Mixed-Strategies for Linear Tabling in Prolog

Miguel Areias and Ricardo Rocha*

CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal
{miguel-areias,ricroc}@dcc.fc.up.pt

Abstract. Tabling is an implementation technique that solves some lim-
itations of Prolog’s operational semantics in dealing with recursion and
redundant sub-computations. Arguably, the SLDT and DRA strategies
are the two most successful extensions to standard linear tabled evalua-
tion. In this work, we propose a new strategy for linear tabling, named
DRS, and we present a framework, on top of the Yap system, that sup-
ports the combination of variants of these three strategies.

1 Introduction

Tabled evaluation is a recognized and powerful technique that can considerably
reduce the search space, avoid looping and have better termination properties
than SLD resolution [1]. Tabling consists of storing intermediate solutions for
subgoals so that they can be reused when a repeated subgoal appears during
the resolution process. We can distinguish two main categories of tabling mech-
anisms: suspension-based tabling and linear tabling.

Suspension-based tabling mechanisms need to preserve the computation state
of suspended tabled subgoals in order to ensure that all solutions are correctly
computed. Linear tabling mechanisms use iterative computations of tabled sub-
goals to compute fix-points. While suspension-based mechanisms are considered
to obtain better results in general, they have more memory space requirements
and are more complex and hard to implement than linear tabling mechanisms.

Arguably, the SLDT [2] and DRA [3] strategies are the two most successful
extensions to standard linear tabling evaluation. As these strategies optimize
different aspects of the evaluation, they are, in principle, orthogonal to each other
and thus it should be possible to combine both in the same system. In this work,
we propose a new strategy, named Dynamic Reordering of Solutions (DRS), and
we present a framework, on top of the Yap Prolog system, that integrates and
supports the combination of these three strategies. Our implementation shares
the underlying execution environment and most of the data structures used to
implement tabling in Yap. We thus argue that all these common support features
allow us to make a first and fair comparison between these different linear tabling
strategies and, therefore, better understand the advantages and weaknesses of
each, when used solely or combined with the others.

* This work has been partially supported by the FCT research projects STAMPA
(PTDC/EIA/67738/2006) and HORUS (PTDC/EIA-EIA /100897/2008).

INForum 2010 - IT Simpésio de Informaética, Luis S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 205-208



2 Standard Linear Tabled Evaluation

Tabling works by storing intermediate solutions for tabled subgoals so that they
can be reused when a repeated call appears. In a nutshell, first calls to tabled
subgoals are considered generators and are evaluated as usual, using program
resolution, but their solutions are stored in a global data space, called the table
space. Repeated calls to tabled subgoals are considered consumers and are not
re-evaluated against the program clauses because they can potentially lead to
infinite loops, instead they are resolved by consuming the solutions already stored
for the corresponding generator. During this process, as further new solutions
are found, we need to ensure that they will be consumed by all the consumers,
as otherwise we may miss parts of the computation and not fully explore the
search space. To do that, linear tabling mechanisms maintain a single execution
tree where tabled subgoals are iteratively computed until reaching a fix-point.

A generator call C thus keeps trying its matching clauses until reaching a
fix-point. If no new solutions are found during one cycle of trying the matching
clauses, then we have reached a fix-point and we can say that C is completely
evaluated. However, if a number of subgoal calls is mutually dependent, thus
forming a Strongly Connected Component (SCC), then completion is more com-
plex and we can only complete the calls in a SCC together. SCCs are usually
represented by the leader call, i.e., the generator call which does not depend on
older generators. A leader call defines the next completion point, i.e., if no new
solutions are found during one cycle of trying the matching clauses for the leader
call, then we have reached a fix-point and we can say that all subgoal calls in
the SCC are completely evaluated.

3 Linear Tabling Strategies

The standard linear tabling mechanism uses a naive approach to evaluate tabled
logic programs. Every time a new solution is found during the last round of
evaluation, the complete search space for the current SCC is scheduled for re-
evaluation. However, some branches of the SCC can be avoided, since it is possi-
ble to know beforehand that they will only lead to repeated computations, hence
not finding any new solutions. Next, we present three different approaches for
optimizing standard linear tabled evaluation.

3.1 Dynamic Reordering of Execution

The first optimization, that we call Dynamic Reordering of Ezecution (DRE),
is based on the original SLDT strategy, as proposed by Zhou et al. [2]. The
key idea of the DRE strategy is to let repeated calls to tabled subgoals execute
from the backtracking clause of the former call. A first call to a tabled subgoal
is called a pioneer and repeated calls are called followers of the pioneer. When
backtracking to a pioneer or a follower, we use the same strategy, first we explore
the remaining clauses and only then we try to consume solutions. The fix-point
check operation is still only performed by pioneer calls.

206 INForuwMm 2010 Miguel Areias, Ricardo Rocha



3.2 Dynamic Reordering of Alternatives

The key idea of the Dynamic Reordering of Alternatives (DRA) strategy, as
originally proposed by Guo and Gupta [3], is to memorize the clauses (or al-
ternatives) leading to consumer calls, the looping alternatives, in such a way
that when scheduling an SCC for re-evaluation, instead of trying the full set of
matching clauses, we only try the looping alternatives. Initially, a generator call
C explores the matching clauses as in standard evaluation and, if a consumer
call is found, the current clause for C' is memorized as a looping alternative.
After exploring all the matching clauses, C' enters the looping state and from
this point on, it only tries the looping alternatives until reaching a fix-point.

3.3 Dynamic Reordering of Solutions

The last optimization, that we named Dynamic Reordering of Solutions (DRS),
is a new proposal that can be seen as a variant of the DRA strategy, but applied
to the consumption of solutions. The key idea of the DRS strategy is to memorize
the solutions leading to consumer calls, the looping solutions. When a non-leader
generator call C' consumes solutions to propagate them to the context of the
previous call, if a consumer call is found, the current solution for C' is memorized
as a looping solution. Later, if C is scheduled for re-evaluation, instead of trying
the full set of solutions, it only tries the looping solutions plus the new solutions
found during the current round. In each round, the new solutions leading to
consumer calls are added to the previous set of looping solutions.

4 Experimental Results

To the best of our knowledge, Yap is now the first tabling engine that integrates
and supports the combination of different linear tabling strategies. We have thus
the conditions to better understand the advantages and weaknesses of each strat-
egy when used solely or combined with the others. In what follows, we present
initial experiments comparing linear tabled evaluation with and without support
for the DRE, DRA and DRS strategies. To put the performance results in per-
spective, we used the well-known path/2 predicate, that computes the transitive
closure in a graph, combined with several different graph configurations.

Next, we show in Table 1 the execution time ratios of standard linear tabled
evaluation to DRE, DRA and DRS solely and combined strategies. Ratios higher
than 1.00 mean that the respective strategies have a positive impact on the exe-
cution time. The results obtained are the average of 5 runs for each configuration.

Globally, the results in Table 1 show that, for most of these experiments, DRE
evaluation has no significant impact in the execution time. On the other hand,
the results indicate that the DRA and DRS strategies are able to effectively
reduce the execution time for most of the experiments, when compared with
standard evaluation, and that by combining both strategies it is possible to
reduce even further the execution time of the evaluation. In most cases, this

Mixed-Strategies for Linear Tabling in Prolog INForumMm 2010 — 207



Table 1. Execution time ratios of standard to DRE, DRA and DRS strategies

Strategy Pyramid Cycle Grid

1000 2000 3000 1000 2000 3000 20 30 40
DRE 0.98 1.00 0.88 0.94 0.95 1.04 0.83 0.99 0.99
DRA 1.60 1.59 1.58 1.18 1.20 1.22 1.08 1.09 1.07
DRS 0.99 0.98 0.99 1.14 1.18 1.25 1.201.201.21
DRE+4+DRA 1.58 1.66 1.63 1.22 1.24 1.22 1.121.10 1.07
DRE+DRS 1.00 1.01 1.01 1.22 1.23 1.23 0.95 1.14 1.14
DRA+DRS 1.63 1.64 1.62 1.56 1.59 1.69 1.40 1.32 1.32

DRE+DRA+DRS 1.59 1.57 156 1.61 1.55 1.60 1.36 1.33 1.30

reduction is higher than the sum of the reductions obtained with each strategy
individually. This shows the potential of our framework and suggests that the
overhead associated with this combination is negligible. When DRE is present,
the results are, in general, worst than the results obtained with the DRA/DRS
strategies solely. A possible explanation for this behavior is the fact that, as DRE
has more space requirements, this leads to more expansions of the execution
stacks, which in turn can lead to higher ratios of cache and page misses. Still,
these results require further study and analysis.

5 Conclusions

We have presented a new strategy for linear tabled evaluation of logic programs,
named DRS, and a framework, on top of the Yap system, that integrates and
supports the combination of different linear tabling strategies. Our experiments
for DRS evaluation showed that, the strategy of avoiding the consumption of non-
looping solutions in re-evaluation rounds, can be quite effective for programs that
can benefit from it, with insignificant costs for the other programs. Preliminary
results for the combined framework were also very promising. In particular,
the combination of the DRA and DRS strategies showed the potential of our
framework to reduce even further the execution time of a linear tabled evaluation.

References

1. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43(1) (1996) 20-74

2. Zhou, N.F., Shen, Y.D., Yuan, L.Y., You, J.H.: Implementation of a Linear Tabling
Mechanism. In: Practical Aspects of Declarative Languages. Number 1753 in LNCS,
Springer-Verlag (2000) 109-123

3. Guo, H.F., Gupta, G.: A Simple Scheme for Implementing Tabled Logic Program-
ming Systems Based on Dynamic Reordering of Alternatives. In: International
Conference on Logic Programming. Number 2237 in LNCS, Springer-Verlag (2001)
181-196

208 INForuwMm 2010 Miguel Areias, Ricardo Rocha



