
Using ontology in the development of domain-specific 
languages 

Ines Čeh, Matej Črepinšek, Tomaž Kosar, Marjan Mernik 

 
Faculty of electrical engineering and computer science, Smetanova 17, 

2000 Maribor, Slovenia 
{Ines.Ceh, Matej.Crepinsek, Tomaz.Kosar, Marjan.Mernik}@uni-mb.si 

Abstract. Domain-specific languages (DSL) are programming languages 
devoted to solve problems in a specific domain. Development of a DSL 
includes the following phases: decision, analysis, design, implementation and 
deployment. The least known and examined are analysis and design. Although 
various formal methodologies exist, the domain analysis is still done 
informally, most of the time. A common reason why formal methodologies are 
not used as often as they could be is that they are very demanding. Instead of 
developing a new, less complex methodology, we propose that domain analysis 
could be replaced with a previously existing analysis in some other form. A 
particularly suitable form for such is ontology. This paper focuses on ontology 
based domain analysis and how it can be incorporated into the DSL design 
phase. We present preliminary results of the Ontology2DSL framework, which 
can be used to help transform ontology to DSL grammar.  

Keywords: domain-specific language, domain analysis, ontology 

1   Introduction 

Programming languages are used for human-computer interaction. Depending on the 
purpose of their use, programming language can be divided into general-purpose 
languages (GPL) and DSL [1]. GPL, such as Java, C and C#, are designed to solve 
problems from any problem area. In contrast to GPLs, DSLs, such as Latex, SQL and 
BNF, are tailored to a specific application domain. 

When developing new software a decision must be made as to which type of 
programming language will be used; GPL or DSL. The issue is further complicated if 
an appropriate DSL does not exist. Then, the decision is whether to start to develop 
with a GPL language or to start with the development of the required DSL and then 
develop the software system with it. Reasons for the use of DSL are as follows: easier 
programming, re-use of semantics, the easier verification and programmability for the 
end-users. However, DSL also have their disadvantages, for example high 
development costs. The key is to answer the question: “When to develop a DSL?” 
The simplest answer to this question is: a DSL should be developed whenever it is 
necessary to solve the problem, which belongs to a problem family and we expect that 

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 185–196



in the future more problems from the same problem family will appear. A more 
detailed response can be found in [1]. 

DSL development consists of the following phases: decision, analysis, design, 
implementation and deployment [1]. DSL development phases are not equally 
researched. The least known and examined phases are the analysis and design.  

The knowledge on the problem domain and its definition is achieved at the domain 
analysis phase. Various methodologies for domain analysis have been developed. 
Examples of such methodologies include: DSSA (Domain Specific Software 
Architectures) [2], FODA (Feature-Oriented Domain Analysis) [3], and ODM 
(Organization Domain Modeling) [4]. Often, formal methodologies are not used due 
to complexity and the domain analysis is done informally. This has the consequence 
of complicating future DSL development. Even if the domain analysis is done with a 
formal methodology, there aren’t any clear guidelines how the output from domain 
analysis can be used in a language design process. The outputs of domain analysis 
consist of domain-specific terminology, concepts, commonalities and variabilities. 
Variabilities would have been entries in the design of DSL, while terminology and 
concepts should reflect in the DSL constructs, and commonalities could be 
incorporated into the executing DSL environment. Although it is known where the 
outputs of the domain analysis should be used, there is a need for clear instructions on 
how to make good use of the information, which are retrieved during the analysis 
phase, in the design stage of the DSL. 

To partially solve aforementioned problems, we propose that domain analysis 
(hereinafter referred to as classic domain analysis (CDA)) can be performed with the 
use of existing techniques from other fields of computer science. A particularly 
suitable is ontology [5]. Ontology provides a vocabulary of a specialized domain. 
This vocabulary represents the domain objects, concepts and other entities. Some type 
of domain knowledge can be obtained from the relationships of the entities, presented 
by the vocabulary. Ontologies in the CDA have already been used in [6]. Whereas 
Tairas et al. apply ontology in the early stages of domain analysis to identify domain 
concepts; we propose that ontology replaces the CDA. They [6] also investigated how 
ontologies contribute to the design of the language. Ontologies in connection with 
DSL are also used by other authors. Guizzardi et al. [7] propose the usage of an upper 
ontology (top-level ontology) [8] to design and evaluate domain concepts. Walter et 
al. [9] apply ontologies to describe DSL. Bräuer and Lochmann [10] propose an upper 
ontology to describe interoperability among DSLs. 

The proposed solution of the first problem, the use of ontologies, has a significant 
effect on the second problem related to CDA. It translates the problem »How to make 
good use of the information, retrieved during the analysis phase, in the design stage of 
the DSL?« into the problem »How to make good use of the information contained in 
an ontology in the design stage of DSL?« This paper focuses on ontology based 
domain analysis (OBDA) and how it can be incorporated into the DSL design phase. 
We present preliminary results of the Ontology2DSL framework, which can be used 
to help transform ontology to DSL grammar. 

The organization of this paper is as follows. Section 2 is intended to represent the 
similarities and variabilities between the CDA and OBDA. Section 3 presents the 
development of grammar from ontology as well as the framework Ontology2DSL. 
The conclusion and future work are summarized in Section 4.  

186 INForum 2010 Ines C̆eh, Matej C̆repins̆ek, Tomaz̆ Kosar, Marjan Mernik



2   Domain analysis 

2.1   Classic Domain Analysis (CDA) 

The goal of CDA is to select and define the domain of focus and collect appropriate 
domain information and integrate them into a coherent domain model; the result of 
CDA [11]. A representation of the domain system properties and their dependencies is 
the domain model. The properties are either common or variable which is represented 
in the model along with the dependencies between the variable ones [11]. Beside the 
development of the domain model, CDA also includes domain planning, 
identification and scoping [11].  

CDA can incorporate different methodologies. Methodologies differ based on the 
degree of formality, information extraction techniques or their products. We have 
listed the most known methodologies in the introduction. FODA has been proven as 
the most commonly used formal methodology in DSL development.  

FODA is a CDA method that was developed by the Software Engineering Institute. 
It is known for its models and feature modeling. In FODA, feature is an end-user 
characteristic of a system. A FODA process consists of two phases: context analysis 
and domain modeling. The goal of context analysis is to determine the boundaries 
(scope) of the analyzed domain. The purpose of domain modeling is to develop a 
domain model. FODA domain modeling phase is comprised of the following steps: 
information analysis, features analysis and operational analysis. The main goal of 
information analysis is to capture domain knowledge in the form of domain entities 
and links between them. The result of information analysis is the information model. 
The result of feature analysis is feature model, which is presented below. Operational 
analysis results in the operational model. It represents how the application works and 
covers the links between objects in the informational model and the features in the 
feature model. An important product from the phase of domain modeling is the 
domain dictionary. It defines the terminology used in the domain and it also includes 
textual definitions of domain concepts and features. 

A feature model consists of: 
• Feature diagram (FD) represents a hierarchical decomposition of features 

and their kinds (mandatory, alternative, and optional feature). Mandatory 
features are features that each system must have in the domain. Alternative 
features are features of which a system can possess only one at a time. 
Optional features are features that system may or may not have. A system 
can also have more than one feature at a time. These features are called or-
features. Features are also classified as atomic or composite. Whereas atomic 
features cannot be further subdivided in other features, composite features 
are defined in terms of other features. The root node of the diagram 
represents a concept and the remaining nodes represent features. An example 
of a feature diagram is shown in Fig. 1.  

• Feature definitions describe all features (semantics). 
• Composition rules for features describe which combinations are valid or 

invalid.  

Using ontology in the development of ... INForum 2010 – 187



• Rationale for features represents reasons for choosing a feature.  
 

 

Fig. 1. Feature Diagram for a concept of a pizza. 

Fig. 1 represents a simple FD of a pizza. The root node of the diagram, Pizza, 
represents a concept; the remaining nodes represent its features. Whereas mandatory 
features are indicated by a filled circle, optional features are indicated by an empty 
circle. Alternative and or-features are both indicated by a triangle, the former with an 
empty one and the latter with a filled triangle. The names of atomic features are 
written in lower-case while the composite features are written with their first letter in 
upper-case. Each pizza is composed of the pizza-base and at least one topping. The 
pizza-base is either “DeepPan” or “ThinAndCrispy”, never both in the same pizza. 
The toppings are one or more of the following: “Cheese”, “Meat” or “Vegetable”. 
One pizza can have multiple toppings as well as multiple toppings of the same type 
(cheese topping of both “mozzarella” and “parmezan”). The pizza can be hot, medium 
or mild according to its spiciness (only one at the time). 

Feature models are not only represented in the visual form of FDs but also in the 
textual form. Van Deursen and Klint [12] have proposed the feature description 
language (FDL) for the textual representation. The FDL definition constitutes of the 
feature definitions followed by a colon (“:”) and the features expression. Possible 
feature expression forms are presented in [12]. FDL exceeds the graphic feature 
diagram in the terms of expressive power and is appropriate for automatic processing. 
FD for pizza in FDL is listed below: 
Pizza: all ( PizzaBase, PizzaTopping, 
SpicinessValuePartition ) 
PizzaBase: one-of ( deepPan, thinAndCrispy ) 
PizzaTopping: more-of ( Cheese, Meat, Vegetable ) 
Cheese: more-of ( mozzarella, parmezan ) 
Meat: all ( salami? ) 
Vegetable: more-of ( tomato, Pepper, onion, olive ) 
Pepper: more-of ( green, jalapeno, red ) 
SpicinessValuePartition: one-of ( hot, medium, mild ) 

188 INForum 2010 Ines C̆eh, Matej C̆repins̆ek, Tomaz̆ Kosar, Marjan Mernik



An important role of the FDs is to describe the variability of the programming 
system. The number of all possible configurations per system can be calculated with 
the use of variability rules, presented in [12]. 

Constraints, which are intended for variability reduction, are an optional 
component of the FDs. The constraints are enforced with the satisfaction rules [12]. 
The constraints are of two types [12]: diagram constraints and user constraints. The 
former include the “A1 requires A2” (if feature A1 is presented, then feature A2 
should also be presented) and “A1 excludes A2” (if feature A1 is presented, then 
feature A2 should not be presented) constraints, while the latter include the “include 
A” (feature A should be present) and “exclude A” (feature A should not be present) 
constraints.  

2.2   Ontology based Domain Analysis (OBDA) 

There are many definitions of ontology in the literature and one of the most 
commonly used definitions is that of Gruber. He defined ontology as a "formal, 
explicit specification of shared conceptualization" [5]. Formal refers to the fact that it 
is machine readable. The specification is explicit because it summarizes the concepts, 
properties and relations between concepts. Furthermore, shared conceptualization 
contains knowledge that a group of experts has agreed upon. Conceptualization refers 
to the fact that it incorporates the target domain completely. 

Ontologies are commonly encoded using ontology languages. Ontology languages 
can be divided in two major groups: traditional (i.e. Flogic, Ontolingua) and web-
based languages (i.e. RDF(S), OWL, OWL 2) [13]. Recently, a new group of 
languages, rule-based (i.e. RuleML, SWRL), has emerged. These languages differ in 
their purpose and in their expressive power. The main requirements for an ontology 
language are:  well defined syntax, well defined semantics, efficient reasoning 
support, sufficient expressive power and convenience of expression [14].  

OWL is the most commonly used ontology language. It has three sublanguages; 
OWL Full, OWL DL and OWL Lite [14], [15]. These sublanguages have different 
levels of expressiveness. Whereas OWL Full is the most expressive, OWL Lite is the 
least expressive. Only OWL-DL allows automated reasoning. 

The three components of OWL are: classes, properties, and individuals. Classes are 
interpreted as sets that contain individuals. Classes may be organized into a hierarchy. 
This means that a class can subsume other classes or it can be subsumed by other 
classes. The consequence of the subsumption relation is inheritance. Inheritance refers 
to the inheritance of properties which the children inherit from their parents. Whereas 
some ontologies only allow single inheritance, most ontologies, like OWL, allow 
multiple inheritance. OWL defines two special classes called „Thing“ and „Nothing“. 
Class Thing is the most general class and it is the superclass of every class that is 
included in ontology. Class Nothing is the empty and it is subclass of every included 
class. The class hierarchy for the truncated version of the previously existing Pizza 
ontology (PO) is shown in Fig. 2. The PO is used as an example in a practical guide to 
building OWL ontologies using Protégé [15]. PO has been choosen as an example 
because it includes the majority of the OWL features. The  PO, written in OWL-DL, 
describes various pizzas based on their toppings.   

Using ontology in the development of ... INForum 2010 – 189



 

Fig. 2. Class hierarchy of Pizza Ontology.  

Fig. 2 shows the class hierarchy of the PO used in this paper. The classes are 
represented with ellipses. All the classes are subclasses of the Thing class. 

The second component, the properties, is a binary relation. OWL defines two main 
kinds of properties; object properties (i.e. hasTopping) and datatype properties (i.e. 
hasCaloricContentValue). Whereas object properties relate objects to other objects, 
datatype properties relate an object to datatype values. OWL supports XML schema 
primitive datatypes. The third component, the individuals, is the basic component of 
ontology. They represent objects in the domain of discourse. They can be concrete 
individuals (i.e. animals, airplanes, and people) as well as abstract individuals (i.e. 
words and numbers). 

The relationships between classes are the means of the class definition in OWL. 
Such classes can be defined with the use of restrictions. Three main categories of 
restrictions that exist in OWL: quantifier restrictions (existential and universal), 
cardinality restrictions and „hasValue“ restrictions [15].  

190 INForum 2010 Ines C̆eh, Matej C̆repins̆ek, Tomaz̆ Kosar, Marjan Mernik



2.2   Comparison of CDA and OBDA  

Both analysis incorporate a concept vocabulary, enable the display of property and 
class hierarchies, and provide a constraint mechanism. The CDA uses this mechanism 
for variability reduction while the OBDA uses it for the description of class 
properties. Both types of analysis describe semantics and are machine readable. The 
CDA differs from OBDA in its capability to record the reasons for the use of 
particular property (rationale) and the calculation of all possibilities. OBDA, on the 
other hand, provides the existence of objects, reasoning and querying. Numerous tools 
are available for it and ontologies are created across diverse research areas and are 
therefore available for use. The comparison shows that OBDA is capable of most of 
what the CDA is capable. The advantages of ontology are reasoning and querying, 
because they enable the validation of ontology. Valid ontology significantly reduces 
or prevents errors in DSL development. Semantics, that are inherently defined with 
the ontology, is also of great use when developing language semantics. Existing tools 
provide easy access to the ontology and enable efficient information extraction 
procedures. It is also a very important  fact that ontologies are present in different 
research areas. That provides the method for elimination of domain analysis phase in 
DSL development and might significantly reduce the time needed for the language 
development. 

Table 1.  Comparison of CDA and OBDA  

Property FD + FDL OWL ontology 
Concept vocabulary 
Hierarchy 

Features names 
Feature diagram 

Name Class or property 
Class hierarchy 

Constraints FDL constraints Restrictions 
Rationale FD rationale properties No 
Objects 
Possible combinations 
Reasoning support 
Machine readable 
Tools 
Semantics 
Domain analysis in use 
Query support 

No 
Variability rules (FDL) 
No 
Yes 
In its infancy 
Yes 
No 
No 

Individuals 
No  
Reasoners (i.e. FaCT++) 
Yes 
Yes (i.e. Protege) 
Sets of relations 
Existing ontologies  
Yes (DL Query) 

Using ontology in the development of ... INForum 2010 – 191



The comparison leads to the conclusion that the CDA can indeed be replaced with 
OBDA, primarily because the ODBA provides everything needed for DSL 
development and adds new capabilities.  

3   Language design 

The grammar design is a feature of the Ontology2DSL framework. The framework 
enables the transformation of the OWL document to an appropriate internal data 
structure. The data structure is then transformed with the use of transformation 
patters. The resulting output is in the form of grammar and one or more programs. A 
DSL engineer that uses various tools at his/her disposal reviews them. If irregularities 
are found, they are resolved in accordance to their type in either the ontology or the 
transformational patterns. With regard to the type of the fix applied, the tool then uses 
new patterns on the old ontology, old patterns on the new ontology or new patterns on 
the new ontology. The process is repeated until the engineer finds no more 
irregularities, which finally results in the language grammar definition and one or 
more programs. The framework, besides the grammar development, can be supported 
with the development of DSL tools. They can be developed by the DSL engineer with 
the language development tools such as LISA [16]. Ontology2DSL framework is 
presented as a workflow diagram on Fig. 3.  

 

Fig. 3. Ontology2DSL framework.  

3.1   Designing DSL grammar 

Before starting with an explanation of basic steps of Ontology to DLS transformation 
(O2DSL), target ontology needs to be well understood. Language designer must 
understand what ontology describes and why it was designed. Moreover, language 
designer needs to know what are DSL requirements and what is the purpose of DSL. 
In most cases the DSL requirements and the ontology, do not overlap in all concepts.  

In this paper, methodology O2DSL is demonstrated on a PO example. Single 
ontology, as well as PO example, can be used to develop many different DSLs. The 
purpose of the one presented here is a DSL to describe pizzas that can be queried by 
pizzas characteristics. Concepts of the simple pizza query language are not described 

192 INForum 2010 Ines C̆eh, Matej C̆repins̆ek, Tomaz̆ Kosar, Marjan Mernik



in the given PO, therefore are omitted from this example transformation. The DSL is 
named as Pizza Language (PL) and a result of O2DSL is the obtained language 
grammar [17]. As a side effect of transformation, domain data that is described in 
DSL programs is extracted. 
 
Basic concept transformation. Ontology classes are interpreted as abstract groups 
and represent production rules in grammar non-terminals. In transformation classes, 
names have been used for grammar non-terminal names. Sequences and alternatives 
that describe production rules are obtained through class dependences and class 
hierarchy. For example, class hierarchy for PizzaTopping (Fig. 2) describes the 
group of toppings CheeseTopping, MeatTopping and VegetableTopping. 
Subgroup CheeseTopping includes subgroup of classes ParmesanTopping and 
MozzarellaTopping. In O2DSL transformation class hierarchy is transformed 
into production alternatives. Grammar example:  
PizzaTopping ::=  CheeseTopping | MeatTopping |     
                  VegetableTopping 
CheeseTopping ::= ParmesanTopping | MozzarellaTopping 
 
Generalization extraction. This pattern extracts abstract group from ontology and 
presents it as a configurable external element (program or constant attribute). In most 
cases this pattern is used for leaf classes in class hierarchy. For example in 
PizzaTopping (Fig. 2) leafs can be in general named Topping, that represents 
terminal in DSL grammar. Information of ParmesanTopping is then moved in 
DSL program as Topping instance (parmesan). For ontology class 
CheeseTopping, the following production is derived:  
CheeseTopping ::= Topping and Topping ::= #string  
Program fragment examples: ‘parmesan’ and ‘mozzarella’. 
 

Often, desired feature of DSL is its scalability. Therefore, the ability to define more 
instances of class CheeseToping is added to our DSL. The right side of 
CheeseTopping production is defined as a set of toppings:  
CheeseTopping ::= {Topping} 
 

Multi class generalization. It is common in the ontology that more than one class 
represents a similar domain concept, usually the only difference between these classes 
is in their derivation hierarchy. For example, in PO classes ParmesanTopping, 
SalamiTopping, OnionTopping, etc. they describe the same concept of 
topping, but they derive from different classes. In DSL grammar, this can be 
described with the same non-terminal. Grammar example: 
CheeseTopping ::= Topping 
MeatTopping ::= Topping 
VegetableTopping ::= Topping 
Topping ::= #string 
Program fragment examples: ‘parmesan’, ‘salami’ and ‘onion’. 

Because of generalization we can get ambiguous grammar (one topping belongs to 
different abstract groups). To solve that problem, an enriching syntax can be used.  

Using ontology in the development of ... INForum 2010 – 193



 
Enriching the syntax. One of the goals of DSL is to have a clear and easy to 
understand syntax with intuitive semantic. To achieve that, different patterns for 
enumerations, concepts that are seperated with brackets, adding reserved words, etc. 
have been used in O2DSL. For example in the PizzaTopping class reserved word 
topping is used. After all patterns are applyed, the following grammar is obtained: 
PizzaTopping ::= topping 
(CheeseTopping|MeatTopping|VegetableTopping) 
CheeseTopping ::= cheese ToppingList  
MeatTopping ::= meat ToppingList 
VegetableTopping ::= vegetable ToppingList 
ToppingList ::= '(' Topping {',' Topping} ')' 
Topping ::= #string 
Program fragment examples:  
topping cheese ( ‘parmesan’ , ‘mozzarella’ ) 
topping meat (‘salami’) 
 

In some cases, multi class generalization has an additional level in class hierarchy 
(additional abstract group between two classes). For example, 
VegetableTopping has an additional subclass PepperTopping that has 
subclasses RedPepperTopping, GreenPepperTopping and 
JalapenoPepperTopping (Fig. 2). One way to express an additional abstract 
group is to add a new alternative on VegetableTopping level with associated 
productions, other is by skipping this level and expect additional information in 
derivation of non-terminal Topping. Program fragment example:  
topping vegetable (‘red pepper’, ‘green pepper’, 
‘jalapeno pepper’) 
 
Object properties and restriction transformations. Additional information about 
class relations can be obtained from ontology’s object and class properties. For 
example RedPepperTopping has relations with SpicinessValue-
Partition that has subclasses: Hot, Mild and Medium. In PO example, the 
relation is described by property hasSpiciness Hot. Class PepperTopping 
owns the property, therefore non-terminal Topping gets additional information. 
This property is not set for all PizzaTopping derivations and therefore it is 
optional.  Following production is obtained: 
Topping ::= #string [is SpicinessValuePartition] 
Program fragment examples:  
topping vegetable (‘red pepper’ is hot, ‘green pepper’ is 
mild, ‘jalapeno pepper’ is medium, ‘onion’) 
 

All class restrictions can be transformed in DSL by the similar transformation. In 
case that some restrictions are in addition defined by logical expression, support for 
logical expressions can also be added as part of DSL.  

 
 

194 INForum 2010 Ines C̆eh, Matej C̆repins̆ek, Tomaz̆ Kosar, Marjan Mernik



Obtained grammar. The appropriate order (sequence) of domain main concepts is 
defined from class hierarchy and class restrictions. For example, in case of PL, 
different instances of PizzaTopping must be defined before the definition of 
NamedPizza. Part of final PL grammar: 
PL ::= {PizzaTopping} {Pizza} {Individual} {Query} 
PizzaTopping ::= topping 
(CheeseTopping|MeatTopping|VegetableTopping) 
CheeseTopping ::= cheese ToppingList  
MeatTopping ::= meat ToppingList 
VegetableTopping ::= vegetable ToppingList 
ToppingList ::= '(' Topping {',' Topping} ')' 
Topping ::= #string [is SpicinessValuePartition] 
SpicinessValuePartition ::= mild | hot | medium 
Pizza ::= pizza (Interesting | Vegetarian | NonVegetarian   
     | HighCalorie | LowCalorie | Named | Cheesy | Spicy) 
… 
 

Obtained DSL syntax is easy to understand and gives all flexibility and usability of 
DSLs. Obtained grammar and program fragments are used as a base for language 
development tool frameworks.  

4   Conclusion and future work 

In this paper, we have focused on the presentation of a new design methodology that 
enables the development of the language grammar, based on the OBDA. The 
limitations of the CDA have been examined and the replacement in the form of 
OBDA has been proposed. Both analysis have been presented and compared for 
similarities and differences. Grammar development, based on the OBDA, and the 
Ontology2DSL has also been briefly presented.  

The results of the comparison between both analysis show that the OBDA is 
comparable to the CDA and also provides some additional information that can be 
used to specify language behavior. As such, it is also suitable as an alternative to 
CDA for grammar development. The framework Ontology2DSL is still under 
development. Currently, the framework supports the import of OWL ontology to an 
internal data structure and the transformation rules have been defined. The continuing 
development of the framework is a part of our future work. More specifically, we will 
focus on validation of the developed grammar and the use of previously unused 
information (i.e. for semantics development) that has been acquired with OBDA. The 
results of our research work will also be the transformation of the developed DSL to a 
form that is compatible with the compiler generators, such as LISA [16]. One of the 
future activities, to complete the methodology O2DSL, is evaluation of DSLs. As 
shown in the study [18], this activity is often underestimated by language developers. 
There is a plan to support this activity with tool based on questionnaire similar to [19] 
that will further improve the language.  

Using ontology in the development of ... INForum 2010 – 195



References 

1. Mernik, M., Heering, J., Sloane, A. M.: When and how to develop domain-specific 
languages. ACM Computing Surveys (CSUR) 37, 316--344 (2005) 

2. Taylor, R. N., Tracz, W., Coglianese, L.: Software development using domain-specific 
software architectures. ACM SIGSOFT Software Engineering Notes 20, 27--38 (1995) 

3. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-Oriented Domain Analysis 
(FODA). Technical report, (1990) 

4. Simos, M., Anthony, J.: Weaving the Model Web: A Multi-Modeling Approach to Concepts 
and Features in Domain Engineering. In: Proceedings of the 5th International Conference on 
Software Reuse, pp. 94--102. IEEE Computer Society, (1998) 

5. Gruber, T.R.: A translation approach to portable ontology specification. Knowledge  
Acquisition 5, 199--220 (0993) 

6. Tairas, R., Mernik, M., Gray, J.: Using Ontologies in the Domain Analysis of Domain-
Specific Languages. In: Models in Software Engineering. LNCS, vol. 5421, pp. 332--342. 
Springer, (2009) 

7. Ontology-Based Evaluation and design of domain-specific visual modeling languages, 
http://www.loa-cnr.it/Guizzardi/ISD2005.pdf 

8. Guarino, N.: Semantic Matching: Formal ontological distinctions for information    
organization, extraction, and integration. In: Information Extraction A Multidisciplinary 
Approach to an Emerging Information Technology. LNCS, vol. 1299, pp. 139--170. 
Springer, (1997)  

9. Walter, T., Parreiras, F. S., Staab, S.: OntoDSL: An Ontology-Based Framework for 
Domain-Specific Languages. In: Model Driven Engineering Languages and Systems. 
LNCS, vol. 5795, pp. 408--422. Springer, (2009) 

10. Bräuer, M., Lochmann, H.: An Ontology for Software Models and Its Practical Implications 
for Semantic Web Reasoning. In: The Semantic Web: Research and Applications. LNCS, 
vol. 5021, pp. 34--48. Springer, (2008) 

11. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools and Applications.  
ACM Press/Addison-Wesley Publishing Co., (2000) 

12.  Van Deursen, A., Klint, P.: Domain-specific Language Design Requires Feature 
Descriptions. Journal of Computing and Information Technology 10, 1--17 (2002) 

13.  Corcho, Ó., Gómez-Pérez, A.: A Roadmap to Ontology Specification Languages. In: 
Knowledge Engineering and Knowledge Management Methods, Models, and Tools. LNCS, 
vol. 1937, pp. 80--96. Springer, (2000) 

14. Antoniou, G., van Harmelen, F.: Handbook on Ontologies. Springer, Heidelberg (2009) 
15. A Practical Guide to Building OWL Ontologies Using Protégé 4 and CO-ODE Tools,      

http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/resources/ProtegeOWLTutorialP
4_v1_2.pdf 

16. Mernik, M., Lenič, M., Avdičauševič, E., Žumer, V.: LISA: An Interactive Environment for 
Programming Language Development. In: Horspool, N. (ed.) Compiler Construction. 
LNCS, vol. 2304, pp. 1-4. Springer, (2002)  

17. Aho, A. V., Lam, M. S., Sethi, R., Ullman, J. D.: Compilers: Principles, Techniques, and 
Tools. Addison Wesley, (2007) 

18. Gabriel, P., Goulão, M., Amaral, V.: Do Software Languages Engineers Evaluate their 
Languages? In: Proceedings of the XIII Congreso Iberoamericano en "Software 
Engineering" (CIbSE'2010), pp. 149--162. CIbSE2010 ( Ecuador ), (2010) 

19. Haugen, O., Mohagheghi, P.: A Multi-dimensional Framework for Characterizing Domain 
Specific Languages. In: Proceedings of the 7th OOPSLA Workshop on Domain-Specific 
Modeling (DSM’07), Montréal, Canada, (2007)  

196 INForum 2010 Ines C̆eh, Matej C̆repins̆ek, Tomaz̆ Kosar, Marjan Mernik


