Efficient Retrieval of Subsumed Subgoals in
Tabled Logic Programs

Flavio Cruz and Ricardo Rocha*

CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal
{flavioc,ricroc}@dcc.fc.up.pt

Abstract. Tabling based systems use call similarity to decide when a
tabled subgoal should produce or consume answers. Most tabling en-
gines do that by using variant checks. A more refined method, named
call subsumption, considers that a subgoal A will consume answers from
a subgoal B if A is subsumed by B, thus allowing greater answer reuse.
Recently, we have developed an extension, called Retroactive Call Sub-
sumption, that improves upon call subsumption by supporting bidirec-
tional sharing of answers between subsumed/subsuming subgoals. In this
paper, we present an algorithm to efficiently retrieve the set of currently
evaluating subgoals that are subsumed by a more general subgoal.

1 Introduction

Tabled resolution methods solve some of the shortcomings of Prolog because
they can considerably reduce the search space, avoid looping and have better
termination properties than SLD resolution based methods [1]. Tabling works
by memorizing generated answers and then by reusing them on similar calls that
appear during the resolution process. In a nutshell, first calls to tabled subgoals
are considered generators and are evaluated as usual, using SLD resolution, but
their answers are stored in a global data space, called the table space. Similar
calls are called consumers and are resolved by consuming the answers already
stored for the corresponding generator, instead of re-evaluating them against the
program clauses. There are two main approaches to determine if a subgoal A is
similar to a subgoal B: call variance and call subsumption.

In call variance, A and B are similar if they can be identical through variable
renaming. For example, p(X,1,Y) and p(Y, 1, Z) are variants because both can
be transformed into p(V ARy, 1,V AR;). Tabling by call subsumption is based on
the principle that if A is subsumed by B (i.e., if A is an instance or more specific
than B) and S4 and Sp are the respective answer sets, therefore S4 C Sp. For
example, subgoal p(X, 1,2) is subsumed by subgoal p(Y, 1, Z) because there is a
substitution {Y = X, Z = 2} that makes p(X, 1,2) an instance of p(Y, 1, Z). For
some types of programs, call subsumption yields superior time performance, as it

* This work has been partially supported by the FCT research projects STAMPA
(PTDC/EIA/67738/2006) and HORUS (PTDC/EIA-EIA /100897/2008).

INForum 2010 - IT Simpésio de Informaética, Luis S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 201-204



allows greater reuse of answers, and better space usage, since the answer sets for
the subsumed subgoals are not stored. Arguably, the most successful approach
for subsumption-based tabling is the TST (Time-Stamped Trie) design [2].

Despite the advantages of using subsumption-based tabling, the degree of
answer reuse depends on the call order of subgoals. If a more general subgoal
is called before specific subgoals, answer reuse will happen, but if more spe-
cific subgoals are called before a more general subgoal, no reuse will occur. To
solve this problem, we implemented an extension to the original TST design,
called Retroactive Call Subsumption (RCS) [3], that supports subsumption-based
tabling by allowing full sharing of answers between subsumptive subgoals, in-
dependently of the order they are called. RCS works by selectively pruning the
evaluation of subsumed subgoals when a more general subgoal appears later on.
In this paper, we describe the modifications made to the table space data struc-
tures and we discuss the new algorithm developed to efficiently retrieve the set
of currently evaluating instances of a subgoal.

2 Retrieval of Subsumed Subgoals

2.1 Table Space Data Structures

Arguably, the most successful data structure for representing the table space
is tries [4]. Tries are trees in which common prefixes are represented only once.
Tries provide complete discrimination for terms and permit lookup and insertion
to be done in a single pass. In a trie-based tabling system, each tabled predicate
has a table entry that points to a subgoal trie. In the subgoal trie, each distinct
trie path represents a tabled subgoal call and each leaf trie node points to a
subgoal frame, a data structure containing information about the subgoal call.

In our new approach, each subgoal trie node was extended with a new field,
named in_eval, which stores the number of subgoals, represented below the node,
that are in evaluation. This field is used to, during the search for subsumed
subgoals, prune the subgoal trie branches without evaluating subgoals, i.e., the
ones with in_eval = 0.

When a subgoal starts being evaluated, all subgoal trie nodes in its subgoal
trie path get the in_eval field incremented. When a subgoal completes its evalua-
tion, the path is decremented. Hence, for each subgoal leaf trie node, the in_eval
field can be equal to either: 1, when the corresponding subgoal is in evaluation;
or 0, when the subgoal is completed. For the root subgoal trie node, we know that
it will always contain the total number of subgoals being currently evaluated.

When a chain of sibling nodes is organized in a linked list, it is easy to
select the trie branches with evaluating subgoals by looking for the nodes with
in_eval > 0. But, when the sibling nodes are organized in an hash table, it can
become very slow to inspect each node as the number of siblings increase. In
order to solve this problem, we designed a new data structure, called evaluation
indez, in a similar manner to the time stamp index [2] of the TST design. An
evaluation index is a double linked list that is built for each hash table and is

202 INForuwMm 2010 Fldvio Cruz, Ricardo Rocha



used to chain the subgoal trie nodes where the in_eval field is greater than 0.
The evaluation index makes the operation of pruning trie branches much more
efficient by providing direct access to trie nodes with evaluating subgoals. While
advantageous, the operation of incrementing or decrementing a subgoal trie path
is more costly, because these indexes must be maintained.

2.2 Matching Algorithm

The algorithm that finds the currently running subgoals that are subsumed by
a more general subgoal S works by matching the subgoal arguments SA of S
against the trie symbols in the subgoal trie T. By using the in_eval field as
described previously, we can prune irrelevant branches as we descend the trie.
When reaching a leaf node, we append the corresponding subgoal frame in a
result list that is returned once the process finishes. If the matching process fails
at some point or if a leaf node was reached, the algorithm backtracks to try
alternative branches, in order to fully explore the subgoal trie T'.

When traversing T, trie variables cannot be matched against ground terms
of SA. Ground terms of SA can only be matched with ground terms of 7. For
example, if matching the trie subgoal p(V ARy, V AR;) with the subgoal p(2, X),
we cannot match the constant 2 against the trie variable VAR, because p(2, X)
does not subsume p(VARy, VARy).

When a variable of SA is matched against a ground term of T, subsequent
occurrences of the same variable must also match the same term. As an example,
consider the trie subgoal p(2,4) and the subgoal p(X, X). The variable X is first
matched against 2, but the second matching, against 4, must fail because X is
already bound to 2.

Now consider the trie subgoal p(VARy,VAR;) and the subgoal p(X,X).
Variable X is first matched against VAR, but then we have a second match
against a different trie variable, VAR;. Again, the process must fail because
p(X, X) does not subsume p(V ARy, VAR;). This last example evokes a new rule
for variable matching. When a variable of S A is matched against a trie variable,
subsequent occurrences of the same variable must always match the same trie
variable. This is necessary, because the found subgoals must be instances of S.
Therefore, this problem can be reduced to the task of finding all instances of S
in trie T. To implement this algorithm, we use the following data structures:

— WAM data structures: we take advantage of the existent Prolog data struc-
tures based on WAM machinery: heap, trail, and associated registers. The
heap is used to build structured terms, in which the subgoal arguments are
bound. Whenever a new variable is bound, we trail it using the WAM trail;

— term stack: stores the remaining terms to be matched against the subgoal
trie symbols;

— term log stack: stores already matched terms from the term stack and is used
to restore the state of the term stack when backtracking;

— wariable enumerator vector: used to mark the term variables that were matched
against trie variables;

Efficient Retrieval of ... INForumMm 2010 — 203



— choice point stack: stores choice point frames, where each frame contains
information needed to restore the computation in order to search for alter-
native branches.

The procedure that traverses a subgoal trie and collects the set of subsumed
subgoals of a given subgoal call can be summarized in the following steps:

setup WAM machinery and push subgoal arguments into the term stack.

fetch a term T from the term stack;

search for a trie node N where the in_eval field is not 0.

search for the next node with a valid in_eval field to be pushed on the choice

point stack, if any;

match T against the trie symbol of N;

6. proceed into the child of N or, if steps 3 or 5 fail, backtrack by popping a
frame from the choice point stack and use the alternative trie node;

7. once a leaf is reached, add the corresponding subgoal frame to the resulting
subgoal frame list. If there are choice points available, backtrack to try them:;

8. if no more choice point frames exist, return the found subsumed subgoals.

=W

o

3 Conclusions

We presented a new algorithm for the efficient retrieval of subsumed subgoals
in tabled logic programs. Our proposal takes advantage of the existent WAM
machinery and data areas and extends the subgoal trie data structure with
information about the evaluation status of the subgoals in a branch, which allows
us to prune the search space considerably. We therefore argue that our approach
can be easily ported to other tabling engines, as long they are based on WAM
technology and use tries for the table space.

Initial experiments using the YapTab tabling engine with support for retroac-
tive call subsumption, showed low overheads on programs that do not benefit
from the new algorithm, when compared to traditional call subsumption, and
very good results when applied to programs that take advantage of it [3].

References

1. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43(1) (1996) 20-74

2. Johnson, E., Ramakrishnan, C.R., Ramakrishnan, I.V., Rao, P.: A Space Efficient
Engine for Subsumption-Based Tabled Evaluation of Logic Programs. In: Fuji In-
ternational Symposium on Functional and Logic Programming. Number 1722 in
LNCS, Springer-Verlag (1999) 284-300

3. Crug, F., Rocha, R.: Retroactive Subsumption-Based Tabled Evaluation of Logic
Programs. In: European Conference on Logics in Artificial Intelligence. LNCS,
Springer-Verlag (2010) To appear.

4. Ramakrishnan, [.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access
Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38(1) (1999)
31-54

204 INForuwMm 2010 Fldvio Cruz, Ricardo Rocha



