
Animation of Tile-Based Games Automatically
Derived from Simulation Specifications

Jan Wolter, Bastian Cramer, and Uwe Kastens

University of Paderborn
Department of Computer Science

Fürstenallee 11, 33102 Paderborn, Germany
jwolter@mail.uni-paderborn.de,{bcramer,uwe}@uni-paderborn.de

Abstract. Visual Languages (VLs) are beneficial particularly for
domain-specific applications, since they can support ease of understand-
ing by visual metaphors. If such a language has an execution semantics,
comprehension of program execution may be supported by direct visu-
alization. This closes the gap between program depiction and execution.
To rapidly develop a VL with execution semantics a generator framework
is needed which incorporates the complex knowledge of simulating and
animating a VL on a high specification level.
In this paper we show how a fully playable tile-based game is specified
with our generator framework DEViL. We illustrate this on the famous
Pac-man1 game.
We claim that our simulation and animation approach is suitable for
the rapid development process. We show that the simulation of a VL
is easily reached even in complex scenarios and that the automatically
generated animation is mostly adequate, even for other kinds of VLs like
diagrammatic, iconic or graph based ones.

1 Introduction
A prominent representative of a visual language is the Unified Modeling Lan-
guage (UML) [9] which is often used in software engineering process. Even
smaller languages precoined for a specific domain are popular, because they
can use visual metaphors of the target domain. In general an instance of such a
visual language is used to produce source code of a different domain, e.g. Java
Code from an UML class diagram.

To gain acceptance in rapid prototyping generator frameworks are used which
can generate graphical structure editors for such visual languages from high-level
specifications. These generators incorporate expert knowledge to produce a com-
plete development environment for a VL with all features known from typical
text editors like cut and paste, printing, drag and drop and so on. Unfortunately
there is still a gap between program depiction and the generated code of that
program. The programmer has to keep in mind what the program, he just cre-
ated, does when it is executed. This gap is known as the gulf of execution [8].
Simulation and animation of the visual language instance can help to narrow

1 Pac-man
R©

is a registered trademark of Namco.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 113–124



this gap. The execution semantics of a visual language (if it has one) can be
integrated into the visual language. Hence the VL instance is no longer static it
can be simulated and smoothly animated. The user can ”see” his language being
executed before he generates code.

This helps to avoid mistakes at a very early stage and it supports program
comprehension which is a challenging task especially in languages where many
things happen in parallel.

The Development Environment for Visual Languages, DEViL, is a generator
framework for visual languages which produces graphical editors from declar-
ative high-level specifications. We extended it with simulation and animation
support for VLs whereas a smooth and challenging animation can be derived
automatically from a simple simulation specification. In this paper we want to
show that our simulation specification language is powerful to simulate even
complex behavior. We claim that the language helps in rapid prototyping, be-
cause simulation becomes an easy task due to powerful encapsulated concepts
like event driven simulation and the extension of the simulation model. We will
show that the automatically derived animation is suitable in most situations.

We will demonstrate this on the famous Pac-man game. It has a playful
character, but it is also a challenging language for simulation, because of the
complex navigation concepts of the ”ghost” pawns in the game.

The paper is structured as follows: First we introduce the DEViL system
and its underlying specification concepts with particular attention to simulation
and animation. In Section 3 we give a brief description of the Pac-man game.
In the next section we present our Pac-man Editor with special attention to the
strategies of the ghost characters. Section 5 addresses related work and section
6 completes the exposition with a conclusion and a look at other implemented
languages.

2 The DEViL System

The DEViL framework generates syntax-directed graphical structure editors for
visual languages. The generated environments support all features of commonly
used editors. Especially 2.5D views on the underlying semantic model are sup-
ported. A more in depth look at the generator framework and its generated
products with respect to usability can be found in [12].

DEViL has already been successfully used for projects with nameable com-
panies like Bosch [3], VW or SagemOrga [14]. The specification of this Pac-man
Game Editor was one of many bachelor resp. master-theses that used the DEViL
framework.

The specification process to generate ”static” environments - environments
without simulation and animation support - is divided into three parts. As can
be seen later in this paper, simulation and animation support can be extended
easily by the reuse of components of some of these three specification steps. Hence
an user of the DEViL system who can build visual development environments
can extend a language with simulation and animation support with reasonable
effort.

114 INForum 2010 Bastian Cramer, Jan Wolter, Uwe Kastens



To generate a structure editor for DEViL one first specifies the semantic
model of the visual language. This is done with DSSL (DEViL Structure Speci-
fication Language). The semantic model abstracts from the visual representation.
It stores just the information necessary to describe the semantics of the visual
program. DSSL is inspired by an object oriented design with classes, inheritance,
attributes and references. Fig. 1 shows a part of the specification of the semantic
model for our Pac-man Editor. DEViL can generate an editor with a tree based
structure manipulation view from this part of the specification.� �

CLASS Tile {
columnRef: REF Column;
item: SUB Item?;

}
ABSTRACT CLASS Item {
name: VAL VLString;

}
CLASS Pacman INHERITS Item {
direction: VAL VLInt INIT "2";
angle: VAL VLInt INIT "0";
clockwise: VAL VLBoolean;

}�
Fig. 1. Part of the semantic model for the Pac-man Editor.

To obtain an advanced visual representation the semantic model (created
with DSSL) is decorated with so called ”visual patterns”. Visual patterns define
how constructs of the structure tree should look like. E.g. one can specify that
some part of the structure tree should be laid out as the abstract concept ”list”
and aggregated nodes play the role of ”list elements”. Control attributes may
modify this layout, for instance the list could be constituted vertically instead
of horizontally. DEViL provides a huge library of precoined visual patterns with
various possibilities to adapt their layout and appearance. A subset of this library
is for example ”sets, lists, trees, formulae or matrices”. Technically, symbols of
the semantic structure definition inherit from these visual patterns. The attribute
evaluator generated by LIGA [4] of the underlying compiler generator framework
Eli [5] computes the final graphical representation.

The last (optional) step of the specification process is the definition of a code
generator. Here all of the tools of the Eli system to analyze the visual language
instance can be used. A more detailed description of the VL specification process
can be found in [13].

In order to separate concerns of specification simulation and animation are to
be distinguished: simulation is the raw execution semantics of the visual language
and animation is the smooth depiction of discrete execution of VL programs.
Some visual languages have a precisely defined execution semantics, e.g. the
firing of tokens in a Petri-net may be smoothly depicted by animation. For other
visual languages simulation and animation may require to extend the semantic
model to represent the simulation states or its graphical representation.

The presented Pac-man Editor (Fig. 4) considered as a visual language has a
number of pawns that can be placed on a tile-based board which constitute the
playing field. The pawns are typed structure objects of this VL. The Pac-man
Editor has only four different pawns: ”wall”, ”ghost”, ”powerpill” and ”pac-
man”. Additionally, some structure objects are needed to represent the rows
and columns of the board. Hence, our Pac-man VL is a playground editor where
the user can create custom levels.

Animation of Tile-Based Games ... INForum 2010 – 115



To specify a simulation for the Pac-man Editor we have to define the state
space and the state transitions. Both can be specified in our simulation specifi-
cation language DSIM.

Fig. 2 (a) shows the specification of the simulation model in DSIM. As can be
seen, we again reuse DSSL concepts and we can extend the semantic model of the
visual language to reach a new model that is suited for simulation. In this case
we extended the semantic model class Tile (see Fig. 1). We can introduce new
attributes that are needed for simulation purposes only or extend our simulation
model with so called path expressions to traverse the simulation model tree at
run time. Both model the state space for the simulation.

We could also narrow the semantic model of the visual language in our sim-
ulation model. This can be done if parts of the semantic model of the visual
language are only needed for representation purposes and not for simulation.

� �
MODEL {

CLASS Tile {
OBJECT pill OF PowerPill: "THIS.item.CHILDREN[0]";
position: VAL VLPoint?;
diffVal: VAL VLInt INIT "0";
visited: VAL VLBoolean INIT "0";

}
CLASS Pacman {

OBJECT tile OF Tile: "THIS.PARENT.PARENT";
}

}�
(a) Simulation model.

� �
EVENTS {
goGhost(Tile from, Tile to){

Item i = REMOVE(from.item, FIRST);
INSERT(to.item, i, FIRST);

}
eatPacman(Tile from, Tile to){

IF(#[0]Root.sound == VLBoolean(1)){
vlPlaySound("pacmanDeath.wav");

}
REMOVE(to.item, FIRST);
Item i = REMOVE(from.item, FIRST);
INSERT(to.item, i, FIRST);
FIRE gameLost(#[0]Root)@TIME_NOW + 1;

}
}�

(b) Events.

Fig. 2. Simulation model in DSIM and some events which can be scheduled in the
simulation loop.

� �
FOREACH ghost IN [Ghost] {
IF(ghost.strategy == VLInt(1)) {

Tile to = NEIGHBOUR_TILE(mapping, NEUMANN, ghost.tile, Pacman);
IF(NOTNULL(to) AND (ghost.eatable == VLBoolean(0))){

FIRE eatPacman(ghost.tile, to) @TIME_DIRECT;
}
ELSE {

IF(NOTNULL(#[0]Pacman)) {
Tile to = NEIGHBOUR_EMPTY_TILE_RANDOM(mapping, NEUMANN, ghost.tile);
IF(NOTNULL(to)) {
FIRE goGhost(ghost.tile, to) @TIME_DIRECT;

}
}

}
}

}�
Fig. 3. Part of the simulation loop.

Fig. 3 shows an excerpt of the behavior specification part of DSIM. Here the
simulation model can be inspected and events can be scheduled that modify an
instance of the simulation model. Hence we follow the event based approach to
simulation. Events are scheduled for an arbitrary time. Any event can trigger
arbitrary so called simulation modification actions. These actions modify the
simulation model and they constitute the interface to the animation framework.
The excerpt shows the behavior specification of the ghost pawns. They try to
eat Pac-man if it is located on a neighbour tile. If not the ghost moves according
to its strategy to the next tile.

In DSIM the following simulation modification actions exist which also form
the interface to the animation part:

– REMOVE a structure object.

116 INForum 2010 Bastian Cramer, Jan Wolter, Uwe Kastens



– INSERT a new structure object instance or insert a structure object, that was
removed before. The latter would yield a MOVE action.

– COPY a structure object.
– CHANGE VAL to change a primitive attribute or a reference.

In Fig. 2 (b) some events with corresponding simulation modification actions
can be seen. The specific characteristics of the simulation modification actions
is that an animation can automatically derived from such a specification.

The default animations triggered are: slow shrinking to invisibility of an ob-
ject that is removed, slow growing of an object that is newly inserted. Linear
moving (with optional easing) of a structurally moved object. Copied objects
move from their copy source to their destination while changing their trans-
parency value from invisible to visible. Since editors generated by DEViL are
syntax directed structure editors, the creation or removal of structure objects
can have side effects to other structure objects with respect to their size or posi-
tion. These objects are automatically adapted smoothly, they are morphed. Even
colors of structure objects are adapted smoothly.

The default animation behaviour is sufficient for most automatically derived
animations as can be seen later. But, in some cases the default animation that
is automatically triggered is not what the animator of a visual language desires.
Here the animator can override the default behavior with so called animated
visual patterns (AVPs). The AVPs can be decorated like the visual patterns to a
structure object and tell the structure object in what way it is animated if a cer-
tain simulation modification action occurs. For instance if a token in a Petri-net
is removed it should not shrink to invisibility which is the standard animation.
The desired animation is to move the token to the fired transition, hence the
used AVP to override the default behavior for remove is AVPOnRemoveMove. We
have AVPs for changing size and transparency values of structure objects, for
moving, scaling, rotating and so on. All of them can be combined and adapted
to the needs of the animation.

A more detailed description of DEViL’s simulation and animation facilities
can be found in [2].

3 Pac-man
Pac-man is the most popular arcade computer game in the eighties of the last
century and it was originally developed by Toru Iwatani for the Namco company
in 1980. Because of the large degree of esteem different versions of the game have
been reprogrammed many times for several systems like home computers, game-
consoles and recently even for the iPhone [7]. The game is very interesting in
terms of navigating a character around a structured playground, accumulating
points, avoiding and (in some cases) attacking non-player game characters.

The classic version of Pac-man is an one-player game where the human player
routes the Pac-man around a maze with the goal to avoid the four ghost char-
acters and to eat as much pills as possible. Initially the pills are placed in each
walk-in field of the playground and will be eaten via the achievement of the field
by Pac-man. The overall four ghosts roam through the maze trying to catch Pac-
man. This is successful when a ghost achieves a tile in which Pac-man is located.

Animation of Tile-Based Games ... INForum 2010 – 117



In this case Pac-man looses one of his initial three lives and the game restarts
when Pac-man has just one life. Each of the four ghosts pursues a different
strategy to eat the Pac-man.

Besides the normal pills in each tile there are four powerpills which are located
near each corner of a maze. When Pac-man eats a powerpill he gets a special
score and is able to eat ghosts on his part. In this case all ghosts change their
color to blue for few moments, reverse their direction, and usually move more
slowly. If Pac-man eats a ghost, he gets a special score and the ghost resurrects
in the middle of the maze after a few moments. In addition to the previously
seen options there is one more possibility to increment the score: sometimes a
symbol of a fruit appears at a random position of the maze, which also gives the
chance to get extra points.

(a) Starting position of a Pac-man game. (b) A dynamic animation
object.

Fig. 4. Screenshots of our Pac-man game.

The game ends when all pills have been eaten or Pac-man has lost all of his
lives. In the former case the player reaches a new level which is more difficult
than the previous one. This can be achieved for example by faster moving ghosts.

Fig. 4 (a) shows a playground of a Pac-man game, which has been build
with our Pac-man Editor. Besides the Pac-man the figure shows three different
ghosts, wall items and powerpills.

4 Pac-man Editor
Our Pac-man Editor is structured as a multi document interface (MDI) and
offers the ability to create user-defined playgrounds for Pac-man games. The
user has the option to insert different items to the playground, e.g. Pac-man,
ghosts, powerpills or wall items. It is also possible to expand the playground
by adding rows and columns. A playground which is constructed in such a way
allows to play Pac-man as mentioned above.

The specification of the semantic model was the first task to implement this
editor. The most important part of the semantic model is the matrix structure.
An object of the matrix class is associated with an arbitrary number of columns
and rows. Each row owns several tiles, which includes in turn an item or not.
The item is an abstract class and the concrete subclasses are either Wall-item,
Pac-man, Ghost or Powerpill.

To realize a correct semantic playground it is essential to avoid more than
one Pac-man or a game without Pac-man. Hence, the DEViL System provides

118 INForum 2010 Bastian Cramer, Jan Wolter, Uwe Kastens



the ability to specify consistency constraints on various levels. E.g. cardinalities
in the semantic model or specialized callback functions which can navigate the
structure tree. All these checks are automatically performed before simulation.
Hence, only a correct Pac-man game instance can be simulated.

Besides the consistency constraints the language designer can implement ini-
tialization functions for each class of the semantic structure. Such a function is
a callback function and will be automatically called by the system, if a new ob-
ject has been created. We used this for example to realize a default playground
dimension of 10× 10 tiles.

4.1 Strategies
With our editor it is possible to allot one of overall three different strategies to
each ghost. We draw our inspiration with respect to the strategies of Repenning
[11]:
Random The ghost roams randomly through the maze. At each step it evalu-

ates the walk-in fields in the von Neumann neighbourhood and chooses one
randomly.

993 994 995 996 997 996 995 994 993

992 996 997 998 997 992

999 998 997 991

996 997 998 999 1000 999 998 990

995 989

994 993 992 991 990 989 988 987 988

Fig. 5. Distribution of diffusion values to apply hill-climbing.

Incremental Approach The ghost tries to move closer to the Pac-man. At
each step it evaluates the empty neighbour tiles and selects the closer closest
one in euclidean sense.

Hill-climbing Due to the fact that the incremental approach does not permit
the overcoming of walls, the strategy of hill-climbing affords this. To achieve
this goal, diffusion values are used for each tile. These are used to spread
the ”scent” of the Pac-man in the maze. The value represents the closeness
of a ghost to Pac-man. The largest value gets the tile in which Pac-man is
allocated. Starting from this tile, the value is distributed to all walk-in fields
of the playground. Every tile which is not accessible, e.g. a tile with a wall
item, gets a negative diffusion value. At each step of the game the ghost
selects the tile which has the largest diffusion value. Due to the fact that
the diffusion values must be recalculated at each step, this brings the ghost
closer to Pac-man. Fig. 5 illustrates the allocation of diffusion values and the
way a ghost must go to get Pac-man.

A closer look to the implementation of the hill-climbing strategy is available
in the next section. Amongst other things we describe the implementation of
ghost strategies in DSIM.

Animation of Tile-Based Games ... INForum 2010 – 119



4.2 Simulation
The user interaction via keyboard is essential for the Pac-man game. The DEViL
System provides the ability to define arbitrary keyboard events which can be
processed in the simulation.

We used the simulation model to add particular attributes which are neces-
sarily needed for the simulation. An extract is given in Fig. 2 (a). We extend the
Pac-man class with a tile attribute, which allows the access of the tile in which
Pac-man is located, from the context of a Pac-man object. Besides others, we
had extended the tile class with an attribute which stores the diffusion value of
a tile. This is needed to realize the hill-climbing strategy. Keep in mind, that
these attributes only exist in the simulation model, not in the semantic model
of the Pac-man VL.� �

coordinatePacman(Pacman pacman, VLInt direction){
Tile go = NEIGHBOUR_TILE(default, NEUMANN, pacman.tile, PowerPill);
IF(NOTNULL(go)){

FIRE eatPowerpill(pacman.tile, go, pacman, direction) @TIME_DIRECT;
} ELSE {

go = NEIGHBOUR_TILE(default, NEUMANN, pacman.tile, Ghost);
IF(NOTNULL(go)){

FIRE eatGhost(pacman.tile, go, pacman, direction) @TIME_DIRECT;
}ELSE{

go = NEIGHBOUR_TILE(default, pacman.tile, direction);
IF(NOTNULL(go) AND (SIZE(go.item) == VLInt(0))){

FIRE goPacman(pacman.tile, go, pacman, direction) @TIME_DIRECT;
}

}
}

}

goPacman(Tile from, Tile to, Pacman p, VLInt d){
FIRE incrementScore(#[0]Score, 1) @ TIME_DIRECT;
FIRE computeRotation(p,d) @ TIME_DIRECT;
Item i = REMOVE(from.item, FIRST);
INSERT(to.item, i, FIRST);

}�
Fig. 6. Coordination of the Pac-man pawn.

In the event block we specified events, which can be scheduled at an arbitrary
simulation time in the loop block. Hence, our simulator follows an event driven
approach. We had implemented overall 16 different events. Fig. 6 shows two
events. The coordinatePacman event gets the Pac-man instance and a direction
to move to. It checks, whether a powerpill or a ghost is in the way. If so Pac-man
tries to eat the ghost resp. the powerpill. If there is nothing to eat Pac-man just
walks to the next tile, the goPacman event is called. This event again calls two
events to increment the score and to compute the rotation, which is needed for
the animation. Finally the Pac-man pawn is removed from the actual tile and
inserted to the tile in the desired direction. This yields a MOVE action for the
Pac-man pawn. � �

NEIGHBOUR_COUNT(mapping, MOORE, pacman.tile, Ghost);
NEIGHBOUR_TILE(mapping, ghost.tile, S);
NEIGHBOUR_TILE_RANDOM(mapping, NEUMANN, pacman.tile);�

Fig. 7. Exemplary neighbour access functions.

In each simulation step we have to compute the diffusion value for the hill-
climbing strategy. This is done by a call of a C function. The function computes
the value via a simple breadth-first search. Afterwards the ghost has to pick the
target tile which has the largest diffusion value. To get a specific neighbour, we
extended the simulation language such that we can access structure objects (of
a specific type) in the neighbourhood of a given tile. Due to the fact that all
editors generated with DEViL that make use of tiling have the same underlying

120 INForum 2010 Bastian Cramer, Jan Wolter, Uwe Kastens



model we could identify a subset of tile-access functions which are often needed
and generalize these functions. This lead to a decrease of hand written C-code.

Fig. 7 shows some neighbour access functions. The first function counts the
ghosts in Moore neighbourhood of the Pac-man. A computation of the neighbour
tile in south direction of a ghost shows the second function. The last function
returns a random tile in von Neumann neighbourhood of Pac-man.

4.3 Animation
The default animation which is automatically derived from the simulation spec-
ification is almost adequate. A ghost and the Pac-man move fast from the start
tile to the target tile in each simulation step. This is the case, because the ani-
mation framework interprets the modification actions REMOVE and INSERT as a
moving animation. Furthermore the Pac-man shrinks to invisibility when he is
caught by a ghost.

But Pac-man looks in the desired viewing direction until he has accessed the
target tile. It would be nicer if Pac-man rotates to the desired viewing direction
in the start tile before he moves to the target tile. Now the idea is to override
the default behaviour for Pac-man. All animations are typed over their sim-
ulation modification action. Hence, we need to override the default animation
pattern MOVE, because the Pac-man is moved (REMOVEd and INSERTed) on the
playground. We do it with the specification in Fig. 8 (a). We use the animated vi-
sual patterns OnMoveRotate and OnMoveMove. OnMoveRotate rotates a structure
object if it is moved. Hence, we have to override the angle and rotate attributes.
The angle and rotate attributes are stored in the ”pacman” class (see Fig. 1)
and will be computed via the computeRotation event in each simulation step.
In addition we override the duration attribute to specify the duration of the ro-
tate operation. In this configuration the rotation and the move are scheduled at
the same simulation time, but we want the animation of the rotation to appear
before the animation of the move. Hence the OnMoveMove animation must be an-
imated after the OnMoveRotate animation. Hence, we have to assign the value 2
to the time attribute. Furthermore we override the duration attribute to indicate
the duration time for a move operation. As can be seen, besides the simulation
time, we have an animation time which defines an order of the animations and
which can easily be adapted to gain a desired animation.

� �
SYMBOL pacmView_Pacman INHERITS VPContainerElement, VPForm,

AVPOnMoveRotate, AVPOnMoveMove, AVPOnRemoveShrink
COMPUTE
SYNT.drawing = ADDROF(PacmanDrawing);
SYNT.onMoveRotateAngle = THIS.pers_angle;
SYNT.onMoveRotateClockwise = THIS.pers_clockwise;
SYNT.onMoveRotateDuration = 600;
SYNT.onMoveMoveRaiseDisplayOrder = 1;
SYNT.onMoveMoveAnimationTime = 2;
SYNT.onMoveMoveDuration = 900;
SYNT.onRemoveShrinkAnimationTime = 10;

END;�
(a) Mapping of AVPs with control attributes to
override default animation.

� �
SYMBOL pacmView_Pacman INHERITS AVPCreateDynamicObject,

AVPMoveDynamicObject
COMPUTE
SYNT.createDynamicObjectModificationAction = REMOVE;
SYNT.createDynamicObjectDrawing = ADDROF(SkullDrawing);
SYNT.createDynamicObjectPosition = POSITION(

SELECT(THIS.oPosition, sub(VLPoint(0,10))));

SYNT.moveDynamicObjectDuration = 8000;
SYNT.moveDynamicObjectStartPosition = POSITION(

SELECT(THIS.oPosition, sub(VLPoint(0,10))));
SYNT.moveDynamicObjectEndPosition = POSITION(

SELECT(THIS.oPosition, sub(VLPoint(0,60))));
END;�

(b) Creating a dynamic animation object and
moving it.

Fig. 8. Animation of Pac-man.

The animation framework offers the possibility to animate objects which are
not part of the semantic model (so called dynamic objects). If Pac-man is caught,

Animation of Tile-Based Games ... INForum 2010 – 121



we have used this feature to display a skull (see Fig. 4 (b)). For such a purpose
it is only necessary to use the provided visual patterns as described in Fig. 8
(b). The visual pattern CreateDynamicObject reacts to a modification action
and offers the possibility to add a drawing. As seen in Fig. 8 (b) we override
the modification action attribute to react to a remove action. Furthermore, we
override the drawing attribute to add the skull drawing. In order that the skull
moves bottom-up from the position of the Pac-man, we had used the pattern
MoveDynamicObject. We also had used the pattern OnRemoveShrink to show
the skull temporary.

The specification of an animation in DEViL is straight forward: first specify
a simulation, then derive the animation automatically. Hence the animation is
a formal mapping of its simulation part. At last animations can be adapted by
overriding the default animations through the application of a huge declarative
animation pattern library.

5 Related Work
The Agentsheets system [10] can generate tile based simulations and games.
The specification process is fully graphical and rule based. Agentsheets uses the
programming by demonstration paradigm. In the rules one can access neighbour
tiles through the help of icons with specific arrows. This is the visual variant of
our neighbour access functions. Agentsheets is restricted to tile based simulation
whereas our system can also handle diagrammatic or iconic visualizations.

In the area of generator frameworks for visual language environments the
GenGed [1] system makes use of graph transformation and visual rewrite rules
to specify simulation. To store the simulation state, rules must be extended.
This is similar to our simulation model which can extend the semantic model
of a VL. GenGed uses a formal mapping between simulation and animation.
This is comparable to our simulation modification actions which trigger default
animations. They are the interface between simulation and animation framework.
Smooth and complex animations can not be specified with GenGed.

The DiaGen [6] system also uses graph transformation to specify a visual
language. Some editors already support simulation and animation. Interesting
is that every animation step is a state of the system whereas we interpolate
between two adjacent simulation model states.

6 Conclusion
The specification of the Pac-man editor is a straight forward task. Table 1 shows
that we needed 220 LOC for the whole simulation part including all ghost strate-
gies and 400 LOC for hand written C-code. The other specs part needs only 236
LOC. The second column of the table shows a decrease of total LOC from 883
to 646 LOC. This is because of the neighbour access functions we had gener-
alized. This reduced the LOC of C-code nearly by 250 LOC and we need only
7 additional LOC in the simulation specification to realize to mapping between
concrete and generalize matrix structure. The 156 LOC of C-code is just a sim-
ple tile initialization function for the hill-climbing strategy. The automatically

122 INForum 2010 Bastian Cramer, Jan Wolter, Uwe Kastens



derived animation is sufficient to play the game. The 27 LOC are just syntactic
sugar.

The DSIM language with its narrow interface to the animation and its con-
structs tailored for the simulation of visual languages has already been approved
in other VLs with execution semantics like Petri-nets, a Datapath simulation,
electronic circuits and even the game Ludo. Table 2 shows the amount of LOC
for simulation and animation part of already implemented editors. The examples
in line two and three are based on the Petri-net simulation shown in line one.
They show the simulation of the well-known dining philosophers and a simula-
tion of a signal light of a four-way-crossing. Both are structural coupled to the
Petri-net with DEViL’s internal declarative coupling mechanism. A simulation
of the Petri-net automatically triggers synchronization functions in the philoso-
phers resp. signal-light view. The simulator detects these triggerings and calls
the animation framework. Hence, additional specification amount is not needed.

LOC LOC with access fct. generated LOC

simulation 220 227

87.504
animation 27 27

C-code 400 156

other specs. 236 236

883 646 87.504

Table 1. Distribution of the specification complexity.

Simulation Coupling Animation Anim. syntactic sugar

Petri-nets 29 4 0

Dining-Philosophers 29 95 4 0

Signal-Lights 29 57 4 0

Logo 211 3 3

Game of Life 39 0 0

Ludo 338 0 0

Statecharts 78 2 0

Bubblesort 13 0 0

Quicksort 93 0 0

CPU Datapath 263 160 0

Washing bay 35 0 0

Electronic circuits 99 109 0

Table 2. Simulation and Animation LOC of other VLs.
As can be seen in Table 2 the automatically triggered animation is mostly

sufficient. We need to adapt the animation only in simulations where animations
depend on the context of their structure objects. E.g. this is the case in our CPU
datapath simulation where an animation of an instruction is different whether
it is located in an instruction decoder, in an accumulator or somewhere else.

The already implemented VLs have a very diverse appearance: we have di-
agrammatic, iconic and graph based depictions. Currently we are working on a
traffic simulation to see how our approach scales. Interesting extensions would
be semantic zooming, camera views or even isometric views. Here also a pattern
based approach is imaginable.

Also outstanding is a visual language for DSIM and an usability study.

Animation of Tile-Based Games ... INForum 2010 – 123



References

1. Bardohl, R.: GenGed: A generic graphical editor for visual languages based on
algebraic graph grammars. In: 1998 IEEE Symp. on Visual Lang. pp. 48–55 (Sep
1998)

2. Cramer, B., Kastens, U.: Animation automatically generated from simulation spec-
ifications. In: VLHCC ’09: Proceedings of the 2009 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). pp. 157–164. IEEE Com-
puter Society, Washington, DC, USA (2009)

3. Cramer, B., Klassen, D., Kastens, U.: Entwicklung und Evaluierung einer domnen-
spezifischen Sprache fr SPS-Schrittketten. In: Fahland, D., Sadilek, D.A., Scheid-
gen, M., Weileder, S. (eds.) DSML. CEUR Workshop Proceedings, vol. 324, pp. 59–
73. CEUR-WS.org (2008), http://dblp.uni-trier.de/db/conf/dsml/dsml2008.
html#CramerKK08

4. Kastens, U.: An attribute grammar system in a compiler construction environment.
In: Proceedings of the International Summer School on Attribute Grammars, Ap-
plication and Systems. Lecture Notes in Computer Science, vol. 545, pp. 380–400.
Springer Verlag (1991)

5. Kastens, U., Pfahler, P., Jung, M.: The Eli system. In: Koskimies, K. (ed.) Pro-
ceedings of 7th International Conference on Compiler Construction CC’98. pp.
294–297. No. 1383 in Lecture Notes in Computer Science, Springer Verlag (Mar
1998)

6. Minas, M.: Concepts and realization of a diagram editor generator based on hy-
pergraph transformation. Science of Computer Programming 44(2), 157–180 (Aug
2002), http://www.elsevier.com/gej-ng/10/39/21/86/49/29/abstract.html

7. Namco Games: Pacman for iPhone. http://www.appsafari.com/games/2741/pacman-
for-iphone/ (2008), [Online; accessed 19-February-2010]

8. Norman, D.A., Draper, S.W.: User Centered System Design; New Perspectives
on Human-Computer Interaction. L. Erlbaum Associates Inc., Hillsdale, NJ, USA
(1986)

9. Object Management Group: Unified Modeling Language (UML), version 2.2
(2009), http://www.omg.org/technology/documents/formal/uml.htm

10. Repenning, A.: AgentSheets
R©

: an Interactive Simulation Environment with End-
User Programmable Agents. In: Interaction 2000, Tokyo, Japan (2000)

11. Repenning, A.: Collaborative Diffusion: Programming Antiobjects. In: OOPSLA
2006, ACM SIGPLAN International Conference on Object-Oriented Programming
Systems, Languages, and Applications, (Portland, Oregon, 2006). IEEE Press
(2006)

12. Schmidt, C., Cramer, B., Kastens, U.: Usability evaluation of a system for imple-
mentation of visual languages. In: Symposium on Visual Languages and Human-
Centric Computing. pp. 231–238. IEEE Computer Society Press, Coeur d’Alne,
Idaho, USA (Sep 2007)

13. Schmidt, C., Kastens, U., Cramer, B.: Using DEViL for implementation of domain-
specific visual languages. In: Proceedings of the 1st Workshop on Domain-Specific
Program Development. Nantes, France (Jul 2006), http://ag-kastens.upb.de/
paper/dspd2006-devil.pdf

14. Schmidt, C., Pfahler, P., Kastens, U., Fischer, C., Gmbh, O.K.: Simtelligence de-
signer/j: A visual language to specify sim toolkit applications. In: Proceedings
of the Second Workshop on Domain Specific Visual Languages (OOPSLA 2002
(2002), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.9269

124 INForum 2010 Bastian Cramer, Jan Wolter, Uwe Kastens


