
Realizing Bidirectional Transformations in
Attribute Grammars

João Saraiva1 and Eric Van Wyk2

1 University of Minho, Braga, Portugal
2 University of Minnesota, Minneapolis, Minnesota, USA

Abstract. This position paper considers the possibility of implement-
ing bidirectional transformations in modern attribute grammar systems.
Such systems support features such as higher-order attributes, reference
attributes, and forwarding of attribute queries. In the 1980’s Yellin con-
sidered bidirectional transformations in attribute grammars lacking these
features. But these features may open the door to automatically gener-
ating more expressive and powerful bidirectional transformations; this
paper discusses the prospects of doing so.

1 Introduction

Interest in bidirectional transformations has increased in the past few years and
has been studied in a number of computing disciplines [2]. In the bidirectional
transformation literature the function that maps the source to the target, also
called the view, is called the forward or “get” transformation. The function
mapping the target back to the source is called the backward or “put” trans-
formation. Of special interest is computing the put transformation after some
modification of the target; this is illustrated in Figure 1.

The most interesting bidirectional trans-

source

source ′

view

view ′)

-
forward

transformation

�
backward

transformation

?

Fig. 1. Bidirectional Transfor-
mations

formations are those in which the source lan-
guage is the richer of the two languages. Con-
sider, for example, transformations between
the concrete (source) and abstract (target)
context free grammars of arithmetic expres-
sions. The source language is the concrete
syntax; the additional richness of the source
(realized as more nonterminals and produc-
tions than in the target) is used to express
the precedence and association of the infix
binary operators. In many cases, a related
collection of concrete nonterminals map to a single nonterminal in the abstract
syntax. It is also often the case that several distinct source language constructs
map to the same construct in the target. In the arithmetic expression example
we may treat the unary negation of an expression e in the source as syntactic
sugar for 0 − e in the target. Thus the source concrete subtraction and unary
negation both map to subtraction in the target abstract syntax.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 213–216



As another example consider transformations between HTML tables and an
ASCII representation of them. In this case we may like to translate tables to
text to allow easier editing by users not familiar with HTML and then translate
back to HTML. Additional richness in the source language HTML should not be
lost after the translation to text and back to HTML. Thus, it is often necessary
to include the original source program as input to the put transformation. The
idea being that a source phrase is mapped to the target, modified in some way,
and then mapped back to the source. By including the original source phrase as
input to the put transformation a more accurate or realistic source phrase can
be computed from the modified target.

In the late 1980’s Yellin [8] showed how attribute grammars can specify bidi-
rectional transformations. His reverse-inverse form grammars were such that the
put transformation could be automatically generated from the get transforma-
tion, specified as attribute definitions. Yellin’s approach was proposed before
higher order attribute grammars and other modern attribute grammar features
were introduced. Thus his get and put attributes compute phrases as strings
of symbols instead of well-typed syntax trees and assumes that only the ter-
minal symbols of the target language are known. Furthermore, the generated
put transformation does not take as input the original source phrase.

This raises some interesting questions. What if higher-order attributes [7]
could be used? What if the nonterminals and productions of the target language
are known and used in the definition of the get transformation? Furthermore,
what if in computing the put transformation some information about the source
construct is known? For example, is it beneficial to know the source language
non-terminal type a target phrase needs to translate back to, or what produc-
tion in the source language should be used to construct the translation back in
the source? Also how can the actual source tree be taken into account by the
generated put transformation to compute more appropriate translations back to
the source? More questions can be raised for bidirectional transformations when
additional modern attribute grammars are considered. For example, what bene-
fit do remote [1] and reference [3] attributes provide? What about collection [1]
attributes, forwarding [6], and generics [4]? With such features, how can the
source be effectively used in computing the put transformation?

2 Bi-directional Transformations in Attribute Grammars

To get some idea how answers to these questions might play out consider Fig-
ure 2. On the left is the concrete syntax tree for the expression −2 + 3 ∗ 4
and on the right is the corresponding abstract syntax tree, generated by the
get transformation. This transformation is implemented by a collection of higher-
order attributes [7] that decorate the source (concrete) nonterminals. These trees
correspond to the grammars in Figure 3; nonterminals and productions in the
concrete grammar are sub-scripted by “c” to distinguish them from their coun-
terparts in the abstract grammar. Interior nodes of the trees are labelled by the
productions that define them. The dashed edges from the abstract to the con-

214 INForum 2010 João Saraiva, Eric van Wyk



Fig. 2. Concrete and abstract syntax trees, with links back to the source, for −2+3∗4.

addc : Ec ::= Ec ‘ +′ Tc

subc : Ec ::= Ec ‘−′ Tc

etc : Ec ::= Tc

mulc : Tc ::= Tc ‘ ∗′ Fc

tfc : Tc ::= Fc

intc : Fc ::= IntLitt
nstc : Fc ::= ‘(′ Ec ‘)′

negc : Fc ::= ‘−′ Fc

add : E ::= E E
sub : E ::= E E
mul : E ::= E E
int : E ::= IntLitt

Fig. 3. Concrete grammar (first two columns) and abstract (third column) grammar.

crete tree are used to provide access to the original concrete (source) tree to be
used by the abstract (target) tree to compute the put transformation. These can
be realized in attribute grammars as reference [3] or remote [1] attributes. These
are effectively pointers to remote nodes in the tree, or in this case, another tree.

We need some mechanism to ensure that the these links are not lost when
subtrees are moved or otherwise modified by transformations or optimizations
that are performed on the target tree. Such transformations are represented by
the downward arrow in Figure 1. One way to accomplish this is to use forward-
ing [6] and create what amounts to new “wrapper” productions for each original
abstract production; this new production takes an extra argument - the refer-
ence attribute pointing back to the original source tree. These are “primed” in
Figure 2 to distinguish them from the original abstract productions. Attributes
defining the get transformation can be automatically modified to use these new
productions. To compute the put transformation of the abstract tree created by
the sub′ production, we examine the link to the source and determine if this sub′

tree was created by negc or subc .
Consider the rather contrived transformation that switches the order of the

two expressions under add - a semantically safe transformation given the com-
mutativity of addition. Processes that create the modified tree would use the
original add production since there would not be an appropriate link back to
any source tree that created it. Thus, the new tree node created by the original
add production would not have a link back to the source, but, for example, its
second child (rooted at sub) would maintain its link back to the source.

The point here is that modern attribute grammars contain features that can
quite naturally be used to specify bidirectional transformations.

Realizing Bidirectional Transformations ... INForum 2010 – 215



We would like to automatically generate the put transformation from the
specification of the get transformation. This has the disadvantage of restricting
the specification of the get transformation to fall into the class for which a
put transformation can be generated, but it has the advantage over hand-written
put transformations in that we can generate put transformations that are more
complex and sophisticated than one would want to write by hand. For example,
in the expression example multiple concrete constructs (Ec, Tc, and Fc) all map
to the same abstract construct (E). If we create a put attribute on E for each
target type, say putEc

, putTc
, and putFc

we can generate a more realistic mapping
back to the target in which we do not need to unnecessarily wrap all expressions
in parenthesis (the nstc production) but can do so only when it is required.

3 Conclusion

Yellin’s work [8] scratched the surface of what is possible in implementing bidirec-
tional transformations in attribute grammars. With the development of modern
attribute grammar features new opportunities are opening for easily implement-
ing expressive transformations between source and target languages. Silver [5]
is an extensible attribute grammar system supporting these modern features
in which we intend to develop new notations for specifying bidirectional trans-
formations. There are also additional areas of application, specifically in model
driven engineering in which transformations between models and programs are
common. New mechanisms for implementing bidirectional transformations and
new opportunities for their application provide what we believe is a promising
vein of research that we are beginning to explore.

References

1. J. T. Boyland. Remote attribute grammars. J. ACM, 52(4):627–687, 2005.
2. K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. F. Terwilliger.

Bidirectional transformations: A cross-discipline perspective. In ICMT ’09: Proc.
of the 2nd Intl. Conf. on Theory and Practice of Model Transformations, volume
5563 of LNCS, pages 260–283. Springer-Verlag, 2009.

3. G. Hedin. Reference attribute grammars. Informatica, 24(3):301–317, 2000.
4. J. Saraiva and D. Swierstra. Generic Attribute Grammars. In 2nd Workshop on

Attribute Grammars and their Applications, pages 185–204, 1999.
5. E. Van Wyk, D. Bodin, J. Gao, and L. Krishnan. Silver: an extensible attribute

grammar system. Science of Computer Programming, 75(1–2):39–54, January 2010.
6. E. Van Wyk, O. de Moor, K. Backhouse, and P. Kwiatkowski. Forwarding in at-

tribute grammars for modular language design. In Proc. Intl. Conf. on Compiler
Construction, volume 2304 of LNCS, pages 128–142. Springer-Verlag, 2002.

7. H. Vogt, D. Swierstra, and M. Kuiper. Higher order attribute grammars. In
ACM SIGPLAN ’89 Conf. on Programming Language Design and Implementation
(PLDI), pages 131–145. ACM, July 1989.

8. D. M. Yellin. Attribute Grammar Inversion and Source-to-source Translation. Num-
ber 302 in LNCS. Springer-Verlag, 1988.

216 INForum 2010 João Saraiva, Eric van Wyk


