GammaPolarSlicer
A Contract-based Tool to help on Reuse

Sérgio Areias, Daniela da Cruz, Pedro Rangel Henriques, and Jorge Sousa Pinto

Departamento de Informética e CCTC
Universidade do Minho
Braga, Portugal

Abstract. In software development, it is often desirable to reuse existing soft-
ware components. This has been recognized since 1968, when Douglas Mcllroy
of Bell Laboratories proposed basing the software industry on reuse. Despite the
failures in practice, many efforts have been made to make this idea successful.
In this context, we address the problem of reusing annotated components as a
rigorous way of assuring the quality of the application under construction. We in-
troduce the concept of caller-based slicing as a way to certify that the integration
of an annotated component with a contract into a legacy system will preserve the
behavior of the former.

To complement the efforts done and the benefits of the slicing techniques, there
is also a need to find an efficient way to visualize the annotated components
and their slices. To take full profit of visualization, it is crucial to combine the
visualization of the control/data flow with the textual representation of source
code. To attain this objective, we extend the notion of System Dependence Graph
and slicing criterion.

1 Introduction

Reuse is a very simple and natural concept, however in practice it is not so easy. Ac-
cording to the literature, selection of reusable components has proven to be a difficult
task [1]. Sometimes this is due to the lack of maturity on supporting tools that should
easily find a component in a repository or library [2]. Also, non experienced developers
tend to reveal difficulties when describing the desired component in technical terms.
Most of the times, this happens because they are not sure of what they want to find [2,
3]. Another barrier is concerned with reasoning about component similarities in order
to select the one that best fits in the problem solution; usually this is an hard mental
process [1].

Integration of reusable components has also proven to be a difficult task, since the
process of understanding and adapting components is difficult, even for experienced
developers [1]. Another challenge to component reuse is to certify that the integration
of such component in a legacy system is correct. This is, to verify that the way the
component is invoked will not lead to an incorrect behavior.

A strong demand for formal methods that help programmers to develop correct
programs has been present in software engineering for some time now. The Design by
Contract (DbC) approach to software development [4] facilitates modular verification

INForum 2010 - IT Simpésio de Informaética, Luis S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 137-148

and certified code reuse. The contract for a component (a procedure) can be regarded
as a form of enriched software documentation that fully specifies the behavior of that
component. So, a well-defined annotation can give us most of the information needed
to integrate a reusable component in a new system, as it contains crucial information
about some constraints safely obtaining the correct behavior from the component.

In this context, we say that the annotations can be used to verify the validity of every
component’s invocation; in that way, we can guarantee that a correct system will still be
correct after the integration of that component. This is the motivation for our research:
to find a way to help on the safety reuse of components.

This article introduces GamaPolarSlicer, a tool that we are currently developing to
identify when an invocation is violating the component annotation, and display, when-
ever possible, a diagnostic or guidelines to correct it. For such a purpose, the tool im-
plements the caller-based slicing algorithm, that takes into account the calls of an an-
notated component to certify that it is being correctly used.

The remainder of this paper is structured into 5 sections. Section 2 is devoted to
basic concepts. In this section the theoretical foundation for GamaPolarSlicer is settle
down; the notions of caller-based slicing and annotated system dependence graph are
defined. Section 3 gives a general overview of GamaPolarSlicer, introducing its ar-
chitecture; each block on the diagram will be explained. Sub-section 3.1 complements
the architecture discussing the decisions taken to implement the tool and presenting
the interface underdevelopment. Section 4, also a central one, illustrates the main idea
through a concrete example. As to our knowledge we do not known any tool similar
to GamaPolarSlicer, in Section 5 we discuss related work concerned with the use of
slicing technique for annotated programs. Then the paper is closed in Section 6.

2 Basic Concepts

We consider that each procedure consists of a body of code, annotated with a precon-
dition and a postcondition that form the procedure specification, or contract. The body
may additionally be annotated with loop invariants. Occurrences of variables in the pre-
condition and postcondition of a procedure refer to their values in the pre-state and
post-state of execution of the procedure respectively.

2.1 Caller-based slicing

In this section, we briefly introduce our slicing algorithm.

Definition 1 (Annotated Slicing Criterion) An annotated slicing criterion of a pro-
gram P consists of a triple Cy, = (a, S;, Vs), where a € {«,d} is an annotation of
P, (the annotated callee), S; correspond to the statement of P calling P, and Vy is a
subset of the variables in P (the caller), that are the actual parameters used in the call
and constrained by « or 4.

Definition 2 (Caller-based slicing) A caller-based slice of a program P on an anno-
tated slicing criterion C, = («, cally, Vy) is any subprogram P’ that is obtained from
‘P by deleting zero or more statements in a two-pass algorithm:

138

INForumM 2010 Sérgio Areias, Daniela Cruz, P. R. Henriques, J. S. Pinto

1. a first step to execute a backward slicing with the traditional slicing criterion
C = (cally, Vi) retrieved from C, — call; corresponds to the call statement under
consideration, and Vs corresponds to the set of variables present in the invocation
cally and intervening in the precondition formula (o) of f

2. a second step to check if the statements preceding the cally statement will lead to
the precondition satisfaction of the callee;

For the second step in the two-pass algorithm, in order to check which statements
are respecting or violating the precondition we are using abstract interpretation, in par-
ticular symbolic execution.

According to the original idea of James King in [5], symbolic execution can be
described as “instead of supplying the normal inputs to a program (e.g. numbers) one
supplies symbols representing arbitrary values. The execution proceeds as in a normal
execution except that values may be symbolic formulas over the input symbols.”

Using symbolic execution we will be able to propagate the precondition of the
function being called through the statements preceding the call statement. In particu-
lar, to integrate symbolic execution with our system, we are thinking in use JavaP-
athFinder [6]. JavaPathFinder is a tool than can perform program execution with
symbolic values. Moreover, JavaPathFinder can mix concrete and symbolic execu-
tion, or switch between them. JavaPathFinder has been used for finding counterexam-
ples to safety properties and for test input generation.

The main goal of our caller-based slicing algorithm is to ease the use of annotated
components by discovering statements that are critical for the satisfaction of the pre-
condition or postcondition (i.e, that do not verify it, or whose value can lead to the
non-satisfaction) before or after calling an annotated procedure (a tracing call analysis
of annotated procedures). In the work reported here, we just deal with preconditions
and statements before the call.

2.2 Annotated System Dependence Graph (SDGa)

In this section we present the definition of Annotated System Dependence Graph, SDG,,
for short, that is the internal representation that supports our slicing-based code analysis
approach. We start with some preliminary definitions.

Definition 3 (Procedure Dependence Graph) Given a procedure P, a Procedure De-
pendence Graph, PDG, is a graph whose vertices are the individual statements and
predicates (used in the control statements) that constitute the body of ‘P, and the edges
represent control and data dependencies among the vertices.

In the construction of the PDG, a special node, considered as a predicate, is added
to the vertex set: it is called the entry node and is decorated with the procedure name.

A control dependence edge goes from a predicate node to a statement node if that
predicate affects the execution of the statement. A data dependence edge goes from an
assignment statement node to another node if the variable assigned at the source node
is used (is referred to) in the target node.

Additionally to the natural vertices defined above, some extra assignment nodes
are included in the PDG linked by control edges to the entry node: we include an

GammaPolarSlicer INForuM 2010 — 139

assignment node for each formal input parameter, another one for each formal output
parameter, and another one for each returned value — these nodes are connected to all
the other by data edges as stated above. Moreover, we proceed in a similar way for each
call node; in that case we add assignment nodes, linked by control edges to the call
node, for each actual input/output parameter (representing the value passing process
associated with a procedure call) and also a node to receive the returned values.

Definition 4 (System Dependence Graph) A System Dependence Graph, SDG, is a
collection of Procedure Dependence Graphs, PDGs, (one for the main program, and
one for each component procedure) connected together by two kind of edges: control-
flow edges that represent the dependence between the caller and the callee (an edge
goes from the call statement into the entry node of the called procedure); and data-
flow edges that represent parameter passing and return values, connecting actual;y, ot
parameter assignment nodes with formaly, o, parameter assignment nodes.

Definition 5 (Annotated System Dependence Graph) An Annotated System Depen-
dence Graph, SDG,, is a SDG in which some nodes of its constituent PDGs are anno-
tated nodes.

Definition 6 (Annotated Node) Given a PDG for an annotated procedure P, an An-
notated Node is a pair < S;, a > where S; is a statement or predicate (control statement
or entry node) in P,, and a is its annotation: a pre-condition o, a post-condition w, or
an invariant 6.

The differences between a traditional SDG and a SDG,, are:

— Each procedure dependence graph (PDG) is decorated with a precondition as well
as with a postcondition in the entry node;

— The while nodes are also decorated with the loop invariant (or true, in case of in-
variant absence);

— The call nodes include the pre- and postcondition of the procedure to be called (or
true, in case of absence); these annotations are retrieved from the respective PDG
and instantiated as explained below;

We can take advantage from the call linkage dictionary present in the SDG,, (inher-
ited from the underlying SDG) — the mapping between the variables present in the call
statement (the actual parameters) and the formal parameters of the procedure — to as-
sociate the variables used in the calling statement with the formal parameters involved
in the annotations.

3 GamaPolarSlicer — Architecture and Implementation

As referred previously, our goal is to ease the process of incorporating an annotated
component into an existent system. This integration should be smooth, in the sense of
that it should not turn a correct system into an incorrect one.

To assure this, there is the need to verify a set of conditions with respect to the
annotated component and its usage:

140 INForum 2010 Sérgio Areias, Daniela Cruz, P. R. Henriques, J. S. Pinto

— Verify its correctness with the respect to its contract (using a traditional Verification
Condition Generator, already incorporated in GamaSlicer [7], available at ht tp:
//gamaepl.di.uminho.pt/gamaslicer);

— Given a concrete call to the reusable component, verify if the concrete calling con-

text preserves the precondition;

— Given a concrete call and the postcondition of the component, verify if it is properly
used in the concrete context after the call;
— Given areusable component and a set of calling points, specify the component body
according to the concrete calling needs.

The chosen architecture to achieve the second condition was based on the classical
structure of a language processor. Figure 1 shows the defined GamaPolarSlicer archi-
tecture. Notice that the third and fourth conditions will be addressed by future projects.

‘ Source Code

i - Annotated
Invocations /
Repository e : Components
Lexical, Syntactic Repasitory
and Semantic
< :)
~ i Analysis -
Vd ~ |) .\.
Annotated - 4
System .
Dependency Code | Analysis T
Graph
(SDGa)

4 Contract-based | 4
;ﬁ\ Slicing) I |

‘ Contract Verifier

v

‘ Output Report

J

Pra—

Fig. 1. GammaPolarSlicer Architecture

I
I
|
I
I
|
I
I
|
I
I
|
I
I
|
I
:
I
Table |
i
I
I
|
I
I
|
I
I
|
I
I
|
I
I
|
I
I

GammaPolarSlicer

INForuM 2010 — 141

Source Code is the input to analyze.

Lexical Analysis, Syntactic Analysis, Syntactic Analysis: the Lexical layer converts
the input into symbols that will be later used in the identifiers table. The Syntactic
layer uses the result of the Lexical layer above and analyzes it to identify the syn-
tactic structure of it. The Semantic layer adds the semantic information to the result
from the Syntactic layer. It is in this layer that the identifier table is built.

Invocations Repository is where all invocations found on the input are stored in order
to be used later as support to the slicing process.

Annotated Components Repository is where all components with a formal specifi-
cation (precondition and post condition at least) are stored. It is used in the slicing
process only to filter the invocations (from the invocation repository) without any
annotation. Has an important role when verifying if the invocation respects compo-
nent’s contract.

Identifiers Table has an important role on this type of programs as always. All sym-
bols and associated semantic found during the analysis phase are stored here. It will
be one of the backbones of all structures supporting the auxiliary calculations.

Annotated System Dependence Graph is the intermediate structure chosen to apply
the slicing.

Caller-based Slicing uses both invocations repository and annotated components repos-
itory to extract the parameters to execute the slicing for each invoked annotated
component. The resulting slice is a SDG,, this a subgraph of the original SDG,,.

Contract Verification using the slice that resulted from the layer above, and using the
component contract, this layer analyzes every node on the slice and verifies in all
of them if there are guarantees that every annotation in the contract is respected.

Output Report presents a view of all violations found during the whole process to the
user. In a later stage of this project, exists the possibility of also present suggestions
to solve them.

3.1 Implementation

To address all the ideas, approaches and techniques presented in this paper, it was nec-
essary to choose the most suitable technologies and environments to support the devel-
opment.

To address the design-by-contract approach we decide to use the Java Modeling
Language (JML) !. JML is a formal behavior interface specification language, based on
design-by-contract paradigm, that allows code annotations in Java programs [8]. JML is
quite useful as it allows to describe how the code should behave when running it. Also
it allows the specification of the syntactic interface [8]. Preconditions, postconditions
and invariants are examples of formal specifications that JML provides.

As the goal of the tool is not to create a development environment but to support
one, our first thought was to implement it as an Eclipse ? plugin. The major reasons that
led to this decision were:

! http://www.cs.ucf.edu/ leavens/TML/
2 http://www.eclipse.org/

142 INForum 2010 Sérgio Areias, Daniela Cruz, P. R. Henriques, J. S. Pinto

— the large community and support. Eclipse is one of the most popular frameworks
to develop Java applications and thus a perfect tool to test our goal;

— the fact that it includes a great environment to develop new plugins. The Plugin
Development Environment (PDE) 3 that allows a faster and intuitive way to develop
Eclipse plugins;

— the built-in support for JML, freeing us from checking the validity of such annota-
tions.

However, the parser generated for Java/JML grammar exceeded the limit of bytes
allowed to a Java class (65535 bytes). Thus, this limitation led us to abandon the idea
of the Eclipse plugin and implement GamaPolarSlicer using Windows Forms and C#
(using the .NET framework).

Figure 2 shows the current interface of GamaPolarSlicer.

GammaPolar [ET]
Fle Edk View Generate Help
=3 e package linkedegueue:
@ Linkedhode java
~{& Linkedueus.java public class LinkedNode
& LinkedQueueDiiver java ¢
public Object value:
public LinkedNode next;
/*E hehavior
B ensures true;
@/
public LinkedNode ()
i
:
#*R@ behavior
B assignable value:
) ensures values == x;
g=/
public LinkedNode (Object x)
i
value = x;
:
#*R@ behavior
[assignable value, next:
) ensures value == x ££ next == n;
g=/
public LinkedNode (Object x, LinkedNode n)
i
value = x;
next = n:
¥
i
< >

Fig. 2. Interface of GamaPolarSlicer prototype

4 An illustrative example

To illustrate what we intended to achieve, please consider the Example 1 listed below
that computes the maximum difference among student ages in a class. This component

3 http://www.eclipse.org/pde/

GammaPolarSlicer INForuM 2010 — 143

reuses other two: the annotated component Min, defined in Example 2, that returns the
lowest of two positive integers; and Max, defined in Example 3, that returns the greatest
positive integer.

Example 1 DiffAge
1: public int DiffAge() {

2: int min = System.Int32.Max Value;
3: int max = System.Int32.MinValue;
4: int diff;
5:
6: System.out.print("Number of elements: ”);
7: int num = System.in.read();
8: int[] a = new int[num];
9: for(int i=0; ijnum; i++) {
10: a[i] = System.in.read();
11: }
12:
13: for(int i=0; ija.Length; i++) {
14: max = Max(a[i],max);
15: min = Min(a[i],min);
16: }
17:
18: diff = max - min;
19: System.out.println("The gap between max and min age is ” + diff);
20: return diff;
21: }
Example 2 Min

/ * Qrequires z > 0 && y > 0
@ ensures (x > y)? \result == z : \result ==y
Qx /

1: public int Min(int x, int y) {
2: intres;

3:res=x —y;

4: return ((res < 0)?x:y);
5

t}

Let us consider that we want to analyze the Min invocation present in the Di f fAge
component.

Our slicing criterion will be: C,, = (z > 0&&y > 0, Min, {a[i], min})

In the second step, a backward slicing process is performed taking into account
the variables present in V. Then, using the obtained slices, the detection of contract

144 INForum 2010 Sérgio Areias, Daniela Cruz, P. R. Henriques, J. S. Pinto

Example 3 Max

/ *Qrequiresz > 0&& y >0

@ ensures (z > y)? \result ==y : \result ==z
Qx /

1: public int Max(int x, int y) {
2: int res;

3:res=x—y;

4: return ((res > 0)?x:y);
5

S}

violations starts. For that, the precondition is back propagate (using symbolic execution)
along the slice to verify if it is preserved after each statement. Observing the slice for the
variable a [1], listed in the example 4 below, it can not be guaranteed that all integer
elements are greater than zero; so a potential precondition violation is detected.

Example 4 Backward Slicing for a[i]

int[] a = new int[num];
for(int i=0; i<num; i++) {

a[i] = System.in.read ();
}

for(int i=0; i<a.Length; i++) {
max Max(a[i],max);
min Min(a[i],min);

The third step consists in the notification of all the contract violations detected. In
the example above, the user will receive a warning alerting to the possible invocation
of Min with negative numbers (what does not respect the precondition).

In order to help to visualize which contracts and statements are being violated, we
display the SDG, with such entities colored in red. Figure 3 shows a fragment of the
SDG, for the example above.

5 Related Work

In this section we review the published work on the area of slicing annotated programs,
as those contributions actually motivate the present proposal.

In [9], Comuzzi et al present a variant of program slicing called p-slice or predi-
cate slice, using Dijkstra’s weakest preconditions (Wp) to determine which statements
will affect a specific predicate. Slicing rules for assignment, conditional, and repetition
statements were developed. They presented also an algorithm to compute the minimum
slice.

GammaPolarSlicer INForuM 2010 — 145

p—

=]

Juspuadapmojeeg <~

U3pUSGIPIONUO) <

i
$31=IN0 SaU

ulA Anug

a8vyia Anug

Fig. 3. Example of an Annotated System Dependence Graph

Sérgio Areias, Daniela Cruz, P. R. Henriques, J. S. Pinto

146 INForum 2010

In [10], Chung et al present a slicing technique that takes the specification into
account. They argue that the information present in the specification helps to produce
more precise slices by removing statements that are not relevant to the specification for
the slice. Their technique is based on the weakest pre-condition (the same present in p-
slice) and strongest post-condition — they present algorithms for both slicing strategies,
backward and forward.

Comuzzi et al [9], and Chung et al [10], provide algorithms for code analysis en-
abling to identify suspicious commands (commands that do not contribute to the post-
condition validity).

In [11], Harman et al propose a generalization of conditioned slicing called pre/-
post conditioned slicing. The basic idea is to use the pre-condition and the negation of
the post-condition in the conditioned slicing, combining both forward and backward
conditioning. This type of program slicing is based on the following rule: “Statements
are removed if they cannot lead to the satisfaction of the negation of the post condition,
when executed in an initial state which satisfies the pre-condition”. In case of a pro-
gram which correctly implements the pre- and post-condition, all statements from the
program will be removed. Otherwise, those statements that do not respect the conditions
are left, corresponding to statements that potentially break the conditions (are either in-
correct or which are innocent but cannot be detected to be so by slicing). The result of
this work can be applied as a correctness verification for the annotated procedure.

6 Conclusion

As can be seen in section 4, the motivation for our research is to apply slicing, a well
known technique in the area of source code analysis, to create a tool that aids program-
mers to build safety programs reusing annotated procedures.

The tool under construction, GamaPolarSlicer, was described in Section 3. Its
architecture relies upon the traditional compiler structure; on one hand, this enables
the automatic generation of the tool core blocks, from the language attribute gram-
mar; on the other hand, it follows an approach in which our research team has a large
knowhow (apart from many DSL compilers, we developed a lot of Program Com-
prehension tools: Alma, Alma2, WebAppViewer, BORS, and SVS). The new and
complementary blocks of GamaPolarSlicer implement slice and graph-traversal algo-
rithms that have a sound basis, as described in Section 2; this allows us to be confident
in there straight-forward implementation.

GamaPolarSlicer will be included in Gama project (for more details see http:
//gamaepl.di.uminho.pt/gama/index.html). This project aims at mixing
specification-based slicing algorithms with program verification algorithms to analyze
annotated programs developed under Contract-base Design approach. GamaSlicer
is the first tool built under this project for intra-procedural analysis that is available at
http://gamaepl.di.uminho.pt/gamaslicer/.

Although reuse was not the topic of the paper (just some considerations were drawn
in the Introduction), reuse is the main motivation for GamaPolarSlicer development.
We are preparing an experiment to assess the validity of our proposal and the usefulness
of the tool.

GammaPolarSlicer INForuM 2010 — 147

References

W

10.

11.

. Maiden, N.A.M., Sutcliffe, A.G.: People-oriented software reuse: the very thought. In: Ad-

vances in Software Reuse - Second International Workshop on Software Reusability, IEEE
Computer Society Press (1993) 176-185

. Sherif, K., Vinze, A.: Barriers to adoption of software reuse a qualitative study. Inf. Manage.

41(2) (2003) 159-175

. Shiva, S.G., Shala, L.A.: Software reuse: Research and practice. In: ITNG, IEEE Computer

Society (2007) 603—-609

. Meyer, B.: Applying “’design by contract”. Computer 25(10) (1992) 40-51
. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7) (1976) 385-394
. Anand, S., Pasareanu, C.S., Visser, W.: Jpf-se: a symbolic execution extension to java

pathfinder. In: TACAS’07: Proceedings of the 13th international conference on Tools and
algorithms for the construction and analysis of systems, Berlin, Heidelberg, Springer-Verlag
(2007) 134-138

. da Cruz, D., Henriques, PR., Pinto, J.S.: Gamaslicer: an online laboratory for program

verification and analysis. In: Proceedings of the 10th Workshop on Language Descriptions
Tools and Applications (LDTA’10). (2010)

. Leavens, G.T., Cheon, Y.: Design by contract with jml (2004)
. Comuzzi, J.J., Hart, J.M.: Program slicing using weakest preconditions. In: FME ’96: Pro-

ceedings of the Third International Symposium of Formal Methods Europe on Industrial
Benefit and Advances in Formal Methods, London, UK, Springer-Verlag (1996) 557-575
Chung, 1.S., Lee, WK., Yoon, G.S., Kwon, Y.R.: Program slicing based on specification. In:
SAC ’01: Proceedings of the 2001 ACM symposium on Applied computing, New York, NY,
USA, ACM (2001) 605-609

Harman, M., Hierons, R., Fox, C., Danicic, S., Howroyd, J.: Pre/post conditioned slicing.
icsm 00 (2001) 138

148

INForumM 2010 Sérgio Areias, Daniela Cruz, P. R. Henriques, J. S. Pinto

