform can be
seen as an unanticipated evolution. The tangled version is the weakest because
its hard to reuse the base code. The same does not happen to the other two
approaches as we have been seen.

In terms of performance, in section 3.2 we’ll compare the approaches in more
detail.

3 Case Study

We present the parallelization of a Molecular Dynamics (MD) algorithm that
makes part of the Java Grande Forum [9] benchmark suite. Molecular Dynamics
are important algorithms to simulate the interaction of microscopical particles
(eg.: atoms) in a great variety of fields (eg.: Physics, Biology or Medicine).

Figure 1 shows the main steps of a generic MD algorithm. The first step is
to assign particles its initial position. The algorithm then iterates until some
condition is met (eg.: number of iterations). At each iteration, it is calculated
the force on each particle due to the interaction with all others particles (main
computational cost). The next step is to determine the new position of each
particle and increment the time step.
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Fig. 1: Typical MD Algorithm [15]

3.1 Implementation

Figure 2 shows a simplified class diagram. The class MD contains all the infor-
mation about the simulation including references to all particles. The method
runiters implements the iterations of the simulation. The class Particle con-
tains 9 variables representing the position, velocity and force for all coordinates
in 3 dimensional space. The method force calculates the force for that specific
particle with all others particles in the simulation.

Fig. 2: Simplified MD class diagram.

To implement the shared memory parallelization using Class Refinement,
the refinements listed in program 4 and 5 were created. The parallel algorithm
implemented is based on the idea that the computation of the forces can be
done in parallel, where each computation unit (Thread) calculates the forces for
a subset of the total number of particles. When all of these computation units
end, the result is merged (reduce operation).

The refinement of the MD class introduces a new data structure that will
save temporary calculations before the reduce operation in the method compute-
Forces.

The refinement of the class Particle is needed to use the new data structure
created in the refinement RefMD that saves temporary computation of the forces.
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public class RefMD refines MD {
public static double[][] lforcex;
...//same structure to forcey and forcez

@Override
public void runiters(){

//initialise new data structures
//call original runiters to initialise data structures
//of the original simulation
super.runinters();

}

@Override
public void computeForces(...){

//Spawn threads to compute forces in parallel
//Join threads and reduce the values calculated in parallel

}

Program 4: MD refinement.

public class RefParticle refines Particle {

@Override
public void setForceX(...){

//save in a new data structure created in RefMD
}

//Same to other components of the Force (y and z)
}

Program 5: Particle refinement.

To implement the distributed memory version, the Message Passing Interface
(MPI) library was used to handle the creation, communication and synchroniza-
tion of processes. Since the MPI parallelization is based in the Single Process
Multiple Data (SPMD) methodology, only one refinement was needed and is
presented in program 6.

The algorithm is the same as the shared memory version but instead of
threads, the computational units are processes that have their own memory
space and communicate through messages. The refinement RefMPI overrides
the method computeForces to allow partitioning the computation. When each
process ends, information is interchanged to continue the algorithm with updated
values.

To take advantages of modern clusters that have hundreds or thousands of
nodes where each node is composed by multi-core processors, a Hybrid ver-
sion can be seen as the computation using Distributed and Shared memory
parallelization. The creation of an Hybrid is just a matter of composing the re-
finements in the right order as shown in program 7. The first refinement being
applied is RefMD and the last RefMPI. Thereafter, the behaviour defined in
the refinement of the distributed memory version is the first being executed and
then the behaviour in RefMD.
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public class RefMPI refines MD {
@Override

public void computeForces(int init, int inc){
super.computeForces(mpiRank,mpiSize);

//Interchange information with MPI_AllReduce
//Update state

}
}

Program 6: MD refinement for MPI.

applyRefinement
RefMD,
RefParticle,
RefMPI

Program 7: Composition of Refinements.

3.2 Benchmarks

The benchmarks measure the execution time of three implementations of the
algorithm explained in section 2 in both shared memory (Figure 3a) using multi-
threads and distributed memory (Figure 3b) using MPI. As we expected because

(a) Shared memory (b) Distributed memory

Fig. 3: Benchmarks

the mechanism of class rewriting, the overhead caused by the Class Refinement
mechanism is virtually zero and similar to the AOP approach. The difference
for 8 threads can be explained by the use of concurrency mechanisms presented
in Java 1.6 that perform better for high number of threads compared to the
implementation used in the JGF benchmark (Java1.2 ) (executors with thread
pool). Similar results were obtained for the distributed memory parallelization.
The differences in execution time are minimal in the 3 approaches.

76 INForum 2010 Matheus Almeida, João Sobral



4 Conclusion

This paper presented a new approach to solve the problem of separation of
concerns in the parallelization of applications. It is based in Object-Oriented
inheritance to ease the migration of programmers and to be compatible with
standard compilers.

We presented a comparison among different approaches to identify the ad-
vantages and disadvantages of each methodology. There is no clear winner but
the conclusions are important to understand what are the main important prop-
erties that must be presented in a system to allow a better and most complete
separation of concerns. AOP and Class Refinement allow the creation of a new
unit of modularity, thus allowing to deal with the inclusion of new concerns or
with unanticipated changes in a modular way. Both of the approaches showed
similar performance.

The main drawbacks of AOP are the need to learn new concepts and the
fact that the compilation is done by a specific compiler. The Class Refinement
approach is better in this case because it shares the same concepts with Object-
Oriented inheritance and the compilation is done with a standard compiler.

The case study illustrated the use of Class Refinement and the benefits from
its use compared to regular OO inheritance. The ability to compose the refine-
ments and to choose what refinements must be applied in load-time is a great
advantage compared to other approaches. The benchmarks showed that the over-
head of using Class Refinement and AOP is little compared to traditional and
invasive approaches.

Current work includes the implementation of larger case studies and opti-
mized reusable mechanisms for parallel computing based on Class Refinement.

In the longer term, the creation of a new tool or the optimization of an
existent one [12] that implements the concept of Class Refinement is an option.
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