
Domain-Specific Language for Coordination Patterns

Nuno Oliveira1, Nuno Rodrigues2, and Pedro Rangel Henriques1

1 University of Minho - Department of Computer Science,
Campus de Gualtar, 4715-057, Braga, Portugal
{nunooliveira,lsb,prh}@di.uminho.pt

2 IPCA – Polytechnic Institute of Cavado e Ave
Campus da ESGT, Barcelos, Portugal

nfr@ipca.pt

Abstract. The composition of software systems in a new one requires a good
architectural design phase to speed up remote communications between these
systems. But at the implementation phase, the code to coordinate such compo-
nents ends up mixed in the main business code. This leads to maintenance prob-
lems, raising the need of, on the one hand, separate the coordination code from
the business code, and on the other hand provide mechanisms for analysis and
comprehension of the architectural decisions once made.
In this context our aim is at developing a domain-specific language, CoordL, to
write coordination patterns. From our point of view, coordination patterns are ab-
stractions, in a graph form, over the composition of coordination statements from
the system code. These patterns would allow us to identify, by means of pattern-
based graph search strategies, the code responsible for the coordination of the
several components in a system. The recovering and separation of the architec-
tural decisions for a better comprehension of the software is the main purpose of
this pattern language.

1 Introduction

Software Architecture [12] is a discipline within the Software Development [11] con-
cerned with the design of a system. It embodies the definition of a structure and the
organization of components which will be part of the system. The architecture design
concerns also with the way these components interact with each other and which are the
constraints in their interactions. In their turn, software components [8] may be seen as
objects in the object-oriented paradigm, however, besides data and behavior, they may
embody whatever we think as a software abstraction. Although they may have their own
functionality (sometimes a component is a remote system), most of the times they are
developed to be composed with other components within a software system and to be
reused from a system to another, giving birth to component-based software engineering
methodology [9].
The definition of the interaction between the components of a system may be seen from
two perspectives: (i) integration and (ii) coordination. The differences between these
two perspectives is slightly none. The former is related with the integration of some

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 125–136

functionalities of a system into a second one which needs to borrow such a compu-
tation; the latter is concerned with the low level definition of the communication and
its constraints between the modules of a system. Such interaction definition between
the components should be exogeneous, that is, the coordination of components is made
from the outside of a component, not needing to change its internals to make possible
the communication with new components [3].
However, this rule of separating computational code from the coordination code is not
always adopted by those who develop software. The code is all weaved in a single layer
where there is no space for separation of concerns. This behavior would arise problems
in the future of the system, namely in maintenance phases. These problems are mainly
concerned with the comprehension of the code and architectural decisions by hampering
their analysis.
Reverse engineering [20] of legacy systems for coordination layer recovery would play
an important role on maintenance phases, diminishing the difficulties on analyzing the
architectural decisions. But extracting code dedicated to the coordination of the system
components from the whole intricate code is not an easy task. There is not a standard
(and unique) way of programming the interactions between the components. However,
and fortunately, there are a lot of code patterns which the majority of the developers
use to write the coordination code. Once the code of a system can be represented as
a graph of dependences between the statements and procedures, the so-called System
Dependence Graph (SDG) [10], we are also able to represent code patterns as graphs,
allowing the search for these patterns in the SDG.
In this context, we define the notion of coordination patterns as follows:

Given a dependence graph G as in [18] a coordination pattern is an equivalence
class, a shape or a sub-graph of G, corresponding to a trace of coordination
policies left in the system code.

In this paper we show how we developed a Domain-Specific Language (DSL) [22]
named CoordL, to write coordination patterns. Our main objective is to translate Co-
ordL specifications into a suitable graph representation. Such representation feed a
graph-based search algorithm applied on a dependence graph, in order to discover the
coordination code weaved in the system code. In more detail, the paper follows this
structure: in Section 2 we address related work; in Section 3 we present and describe
the syntax of CoordL; in Section 4 we address its semantics; in Section 5 we show
how we used the AnTLR system to define the syntax and the semantics of CoordL;
in Section 6 we expatiate upon actual and future applications of the language and the
patterns and finally, in Section 7 we conclude the paper by expressing what we have
done.

2 Related Work

CoordL is a DSL to write coordination patterns with the purpose of extracting and
separating the coordination layer from the source code of a multi-component software

126 INForum 2010 Nuno Oliveira, Nuno Rodrigues, Pedro Rangel Henriques

system. The main idea of this code separation into concern-oriented layers is to recover
architectural decisions and ease the comprehension of the system and its architecture.
The recovery of the system architecture for software comprehension is not a novelty.
Tools like Alborz [19] or Bauhaus [16] recover the blueprints of an object-oriented sys-
tem. Bauhaus recovers architectures as a graph where the nodes may be types, routines,
files or components of the system, and the edges model the relations between these
nodes. Such architecture details are presented in different views for an easy understand-
ing of the global architecture. Alborz presents the architecture as a graph of components
and keeps a relation between this graph and the source code of the software system.
Our main aim is not at visualizing the blueprints of a system, but to provide mech-
anisms for understanding the rationale behind the architectural decisions once made.
This embodies the recovering of the coordination code. The tools mentioned before do
not support this feature and do not take advantage of code patterns to do the job.
Although we may reference Architectural Patterns [4] or Design Patterns [5] as related
work, because of the common methodology of patterns and the borrowed notions and
description topics, there is a huge difference between their application. While coordi-
nation patterns are used to lead a reverse and a re-engineering to recover architectural
decisions, and are focused on low-level compositions of code, the architectural/design
patterns play in a higher level, being used to define the architecture of a system in earlier
phases of the software development process [11].
Architecture Description Language (ADL), are languages to formally describe the archi-
tectures and the interactions between the components of the system. Although CoordL
is not to be considered an ADL, we must acknowledge that there are some similarities in
the concepts embodied in these languages and those encapsulated in our. Some of these
languages are ACME [7], ArchJava [1], Wright [2], and Rapide [13]. The great
majority of these languages has tool support for analyzing the described architecture.
Such analysis made at high level, allows one to reasoning about the correctness of the
system, and may provide important information about future improvements that can or
can not be done according to the actual state of the architecture.
According to our knowledge, there is no language with the same exact purpose as Co-
ordL.

3 CoordL - Design and Syntax

The design of a DSL is always a task embodying a lot of steps. As a first step it is needed
to collect all the information about the domain in which the language will actuate.
Then this information shall be organized using, for instance, ontologies [21]. Once the
main concepts of the domain are identified it is needed to choose those that are really
needed to be encapsulated in the syntax of the language; this leads to the last step which
concerns with the choice of a suitable syntax for the language.
Figure 1 presents an ontology to organize the domain knowledge of the area where we
want to solve problems. The main concept of this domain is the coordination pattern.
The majority of the concepts incorporated in this domain description are wider than

Domain-Specific Language for Coordination Patterns INForum 2010 – 127

what we show, however, to keep the description limited to the domain, we narrowed the
possible relations between each concept, as well as the examples they may have.

Fig. 1. Ontology Describing the Coordination Pattern Domain Knowledge

Notice also that in this ontology we used operational relations (marked as dashed ar-
rows) besides the normal compositional ones. This would provide a deeper comprehen-
sion of how the concepts interact between them in the domain.
The core of the knowledge base represented in Figure 1, describes that a coordination
pattern is a part of a coordination dependence graph (CDG) [18] abstracting code which
is seen as a composition of statements concerned with coordination aspects, and are
used to analyze architectures. As novelty the web of knowledge shows that coordination
patterns communicate with each other through ports.

128 INForum 2010 Nuno Oliveira, Nuno Rodrigues, Pedro Rangel Henriques

From this description, and knowing that the main objective of CoordL is to define a
graph over the composition of statements in the source code of a system, then some kind
of graph representation need to be embodied in the language. An obvious reference for
representing graphs in a textual way is the DOT language [6], so, CoordL borrows
some aspects from that language. The notion of communication ports (in and out) came
from the ACME language [7], although the notion of ports is very different in these two
contexts. To know which ports exist for a pattern, it was adopted the notion of arguments
from any general-purpose programming language (GPL). The description of what are
these ports led to the introduction of declarations and initializations in the language.
Declarations describe the types of statements represented as nodes in the graph, while
the initialization describes the service call which is performed by the node.
From this textual description we defined a syntax by means of a context free grammar
shown (partially) in Listing 1.1.

Listing 1.1. Partial grammar for CoordL
1 l a n g → p a t t e r n +
2 p a t t e r n → ID ‘ (’ p o r t s ‘ | ’ p o r t s ‘) ’ ‘{ ’ d e c l s g raph ‘} ’
3 p o r t s → l s t I D
4 d e c l s → (d e c l ‘ ; ’) +
5 d e c l → ‘ node ’ l s t I D ‘= ’ nodeRules | ‘ fo rk ’ l s t I D | ‘ j o i n ’ l s t I D |
6 ‘ t t r i g g e r ’ l s t I D | ID i n s t a n c e s
7 i n s t a n c e s → i n s t a n c e (‘ , ’ i n s t a n c e)∗
8 i n s t a n c e → ID ‘ (’ p o r t s ‘ | ’ p o r t s ‘) ’
9 . . .

10 graph → a g g r e g a t i o n | c o n n e c t i o n s
11 a g g r e g a t i o n → p a t t r e f (‘+ ’ p a t t r e f)∗
12 p a t t r e f → cnode | ‘ (’ a g g r e g a t i o n n ‘) ’ c o n n e c t i o n
13 . . .
14 cnode → node | ID ‘ . ’ propTT
15 . . .
16 c o n n e c t i o n → ‘{ ’ o p e r a t i o n s ‘} ’ ‘@’ ‘ [’ p o r t s a l i v e ‘ | ’ p o r t s a l i v e ‘] ’
17 . . .
18 o p e r a t i o n → cnode l i n k cnode | f o r k | j o i n | t t r i g g e r
19 . . .
20 f o r k → node s p l i n k ‘{ ’ cnode ‘ , ’ cnode ‘} ’
21 . . .
22 l i n k → ‘− ’ ID ‘− ’ ‘>’
23 . . .

Figure 2 presents two examples of patterns written with CoordL. The pattern a) is
known as the Asynchronous Sequential Pattern which is a pattern used when the system
has to invoke a series of services but the order of the answer is not important. The pattern
b) is known as the Joined Asynchronous Sequential Pattern, which is a transformation
of the first pattern to impose order in the responses.
Both of these patterns address different aspects of the syntax, but the main structure of
the patterns is the same. Moreover, they address the composition and reuse of patterns.
Regard, for instance, pattern in Figure 2.a). It has a unique identifier (pattern -
1) and declares in and out ports, identifiers p0 and p1, p2 and p3 respectively. The in
ports go on the left side of the ‘|’ (bar) symbol, and the out ports on its right. Then, a
space is reserved for node declarations and initializations. There are 5 types of nodes in
CoordL: node, fork, join, ttrigger and pattern instance. In Figure 2.a) we use the node
and fork types, and in Figure 2.b) we use node, join and pattern instance types. The
ttrigger type is similar to fork or join.

Domain-Specific Language for Coordination Patterns INForum 2010 – 129

Nodes of type node require an initialization where it is described a list of rules address-
ing the corresponding coordination code fragment, the type of interaction or the calling
discipline. These rules are composed using the && (and) and/or || (or) logical opera-
tors, and the list must, at least, embody one of the following: (i) Statement (st), presents
the code fragment of the statement responsible by the coordination request. This state-
ment may be described by a regular expression or may be a complete sentence; (ii) Call
Type (ct), defines the type of service requested. The options are not limited, but some of
the most used are web services, RMI or Remoting; (iii) Call Method (cm), defines the
method in which the request is made. It can be either synchronous or asynchronous and
(iv) Call Role (cr), describes the role of the component that is requesting the service. It
can be either consumer or producer.

1 p a t t e r n 1 (p0 | p1 , p2 , p3){
2 node p0 , p3 { s t == ”∗” }
3 node p1 , p2 {
4 s t == ” c a l l i n g (∗) ” &&
5 c t == w e b s e r v i c e &&
6 cm == sync &&
7 c r == consumer &&
8 } ;
9 f o r k f1 , f2 ;

10

11 { f2 − (x ,w)−> (p3 , p2)}
12 { f1 − (x , y)−> (f2 , p1)}
13 {p0 −x−> f1}
14 }

(a)

1p a t t e r n 2 (p1 | p2){
2node p1 , p2 , pa = { s t == ”∗”} ;
3p a t t e r n 1 p a t t (i 1 | o1 , o2 , o3) ;
4j o i n j1 , j 2 ;
5

6(p1 + p a t t + p2)
7{p1 −x−> p a t t (i 1) ,
8(p a t t (o1) , p a t t (o3)) − (x , y)−> j 1}
9{(j1 , p a t t (o2)) − (x ,w)−> j 2}
10{ j 2 −x−> p2}
11}

(b)

Fig. 2. Definition of Two Coordination Patterns with CoordL

Pattern instance nodes have the type of an existent pattern. In Figure 2.b), line 3, it
is declared an instance of pattern pattern 1. Each instance of a pattern must be
initialized with unique identifiers referring to all the in and out ports of the pattern
typing it.
In CoordL, a node is seen as a pseudo-pattern (with in and out ports, which may
be the node itself). Any operation over these pseudo-patterns define a new pseudo-
pattern. The main operations are the aggregation and the connection. Aggregation3 is
the combination of two or more pseudo-patterns by putting them side-by-side, this is,
not connecting them. The syntax for the aggregation operation is at line 6 of Figure 2.b).
Connection is the combination of two nodes by means of an edge with the identifica-
tion of, at least, a running thread. Examples may be seen in lines 11, 12 and 13, of
pattern 1 and 7, 8, 9 and 10 of pattern 2.
These two operations are used to build the graph of the pattern, which comes after all the
node declarations. There are two ways of defining the graph: (i) the implicit composi-
tion, where there are only used connection operations and (ii) the explicit composition,

3 Aggregation may be used alone, but will never define a usable pattern.

130 INForum 2010 Nuno Oliveira, Nuno Rodrigues, Pedro Rangel Henriques

where aggregation and connection operations are used simultaneously. The graph of the
pattern 1 uses implicit composition, while pattern 2 uses explicit composition.
The connection operation uses one or more out nodes and one or more in nodes (de-
pending on the type of in and out nodes). When the connection uses these nodes, their
implicit in or out ports are closed, meaning that no newer connection can use these
nodes as in or out ports again. But, as sometimes it is needed to reuse a node as a in
or an out port of a connection, it is needed to re-open them to be used in the sequent
connections. This is done with the ‘@’ (alive) operator.
We acknowledge that with all the operators and the associated syntax, the code of the
pattern is not easily readable. This way, we defined a visual notation with a suitable
“translation” into the textual notation of CoordL. In Figure 3 we present the compo-
nents of the visual notation corresponding to the textual elements that define the graph.
In Figure 4 we present how the patterns in Figure 2 look like in this notation.

Node Fork Join

T trigger Instance Edges

Fig. 3. Components of the Visual Notation for CoordL

pattern 1 pattern 2

Fig. 4. Visual Representation of Two Coordination Patterns

Domain-Specific Language for Coordination Patterns INForum 2010 – 131

4 CoordL - The Semantics

The constructs presented in Section 3 have a precise meaning in CoordL. In some
cases it is possible to draw a mapping between the meaning of a construct and the de-
pendence graph which is extracted from the source code of the system being analyzed.
The following paragraphs explain, using informal textual description, the semantics of
each construct in the language.
Bar: |
This construct separates a list of identifiers into two. The identifiers on the left side list
are called in ports and those on the list at the right side are called out ports. It may
appear in the signature of the pattern, or in the graph of the pattern, when it is needed
to keep ports opened for further use.
Aggregation: pp1 + pp2

This construct sets two pseudo-patterns side by side but do not connect them. This is
used to re-inforce the existence of the pseudo-patterns in the graph, before connect their
ports.
Connection: n1 –x–> n2

This construct creates a link between two nodes in the graph of the pattern. It means
that in the dependence graph G, where the pattern will be applied, there is a path of one
or more edges going from n1 to n2 through one or more edges in a thread identified by
x.
Fork Connection: f –(x, y)–> (n1, n2)
This construct creates a link between two nodes in the graph of the pattern, where the
start node is a fork. It means that in the dependence graph G, where the pattern will
be applied, there are two parallel paths (p1 and p2) going from f to n1 through one or
more edges in a thread identified by x, and from f to n2 in a freshly spawned thread
identified by y, respectively. A necessary pre-condition is that in the dependence graph,
there is some path p0 from any node to f in a thread identified by x.
Join Connection: (n1, n2) –(x, y)–> j
This construct creates a link between two nodes in the graph of the pattern, where the
end node is a join. It means that in the dependence graph G, where the pattern will be
applied, there are two parallel paths (p1 and p2) going from n1 to j through one or
more edges in a thread identified by x, and from n2 to j in a thread identified by y,
respectively. A necessary pre-condition is that in the dependence graph, there are two
paths (p0 and p′0) from a fork node to n1 in a thread identified by x and from the same
fork node to n2 in a thread identified by y, respectively.
Thread Trigger Connection: (n1, n2) –(x, y)–> tt.sync, (n1, n2) –(x, y)–> tt.fail
This construct creates a link between two nodes in the graph of the pattern, where
the end node is a ttrigget. It means that in the dependence graph G, where the pattern
will be applied, there are two parallel paths (p1 and p2) going from n1 to tt through
one or more edges in a thread identified by x, and from n2 to tt in a thread identified
by y, respectively. This meaning is replied to express what happens when the threads
synchronize (tt.sync), or when the threads synchronization fails (tt.fail). A necessary
pre-condition is that in the dependence graph there are two paths (p0 and p′0) from a
fork node to n1 in a thread identified by x and from the same fork node to n2 in a
thread identified by y, respectively.

132 INForum 2010 Nuno Oliveira, Nuno Rodrigues, Pedro Rangel Henriques

List of Connections: { connection, . . . }
This construct creates a list of independent connections. That is, a connection inside
that list do not depend on any node, node property or even on other connections that
are used and defined in the list. This independence dues to the fact that there is no order
between the connections inside a list of connections. Sequent lists of connections may,
but are not obliged to, depend on previous lists.
Along with this construct comes the notion of fresh nodes. A fresh node is a control
node (like a fork, join or ttrigger) that is firstly used in a connection, and cannot be
reused in the same list because of the order dependence. For instance, a fork node must
be used as an out port in a connection before being used as a in node.

Alive: @
This construct instructs that a list of identifiers are kept alive as in and out ports. Ports
need to be reopened because once a connection uses a node, the implicit port of such
node is killed. The ‘@’ construct is followed by a list of identifiers divided into two by
the bar construct.

5 CoordL - Compiling & Transforming

We used AnTLR system [15] to produce a parser for CoordL. Taking advantage of
the AnTLR features we adopted a separation of concerns method to generate the full-
featured compiler. Figure 5 shows the architecture of the compiler system. The main
piece of the compiler system is the syntax module where we specified both the con-
crete and abstract syntax for CoordL, using the context free grammar presented in
Listing 1.1. Based on the abstract syntax, AnTLR produces an intermediate structure of
that grammar known as a tree-grammar.
From the tree-grammar (using attribute grammars methodology) we were able to define
new modules that do not care about the concrete syntax. These modules embody the
semantics checker, the graph drawer and the unimaginable number of possible transfor-
mations applied to that tree-grammar.
The following hierarchical dependence on these modules is observed: the semantics
module depends on the syntax module; the graph drawer and the transformation mod-
ules depend on the semantics module, so, for transitivity, they also depend on the syntax
module. This holds the requirement that some modules may only be used if the syntax
and the semantics of the CoordL sentence are correct.
We reckon that the separation of concerns on the modules and the dependence between
them may be seen as a problem to maintain the compiler. For instance, if something in
the abstract syntax of the language changes, these changes must be performed in ev-
ery dependent module. Nevertheless, this method brings also positive aspects: (i) the
number of code lines in each file decreases, easing the comprehension of the module
for maintenance; (ii) since each module defines an operation over the coordination pat-
terns code, the compiler may be integrated in a software system providing independent
features to manipulate the patterns and (iii) the separation of concerns into modules
would ease the maintenance of each feature.

Domain-Specific Language for Coordination Patterns INForum 2010 – 133

Fig. 5. CoordL Compiler Architecture

The transformation modules have, as main objective, to provide perspectives about the
coordination patterns, namely, their transformation into Orc [14] or REO [3] specifica-
tions. An important module to be considered is the transformation of the pattern code
into a suitable input to search for these patterns in the dependence graph of a system
code. As for the syntax and the semantic modules, their main output is the syntactic and
semantic errors, respectively. The graph drawer module outputs the visual representa-
tion of the coordination patterns.

6 Applications and Further Work

The list of possible applications of CoordL is not very long. Its precise objective of
discovering coordination patterns in a dependence graph reduces its applicability into
other areas. Nevertheless, the area of architectural analysis and comprehension allows
a profound application of this language.
CoordInspector [17] is a tool to extract the coordination layer of a system to repre-
sent it in suitable visual ways. In a fast overview, CoordInspector processes com-
mon intermediate language (CIL), meaning that systems written in more than 40 .NET
compliant languages can be processed by that tool. The CIL code is then transformed
into an SDG which is sliced to produce a CDG. Then it is used ad-hoc graph notations
and rules to perform a blind search for non-formalized patterns in the CDG. Here is
where CoordL has its relevance. Due to its systematization and robust formal seman-
tics, the process of discovering patterns in the code would be more reliable than using

134 INForum 2010 Nuno Oliveira, Nuno Rodrigues, Pedro Rangel Henriques

the ad-hoc rules. The integration of CoordL in CoordInspector led to the de-
velopment of an editor to deal with the language. The editor makes heavy use of the
CoordL compiler system, namely the syntax and semantics modules in order to check
whether there are or there are not errors in the patterns specification.
CoordInspector is used for integration of complex information systems, resorting
to the discovering of coordination patterns. The use of CoordL in this task is crucial
for a faster and systematized search for such parts of code.
In order to avoid the repetition of writing recurrent patterns, we decided to create a
repository of coordination patterns. The repository may be accessed by means of web
services from the editor in CoordInspector. This repository is not yet finished, but
the main objective is to give developers and analysts the possibility of expressing recur-
rent coordination problems in a CoordL pattern and documenting them with valuable
information. The existence of the repository of coordination patterns and the fact of
being possible the definition of a calculus over the language, allows the creation of
relations between the patterns, defining an order of patterns.
As further work we may think about how a calculus over the language would allow the
development of a model checker for analyzing the properties of these patterns.

7 Conclusion

In this paper we introduced a domain-specific language named CoordL. This language
is used to describe coordination patterns for posterior use in discovering and extract-
ing recurrent coordination code compositions in the tangled source code of a software
system.
We explained how the language was designed resorting to (i) the application domain
description, by means of an ontology, and (ii) existing programming language and
associated knowledge. Then we showed how we took advantage of AnTLR to define a
full-featured and concern-separated compiler for the language. The adoption of this sys-
tematic development of modules for the compiler and the dependencies between them
may arise some discussions about the flexibility at maintenance phase. We are aware of
such problems, nevertheless we argue that the separation of concerns by modules allow
a better use of the compiler when integrated in other tools, and the problems of main-
tenance are not that numerous because the comprehension of the modules is easier due
to having a small number of lines of code, and the issue solved in these lines is known
a priori.
Finally, we argue for the applicability of CoordL along with CoordInspector, a
tool to aid in architectural analysis and systems reengineering, and the creation of a
pattern repository for (i) cataloguing of valuable information about these coordination
patterns and (ii) allowing their adoption reuse by developers and analysts.

References

1. Jonathan Aldrich, Craig Chambers, and David Notkin. Archjava: connecting software archi-
tecture to implementation. In ICSE ’02: Proceedings of the 24th International Conference

Domain-Specific Language for Coordination Patterns INForum 2010 – 135

on Software Engineering, pages 187–197, New York, NY, USA, 2002. ACM.
2. Robert Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie Mellon,

School of Computer Science, January 1997.
3. Farhad Arbab. Reo: a channel-based coordination model for component composition. Math-

ematical. Structures in Comp. Sci., 14(3):329–366, June 2004.
4. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.

Pattern-Oriented Software Architecture, Volume 1: A System of Patterns. Wiley, Chichester,
UK, 1996.

5. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: elements
of reusable object-oriented software. Addison-Wesley Professional, 1995.

6. Emden R. Gansner and Stephen C. North. An open graph visualization system and its appli-
cations to software engineering. Softw. Pract. Exper., 30(11):1203–1233, 2000.

7. David Garlan, Robert T. Monroe, and David Wile. Acme: Architectural description of
component-based systems. In Gary T. Leavens and Murali Sitaraman, editors, Foundations
of Component-Based Systems, pages 47–68. Cambridge University Press, 2000.

8. A. Joseph Goguen. Reusing and interconnecting software components. Computer, 19(2):16–
28, 1986.

9. George T. Heineman and William T. Councill, editors. Component-based software engineer-
ing: putting the pieces together. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2001.

10. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. In
PLDI ’88: Proceedings of the ACM SIGPLAN 1988 conference on Programming Language
design and Implementation, volume 23, pages 35–46, New York, NY, USA, July 1988. ACM.

11. Ivar Jacobson, Grady Booch, and James Rumbaugh. The unified software development pro-
cess. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

12. Lih-ren Jen and Yuh-jye Lee. IEEE Recommended Practice for Architectural Description of
Software-intensive Systems. IEEE Architecture, pages 1471–2000, 2000.

13. David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug Bryan, and Walter
Mann. Specification and analysis of system architecture using rapide. IEEE Trans. Softw.
Eng., 21(4):336–355, 1995.

14. Misra, Jayadev, Cook, and William. Computation orchestration: A basis for wide-area com-
puting. Software and Systems Modeling (SoSyM), 6(1):83–110, March 2007.

15. Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific Languages. The
Pragmatic Bookshelf, Raleigh, 2007.

16. Aoun Raza, Gunther Vogel, and Erhard Plödereder. Bauhaus - a tool suite for program
analysis and reverse engineering. In Reliable Software Technologies - Ada-Europe 2006,
pages 71–82. LNCS (4006), June 2006.

17. Nuno Rodrigues. Slicing Techniques Applied to Architectural Analysis of Legacy Software.
PhD thesis, Engineering School, University of Minho, October 2008.

18. Nuno F. Rodrigues and Luis S. Barbosa. Slicing for architectural analysis. Science of Com-
puter Programming, March 2010.

19. Kamran Sartipi, Lingdong Ye, and Hossein Safyallah. Alborz: An interactive toolkit to ex-
tract static and dynamic views of a software system. In ICPC ’06: Proceedings of the 14th
IEEE International Conference on Program Comprehension, pages 256–259, Washington,
DC, USA, 2006. IEEE Computer Society.

20. Margaret-Anne Storey. Theories, tools and research methods in program comprehension:
past, present and future. Software Quality Journal, 14(3):187–208, September 2006.

21. Robert Tairas, Marjan Mernik, and Jeff Gray. Using ontologies in the domain analysis of
domain-specific languages. Models in Software Engineering, pages 332–342, 2009.

22. Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: an annotated
bibliography. ACM SIGPLAN Notices, 35:26–36, 2000.

136 INForum 2010 Nuno Oliveira, Nuno Rodrigues, Pedro Rangel Henriques

