
Solving Difficult LR Parsing Conflicts by
Postponing Them

L. Garcia-Forte and C. Rodriguez-Leon

Departamento de EIO y Computación,
Universidad de La Laguna, Tenerife, Spain

casiano@ull.es,
WWW home page: http://nereida.deioc.ull.es

Abstract. Though yacc-like LR parser generators provide ways to solve
shift-reduce conflicts using token precedences, no mechanisms are pro-
vided for the resolution of reduce-reduce conflicts. To solve this kind of
conflicts the language designer has to modify the grammar. All the solu-
tions for dealing with these difficult conflicts branch at each alternative,
leading to the exploration of the whole search tree. These strategies dif-
fer in the way the tree is explored: GLR, Backtracking LR, Backtracking
LR with priorities, etc. This paper explores an entirely different path:
to extend the yacc conflict resolution sublanguage with new constructs
allowing the programmers to explicit the way the conflict must be solved.
These extensions supply ways to resolve any kind of conflicts, including
those that can not be solved using static precedences. The method makes
also feasible the parsing of grammars whose ambiguity must be solved in
terms of the semantic context. Besides, it brings to LR-parsing a com-
mon LL-parsing feature: the advantage of providing full control over the
specific trees the user wants to build.

1 Introduction

Yacc-like LR parser generators [1] provide ways to solve shift-reduce mechanisms
based on token precedence. No mechanisms are provided for the resolution of
reduce-reduce conflicts or difficult shift-reduce conflicts. To solve such kind of
conflicts the language designer has to modify the grammar. Quoting Merrill [2]:

Yacc lacks support for resolving ambiguities in the language for which it
is attempting to generate a parser. It does a simple-minded approach to
resolving shift/reduce and reduce/reduce conflicts, but this is not of suffi-
cient power to solve the really thorny problems encountered in a genuinely
ambiguous language

Some context-dependency ambiguities can be solved through the use of lexical
tie-ins: a flag which is set by the semantic actions, whose purpose is to alter the
way tokens are parsed. But it is not always possible or easy to resort to this kind
of tricks to fix some context dependent ambiguity. A more general solution is to
extend LR parsers with the capacity to branch at any multivalued entry of the

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 173–184



LR action table. For example, Bison [7], via the %glr-parser directive and
Elkhound [5] provide implementations of the Generalized LR (GLR) algorithm
[4]. In the GLR algorithm, when a conflicting transition is encountered, the
parsing stack is forked into as many parallel parsing stacks as conflicting actions.
The next input token is read and used to determine the next transitions for
each of the top states. If some top state does not transit for the input token it
means that path is invalid and that branch can be discarded. Though GLR has
been successfully applied to the parsing of ambiguous languages, the handling
of languages that are both context-dependent and ambiguous is more difficult.
The Bison manual [7] points out the following caveats when using GLR:

. . . there are at least two potential problems to beware. First, always
analyze the conflicts reported by Bison to make sure that GLR splitting is
only done where it is intended. A GLR parser splitting inadvertently may
cause problems less obvious than an LALR parser statically choosing the
wrong alternative in a conflict. Second, consider interactions with the
lexer with great care. Since a split parser consumes tokens without per-
forming any actions during the split, the lexer cannot obtain information
via parser actions. Some cases of lexer interactions can be eliminated by
using GLR to shift the complications from the lexer to the parser. You
must check the remaining cases for correctness.

The strategy presented here extends yacc conflict resolution mechanisms with
new ones, supplying ways to resolve conflicts that can not be solved using static
precedences. The algorithm for the generation of the LR tables remains un-
changed, but the programmer can modify the parsing tables during run time.

The technique involves labelling the points in conflict in the grammar spe-
cification and providing additional code to resolve the conflict when it arises.
Crucially, this does not requires rewriting or transforming the grammar, trying
to resolve the conflict in advance, backtracking or branching into concurrent spe-
culative parsers. Instead, the resolution is postponed until the conflict actually
arises during parsing, whereupon user code inspects the state of the underlying
parse engine to decide the appropriate solution. There are two main benefits:
Since the full power of the native universal hosting language is at disposal, any
grammar ambiguity can be tackled. We can also expect - since the conflict han-
dler is written by the programmer - a more efficient solution which reduces the
required amount of backtracking or branching.

This technique can be combined to complement both GLR and backtracking
LR algorithms [6] to give the programmer a finer control of the branching pro-
cess. It puts the user - as it occurs in top down parsing - in control of the parsing
strategy when the grammar is ambiguous, making it easier to deal with efficiency
and context dependency issues. One disadvantage is that it requires a compre-
hensive knowledge of LR parsing. It is conceived to be used when none of the
available techniques - static precedences, grammar modification, backtracking
LR or Generalized LR - produces satisfactory solutions. We have implemented
these techniques in Parse::Eyapp [9], a yacc-like LALR parser generator for

174 INForum 2010 Luis Garcia-Forte and Casiano Rodriguez-Leon



Perl [10, 11]. The Perl language is, quoting Paul Hudak’s article [12] a “domain
specific language for text manipulation”.

This paper is divided in six sections. The next section introduces the Post-
poned Conflict Resolution (PPCR) strategy. The following three sections illus-
trate the way the technique is used. The first presents an ambiguous grammar
where the disambiguating rule is made in terms of the previous context. The
next shows the technique on a difficult grammar that has been previously used
in the literature [7] to illustrate the advantages of the GLR engine: the decla-
ration of enumerated and subrange types in Pascal [13]. The last example deals
with a grammar that can not be parsed by any LL(k) nor LR(k), whatever the
value of k, nor for packrat parsing algorithms [14]. The last section summarizes
the advantages and disadvantages of our proposal.

2 The Postponed Conflict Resolution Strategy

The Postponed Conflict Resolution is a strategy (PPCR strategy) to apply when-
ever there is a shift-reduce or reduce-reduce conflict which is unsolvable using
static precedences. It delays the decision, whether to shift or reduce and by
which production to reduce, to parsing time. Let us assume the eyapp compiler
announces the presence of a reduce-reduce conflict. The steps followed to solve
a reduce-reduce conflict using the PPCR strategy are:

1. Identify the conflict: What LR(0)-items/productions and tokens are invol-
ved?.
Tools must support that stage, as for example via the .output file generated
by eyapp. Suppose we identify that the participants are the two LR(0)-items
A → α↑ and B → β↑ when the lookahead token is @.

2. The software must allow the use of symbolic labels to refer by name to the
productions involved in the conflict. Let us assume that production A → α
has label :rA and production B → β has label :rB. A difference with yacc
is that in Parse::Eyapp productions can have names and labels. In Eyapp
names and labels can be explicitly given using the directive %name, using a
syntax similar to this one:

%name :rA A → α

%name :rB B → β

3. Give a symbolic name to the conflict. In this case we choose isAorB as name
of the conflict.

4. Inside the body section of the grammar, mark the points of conflict using the
new reserved word %PREC followed by the conflict name:

%name :rA A → α %PREC IsAorB

%name :rA B → β %PREC IsAorB

Solving Difficult LR Parsing Conflicts ... INForum 2010 – 175



5. Introduce a %conflict directive inside the head section of the translation
scheme to specify the way the conflict will be solved. The directive is followed
by some code - known as the conflict handler - whose mission is to modify the
parsing tables. This code will be executed each time the associated conflict
state is reached. This is the usual layout of the conflict handler:

%conflict IsAorB {
if (is_A) { $self->YYSetReduce(’@’, ’:rA’ ); }

else { $self->YYSetReduce(’@’, ’:rB’ ); }
}

Inside a conflict code handler the Perl default variable $_ refers to the input
and $self refers to the parser object.
Variables in Perl - like $self - have prefixes like $ (scalars), @ (lists), %
(hashes or dictionaries), & (subroutines), etc. specifying the type of the vari-
able. These prefixes are called sigils. The sigil $ indicates a scalar variable,
i.e. a variable that stores a single value: a number, a string or a reference.
In this case $self is a reference to the parser object. The arrow syntax
$object->method() is used to call a method: it is the equivalent of the dot
operator object.method() used in most OOP languages. Thus the call

$self->YYSetReduce(’@’, ’:rA’ )

is a call to the YYSetReduce method of the object $self.
The method YYSetReduce provided by Parse::Eyapp receives a token, like
’@’, and a production label, like :rA. The call

$self->YYSetReduce(’@’, ’:rA’ )

sets the parsing action for the state associated with the conflict IsAorB to
reduce by the production :rA when the current lookahead is @.
The call to is_A represents the context-dependent dynamic knowledge that
allows us to take the right decision. It is usually a call to a nested parser for
A but it can also be any other contextual information we have to determine
which one is the right production.

The procedure is similar for shift-reduce conflicts. Let us assume we have
identified a shift-reduce conflict between LR-(0) items A → α↑ and B → β ↑ γ
for some token ’@’. Only steps 4 and 5 change slightly:

4’. Again, we must give a symbolic name to A → α and mark with the new
%PREC directive the places where the conflict occurs:

%name :rA A → α %PREC IsAorB

B → β %PREC IsAorB γ

176 INForum 2010 Luis Garcia-Forte and Casiano Rodriguez-Leon



5’. Now the conflict handler calls the YYSetShift method to set the shift
action:

%conflict IsAorB {
if (is_A) { $self->YYSetReduce(’@’, ’:rA’ ); }
else { $self->YYSetShift(’@’); }

}

3 A Simple Example

The following example1 accepts lists of two kind of commands: arithmetic ex-
pressions like 4-2-1 or one of two associativity commands: left or right. When
a right command is issued, the semantic of the ’-’ operator is changed to be
right associative. When a left command is issued the semantic for ’-’ returns
to its classic left associative interpretation. Here follows an example of input.
Between shell-like comments appears the expected output:

$ cat input_for_dynamicgrammar.txt
2-1-1 # left: 0 = (2-1)-1
RIGHT
2-1-1 # right: 2 = 2-(1-1)
LEFT
3-1-1 # left: 1 = (3-1)-1
RIGHT
3-1-1 # right: 3 = 3-(1-1)

We use a variable $reduce (initially set to 1) to decide the way in which the
ambiguity NUM-NUM-NUM is solved. If false we will set the NUM-(NUM-NUM) inter-
pretation. The variable $reduce is modified each time the input program emits
a LEFT or RIGHT command.

Following the steps outlined above, and after looking at the .output file, we
see that the items involved in the announced shift-reduce conflict are

expr → expr↑ − expr

expr → expr − expr↑

and the lookahead token is ’-’. We next mark the points in conflict in the
grammar using the %PREC directive (see Figure 1)

1 For the full examples used in this paper, see the directory examples/debuggingtut/

in the Parse::Eyapp distribution [9]

Solving Difficult LR Parsing Conflicts ... INForum 2010 – 177



%%

p:

/* empty */ {}

| p c {}

;

c:

$expr { print "$expr\n" }

| RIGHT { $reduce = 0}

| LEFT { $reduce = 1}

;

expr:

’(’ $expr ’)’ { $expr }

| %name :M

expr.left %PREC lOr

’-’ expr.right %PREC lOr

{ $left -$right }

| NUM

;

Fig. 1. An Example of Context Dependent Ambiguity Resolution

The dollar and dot notation used in some right hand sides (rhs) like in
expr.left ’-’ expr.right and $expr is used to associate variable names with
the attributes of the symbols.

The conflict handler lOr defined in the header section is:

%conflict lOr {
if ($reduce) {$self->YYSetReduce(’-’, ’:M’)}
else {$self->YYSetShift(’-’)}

}

If $reduce is true we set the parsing action to reduce by the production labelled
:M, otherwise we choose the shift action.

Observe how PPCR allow us to dynamically change at will the meaning of
the same statement. That is certainly harder to do using alternative techniques,
either problem specific, like lexical Tie-Ins [7], or more general, like GLR [4].

4 Nested Parsing of Unexpended Input and Context

This section illustrates the technique through a problem that arises in the decla-
ration of enumerated and subrange types in the programming language Pascal.
The problem is taken from the Bison manual, (see section ‘Using GLR on Un-
ambiguous Grammars’) where it is used as a paradigmatic example of when to
switch to the GLR engine [7]. Here are some cases:

type subrange = lo .. hi;
type enum = (a, b, c);

The original language standard allows only numeric literals and constant
identifiers for the subrange bounds (lo and hi), but Extended Pascal (ISO/IEC

178 INForum 2010 Luis Garcia-Forte and Casiano Rodriguez-Leon



10206) [13] and many other Pascal implementations allow arbitrary expressions
there. This gives rise to declarations like the following:

type subrange = (a) .. b; type enum = (a);

The corresponding declarations look identical until the ‘..’ token. With nor-
mal LALR(1) one-token lookahead it is not possible to decide between the two
forms when the identifier ‘a’ is parsed. It is, however, desirable for a parser to
decide this, since in the latter case ‘a’ must become a new identifier to represent
the enumeration value, while in the former case ‘a’ must be evaluated with its
current meaning, which may be a constant or even a function call. The Bison
manual considers and discards several potential solutions to the problem to con-
clude that the best approach is to declare the parser to use the GLR algorithm.
To aggravate the conflict we have added the C comma operator inside expr2,
making room for the generation of declarations like:

type subrange = (a, b, c) .. (d, e); type enum = (a, b, c);

which makes the parsing even more difficult.
Here is our modification of the vastly simplified subgrammar of Pascal type

declarations found in [7].

%token ID = /([A-Za-z]\w*)/

%token NUM = /(\d+)/

%left ’,’

%left ’-’ ’+’

%left ’*’ ’/’

%%

type_decl : ’TYPE’ ID ’=’ type ’;’

;

type :

’(’ id_list ’)’

| expr ’..’ expr

;

id_list :

ID

| id_list ’,’ ID

;

expr :

’(’ expr ’)’

| expr ’+’ expr

| expr ’-’ expr

| expr ’*’ expr

| expr ’/’ expr

| expr ’,’ expr /* new */

| ID

| NUM

;

2 Perhaps the language designer wants to extend Pascal with lexicographic ranges

Solving Difficult LR Parsing Conflicts ... INForum 2010 – 179



When used as a normal LALR(1) grammar, eyapp correctly complains about
two reduce/reduce conflicts:

$ eyapp -v pascalenumeratedvsrange.eyp
2 reduce/reduce conflicts

The generated .output file tell us that both conflicts occur in state 11. It also
give us the contents of state 11:

State 11:
id_list -> ID . (Rule 4)
expr -> ID . (Rule 12)

’)’ [reduce using rule 12 (expr)]
’)’ reduce using rule 4 (id_list)
’*’ reduce using rule 12 (expr)
’+’ reduce using rule 12 (expr)
’,’ [reduce using rule 12 (expr)]
’,’ reduce using rule 4 (id_list)
’-’ reduce using rule 12 (expr)
’/’ reduce using rule 12 (expr)

From the inspection of state 11 we can conclude that the two reduce-reduce con-
flicts occur between productions id_list -> ID and expr -> ID in the presence
of tokens ‘)’ and ‘,’. To solve the conflict we label the two involved productions
and set the %PREC directives:

id_list :
...
%name ID:ENUM
ID %PREC rangeORenum
...

expr : ’(’ expr ’)’
...

| %name ID:RANGE
ID %PREC rangeORenum
...

When the conflict point is reached the conflict handler below calls the method
YYLookBothWays(a, b).

180 INForum 2010 Luis Garcia-Forte and Casiano Rodriguez-Leon



%conflict rangeORenum {
my $s = $self->YYLookBothWays(’TYPE’, ’;’);
if ($s =~ /^TYPE ID = \( ID ( , ID )* \) ;$/x)

{ $self->YYSetReduce([’,’, ’)’], ’ID:ENUM’ ); }
else { $self->YYSetReduce([’,’, ’)’], ’ID:RANGE’ ); }

}

The substring from the right sentential form3 between ’TYPE’ and ’;’ is stored
in $s. If the string of tokens $s in Σ∗ conforms to the syntax of an enumerated
type

/^TYPE ID = \( ID ( , ID )* \) ;$/

we set the parsing action to reduce by the production id list → ID for the two
conflictive tokens ’,’ and ’)’. Otherwise the input represents a range type.

In most cases, as occurs in this example, the nested parsing step required
to decide which action must be taken can be accomplished through a simple
regular pattern. Nested parsing is extraordinarily eased by the fact that Perl
5.10 standard regular patterns permit the description of context free languages.
Even more, modules like Regexp::Grammar [15] bring Perl 6 [11] regular patterns
to Perl 5, extending Perl 5 regular patterns beyond the capabilities of Packrat
parsing [14].

The call YYLookBothWays(a, b) returns the string that is the concatenation
of the transition tokens in the stack after token a followed by the tokens in the
unexpended input before token b. It does not alter the current parsing position.

To be more precise, suppose that at the time of the call the pair

(s0X1s1X2s2 · · ·Xmsm, aiai+1 · · · an$) (1)

is the configuration of the LR parser. Here Xj ∈ Σ ∪ V is a token or a syn-
tactic variable, ak ∈ Σ are tokens and si are the states of the LR automata.
Remember that the equation δ(sk,Xk+1) = sk+1 for each k is hold by any con-
figuration, δ being the transition function. This configuration corresponds to the
right sentential form

X1X2 · · ·Xm, aiai+1 · · · an$ (2)

which must be in the rightmost derivation from the grammar start symbol being
built. The call YYLookBothWays(a, b) returns

Xj · · ·Xmaiai+1 · · · as$ (3)

where j is the shallowest index in the stack such that Xj = a and s is the nearest
index in the unexpended input such that as = b.

3 A string α ∈ (Σ ∪V )∗ is said a right sentential form for a grammar G = (Σ, V, P, S)
if, and only if, exists a rightmost derivation from the start symbol S to α

Solving Difficult LR Parsing Conflicts ... INForum 2010 – 181



5 Conflicts Requiring Unlimited Look-ahead

The following unambiguous grammar can not be parsed by any LL(k) nor LR(k),
whatever the value of k, nor for packrat parsing algorithms [14].

%%
S: x S x | x ;
%%

Though it is straighforward to find equivalent LL(1) and LR(1) grammars (the
language is even regular: /x(xx)*/), both GLR [4] and Backtrack LR parsers [2]
for this grammar will suffer of a potentially exponential complexity in the input
size. The unlimited number of look-aheads required to decide if the current x is
in the middle of the sentence, leads to an increase in the number of branches to
explore. The challenge is to make the parser work without changing the grammar.
Figure 2 shows a solution using PPCR:

%conflict isInTheMiddle {

my $nxs = $self->YYSymbolStack(0,-1, ’x’); # number of visited ’x’s

my $nxr = (unexpendedInput() =~ tr/x//); # number of remaining ’x’s

if ($nxs == $nxr+1) { $self->YYSetReduce(’x’, ’:MIDx’ ) }

else { $self->YYSetShift(’x’) }

}

%%

S:

x %PREC isInTheMiddle S x

| %name :MIDx

x %PREC isInTheMiddle ;

Fig. 2. Parsing a Non LL(k) nor LR(k) nor packrat grammar

A call $self->YYSymbolStack(a, b, [filter]) returns the list of symbols as-
sociated with the parser stack states between a and b. A negative value of a
or b refers to the position from the end of the list. Thus, a call like $self->
YYSymbolStack(0,-1) returns the whole list of symbols in the parsing stack.
The optional filter argument can be a string, a closure4 or a regular pattern.

4 A closure is a first-class function with free variables that are bound in the lexical
environment

182 INForum 2010 Luis Garcia-Forte and Casiano Rodriguez-Leon



When it is a pattern the sublist for which the pattern matches is selected. If
it is a closure, it returns the sublist of symbols for which the evaluation of
the code is true. If it is a string, as in $self->YYSymbolStack(0,-1, ’x’),
the sublist of symbols equal to the string is selected. Since the assignment
$nxs = $self->YYSymbolStack(0,-1, ’x’) is evaluated in a scalar context,
the length of the resulting sublist is stored in the variable $nxs. The copy of
the unexpended input - returned by the call to unexpendedInput() - is then
scanned for ’x’s and its number is stored in $nxr. When $nxs equals $nxr +1 it
is time to reduce by S → x. It may seem that this solution cannot be generalized
when ’x’ is an arbitrary grammar. Remember however that Perl 5.10 regular
patterns can parse any context free grammar [15].

We can now compile the former program nopackratSolved.eyp to generate
a script nopackratSolved.pl containing the parser. When executed with input
xxx it outputs a description of the abstract syntax tree:

$ eyapp -TC -o nopackratSolved.pl nopackratSolved.eyp
$ ./nopackratSolved.pl -t -i -c ’xxx’
S(TERMINAL[x],S(TERMINAL[x]),TERMINAL[x])

Option -T instructs eyapp to automatically insert semantic actions to pro-
duce a data structure representing the abstract syntax tree. Option -C tells the
compiler to produce an executable (by default it produces a class containing the
parser). Eyapp provides default lexical analyzer, error handler and main sub-
routines for the generated program. The default main subroutine admits several
command line options, like: -t (print the AST), -i (print the semantic values
of the tokens) and -c arg (take the input from arg).

6 Conclusions

The strategy presented in this paper extends the classic yacc precedence mecha-
nisms with new dynamic conflict resolution mechanisms. These new mechanisms
provide ways to resolve conflicts that can not be solved using static precedences.
They also provides finer control over the conflict resolution process than existing
alternatives, like GLR and backtracking LR. There are no limitations to PPCR
parsing, since the conflict handler is implemented in a universal language and it
then can resort to any kind of nested parsing algorithm. The conflict resolution
mechanisms presented here can be introduced in any LR parsing tools, since they
are independent of the implementation language and the language used for the
expression of the semantic actions. One disadvantage of PPCR is that it requires
some knowledge of LR parsing. Though the solution may be more efficient, it
certainly involves more programmer work than branching methods like GLR or
backtracking LR.

Solving Difficult LR Parsing Conflicts ... INForum 2010 – 183



Acknowledgments

This work has been supported by the ec (FEDER) and the Spanish Ministry
of Science and Innovation inside the ’Plan Nacional de i+d+i’ with the contract
number tin2008-06491-c04-02. It has also been supported by the Canary Gov-
ernment project number pi2007/015.

References

1. Steven C. Johnson. Yacc: Yet another compiler compiler. In UNIX Programmer’s
Manual, volume 2, pages 353–387. Holt, Reinhart, and Winston, 1979. AT&T Bell
Laboratories Technical Report July 31, 1978.

2. Gary H. Merrill. Parsing Non-LK( k ) Grammars with Yacc. Software, Practice
and Experience 23(8): 829-850 (1993).

3. Kernighan & Ritchie. The C Programming Language. Prentice Hall.
4. Tomita, M. (1990). The Generalized LR Parser/Compiler - Version 8.4. In Pro-

ceedings of International Conference on Computational Linguistics (COLING’90),
pages 59–63, Helsinki, Finland.

5. Mcpeak, Scott. September 2004. Elkhound: A Fast, Practical GLR Parser Gener-
ator. http://scottmcpeak.com/elkhound/

6. Adrian D. Thurston and James R. Cordy. A Backtracking LR Algorithm for Pars-
ing Ambiguous Context-Dependent Languages. 2006 Conference of the Centre for
Advanced Studies on Collaborative Research (CASCON 2006), pp. 39-53, Toronto,
October 2006.

7. Charles Donnelly and Richard M. Stallman. Bison: the yacc-compatible parser
generator. Technical report, Free Software Foundation, 675 Mass Ave, Cambridge,
MA 02139, Tel: (617) 876-3296, 1988.

8. Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley, Reading, Massachussetts, 1990.

9. Rodŕıguez-León Casiano. Parse::Eyapp Manuals. 2007.
CPAN: http://search.cpan.org/dist/Parse-Eyapp/
google-code: http://code.google.com/p/parse-eyapp/

10. Wall, L., Christiansen, T., Schwartz, R. (1996). Programming Perl. O’Reilly & As-
sociates.

11. Allison Randal, Dan Sugalski, Leopold Totsch. Perl 6 and Parrot Essentials.
O’Reilly Media. June 2004.

12. Hudak, P. Modular Domain Specific Languages and Tools. ICSR ’98: Proceedings
of the 5th International Conference on Software Reuse. IEEE Computer Society.
Pages 134-142, June 1998.

13. ISO. Extended Pascal ISO 10206:1990.
http://www.standardpascal.org/iso10206.txt.

14. Bryan Ford. Functional Pearl: Packrat Parsing: Simple, Powerful, Lazy, Linear
Time.
http://pdos.csail.mit.edu/ baford/packrat/icfp02/packrat-icfp02.pdf

(2002).
15. Damian Conway. Regexp::Grammars. Add grammatical parsing features to Perl

5.10 regexes. http://search.cpan.org/dist/Regexp-Grammars/.

184 INForum 2010 Luis Garcia-Forte and Casiano Rodriguez-Leon


