
Scalable and Efficient Discovery of Resources,
Applications, and Services in P2P Grids?

Raoul Felix, Paulo Ferreira, and Lúıs Veiga

INESC ID /IST
Rua Alves Redol 9

Portugal

Abstract. Distributed computing enables us to harness all the resources
and computing power of the millions of computers connected to the Inter-
net. Therefore, this work describes the ongoing effort to create an efficient
and scalable resource discovery mechanism, capable of searching not only
for physical resources (e.g. CPU, Memory, etc.), but also services (e.g.
facial recognition, high-resolution rendering, etc.) and applications (e.g.
ffmpeg video encoder, programming language compilers, etc.) from com-
puters connected to the same Peer-to-Peer Grid network. This is done in
a novel way by combining all resource information into Attenuated Bloom
Filters, which also allows us to efficiently route messages in a completely
decentralized unstructured P2P network (no super-peers). The research
shows that previous P2P, Grid, and Cycle Sharing systems tackled this
problem by focusing on each resource type in isolation, such as (physi-
cal) resource discovery and service discovery. Methods to minimize stor-
age and transmission costs were also researched. The current discovery
mechanism’s implementation only functions for static resources and was
evaluated along side the Random Walk discovery method for comparison.
The results were favorable over Random Walk, having higher query suc-
cess rates with less hops while requiring a moderate increase in message
size and storage space at each node (for routing information).

1 Introduction

There are millions of computers connected to the Internet1 with more and
more going online each day due to laptops, netbooks, PDAs, and smartphones.
With so many devices connected to the same network, distributed computing
on such a large scale cannot be ignored. As such, resource sharing has become
immensely popular and has led to the development of Grid and Peer-to-Peer
(P2P) infrastructures dedicated to that purpose. These infrastructures ease the
sharing of various types of resources, that range from simple files, to software
offering different services, and even hardware like CPUs and Printers.

The most popular form of resource sharing across the Internet is File Sharing
via Peer-to-Peer applications, occupying roughly 50%-90% of all Internet traffic.2

A lot of work has been done in this area to create robust and scalable systems,
capable of efficiently supporting a large number of users in a decentralized man-
ner. P2P Infrastructures can be divided between those that do not perform any
node organization (Unstructured systems), such as Gnutella [1] and Freenet [2];
and those that structure their nodes to improve message routing (Structured
systems), such as Chord [3], CAN [4], and Pastry [5].

? This work was supported by FCT (INESC-ID multiannual funding) through the
PIDDAC Program funds. Raoul Felix and this work were supported by FCT research
project GINGER - PTDC/EIA/73240/2006

1 http://www.internetworldstats.com
2 http://torrentfreak.com/bittorrent-dominates-internet-traffic-070901

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 267–278



Grid and Cycle Sharing systems are similar in nature, as their objective is to
perform large-scale parallel computations in scientific and commercial commu-
nities. While Grid systems harness the power of many interconnected networks
of computers, which are usually centrally or hierarchically managed by the insti-
tutions that run them; Cycle Sharing systems take advantage of the many idle
computers and game consoles already connected to the Internet, volunteered by
home users.

Even though Peer-to-Peer and Grid systems are different, the literature [6–
9] says that they will eventually converge. In this fashion, GINGER3 [10], or
simply GiGi, is a P2P Grid infrastructure that fuses three approaches (grid
infrastructures, distributed cycle sharing, and decentralized P2P architectures)
into one. GiGi’s objective is to bring a Grid processing infrastructure to home
users, i.e. a “grid-for-the-masses” (e.g. achieve faster video compression, face
recognition in pictures/movies, high-res rendering, molecular modeling, chemical
reaction simulation, etc.).

The common theme between these different systems is that users have a task
that they want to accomplish: share files in P2P file sharing systems; perform
scientific calculations in Grids; or perform CPU intensive tasks over a massive
amount of idle home user computers in Cycle Sharing systems. Tasks require
discoverable resources that satisfy certain requirements that can range from
almost no requirements (file sharing), to simple requirements (idle CPU), to
complex requirements (free CPU with X much RAM, with at least Y much
storage space, and with application Z installed). This is where the work described
in this paper comes in, where the objective is to create an effective, efficient, and
scalable discovery protocol of resources, applications, and services for inclusion
in the GINGER project.

The rest of this work is structured as follows. In Section 2 we discuss similar
systems that also provide service or resource discovery. Section 3 describes the
architecture of SERD4, while in Section 5 we show some relevant performance
results. Section 6 concludes this paper offering final remarks.

2 Related Work
This section can be divided into three main areas: i) efficient data representa-

tion where reducing the size of data storage and transmission is the objective,
ii) resource discovery which only deals with the discovery of physical (e.g. CPU,
RAM, etc.) or virtual (e.g. files) resources, and iii) service discovery where the
main concern is discovering the services (e.g. facial recognition, high-resolution
rendering, applications, etc.) provided by computers in a network.

2.1 Efficient Data Representation
Efficient Data Representation is important in this work because nodes have to

store and transmit resource information about themselves and neighbors. Com-
pression reduces the size of highly redundant information via a dictionary based
(LZW [11]) or statistic based (Huffman coding [12]) encoding process. RSync [13]
and the Low-Bandwidth File System [14] use Chunks and Hashing to divide
data into chunks, calculating the hash of each chunk, and only transmitting those
that have changed between versions of the same file. Erasure codes take an-
other approach, and encode a message into a few symbols which can then be used
to reconstruct a partially received message. Reperasure [15] uses this technique

3 Grid Infrastructure for Non-Grid EnviRonments
4 Scalable and Efficient Resource Discovery

268 INForum 2010 Raoul Felix, Paulo Ferreira, Lúıs Veiga



to provide data replication without storing full-replicas. The three techniques,
although important, are not directly applicable in this work. The reduced mes-
sage size cancels the need to compress messages or divide them into chunks. We
also do not need to perform any forward error correction nor replicate data.

The final and most useful technique is a space-efficient probabilistic data struc-
ture called Bloom Filters, which efficiently test whether an element is a member
in a set with the possibility of a false-positive occurring. A set S = {x1, x2, ..., xn}
of n elements is stored in an array of m bits all initially set to 0. It must also use
k different hash functions, each of which maps some element to one position in
the m bit array. Because Bloom filters are implemented as bit arrays, the union
of two sets can be computed by performing the OR operation between the two,
while their approximate intersections can be computed using the AND operation.
Insertion is performed by passing the element through each of the k different
hash functions and setting the resulting position in the m bit array to one. To
test whether an element is in the set or not, it has to be passed through all hash
functions and if all the resulting positions in the array are set to one, then the
element has a high probability of being in the set. If any position has the value
zero, then we know for definite that it is not in the set (no false negatives). The
small false positive rate arises from the fact that when querying for an element
that is not in the set, some hash functions may result in positions that were
already used (have the value one) for a previously inserted item. Therefore, the
more elements are inserted into the Bloom filter, the higher the chance of a query
resulting in a false positive. Another shortcoming is the inability to remove an
element from the Bloom filter, as simply setting the positions given by the k
hash functions to zero have the side effect of removing other elements as well.

Bloom Filter variations exist to either extend their functionality or address
some limitation. Counting Bloom Filters [16] allow both insertion and re-
moval of elements by using an array of counters, instead of bits. In [17], Mitzen-
macher shows that Compressed Bloom Filters can either occupy the same
space but have a lower false-positive rate, or reduce their size and maintain their
false-positive rate. Almeida et al. [18] created a Scalable Bloom Filter that
dynamically grows in order to support the desired false-positive rate.

Finally, Attenuated Bloom filters were proposed in [19] to optimize search
performance w.r.t. locality of objects. It uses an array of Bloom filters with
depth d, where each row i, for 1 ≤ i ≤ d, corresponds to the information stored
at nodes i hops away. As the depth increases, more information will be stored in
that Bloom filter row, making the respective filter more attenuated and resulting
in a higher probability of false positives. Therefore, information closest to the
node is more accurate, and less so the further away. The major advantage of this
technique is that it permits us to efficiently locate objects up to d hops away,
using as little storage space as possible (due to the Bloom filters) at the cost
of a certain false positive rate. The disadvantage is that it only lets us search
information about nodes up to d hops away.

2.2 Resource Discovery
Resource Discovery systems do a subset of what we want to accomplish

with this work: locating physical or virtual resources to perform jobs. They can
be split into three categories: Peer-to-Peer, Grid, and Cycle Sharing.

Peer-to-Peer systems do not distinguish between clients and servers; all
nodes are equal and have no central coordination, making them decentralized.
This leads to the various types of node topology organization: unstructured,
structured, and hybrid. Unstructured system nodes are randomly connected
to a fixed number of neighbors; there is no information about where resources

Scalable and Efficient Discovery ... INForum 2010 – 269



are located so message routing has to be performed by flooding. Searching can
be uninformed or informed. Uninformed searches use no addition information to
route queries, they are either flooded to all neighbors (Gnutella [1]), or are for-
warded to a randomly selected neighbor (Iamnitchi et al. [20]). Informed searches
are more intelligent and route messages based on collected information, but re-
quire more memory. Lie et al. [21] and the learning-based technique in Iamnitchi
et al. forward queries to nodes that have replied to similar requests. Another
strategy called best-neighbor in Iamnitchi et al. [20] just forwards queries to
nodes with the highest success rate. Structured systems, such as Chord [3] and
CAN [4] organize nodes into a rigid structure, called a Distributed Hash Table
(DHT), which enables efficient exact-match query routing. Each node is assigned
an identifier (key) which makes him responsible for all content (values) whose
hash resolves to that key. Finally, Hybrid systems try to combine the best of
both worlds without their disadvantages. Some systems in this category, like
Pastry [5] and Kademlia [22], tend more towards structured systems, albeit with
a less “rigid” structure, where any node belonging to a defined key subspace can
act as a contact for those values. Others follow a more unstructured approach
and use super-peers [23] that communicate between themselves on the behalf of
less capable nodes (in terms of bandwidth or CPU performance), thus increasing
routing performance.

Grid and Cycle Sharing systems share the same objective: to combine many
geographically dispersed computer resources in order to perform tasks that re-
quire lots of CPU processing power, or that need to process huge amounts of
data. Tasks like these are common when dealing with scientific, technical, or
business problems. Grid systems can run in LAN environments such as that of a
university, or in a much larger network compromised of interconnected networks
that belong to different institutions, corporations, or universities. Condor [24]
and Legion [25] are typical examples of such systems, where information about all
resources are stored in a central component, known as the Matchmaker in Con-
dor, and in Legion is divided into 3 subcomponents: the Collection, Scheduler,
and Enactor. This central component receives job requests, tries to match their
requirements to available resources, and reserve those resources while notifying
the requester. Cycle Sharing systems rather operate over the Internet, which can
be highly unreliable with variable connection quality. Another important differ-
ence is that anyone with a computer can join a cycle sharing project of interest
(e.g. SETI@Home [26] or Folding@Home) and volunteer their resources during
idle times. This brings the additional problem of unreliable peer connections and
possibly forged results from untrusted peers.

2.3 Service Discovery
Service Discovery systems, like Resource Discovery, do the missing subset

of this work: enabling the automatic detection of services provided by computers
in small LAN environments, like home networks, or in large-scale enterprise net-
works, like a corporation or university. SLP [27] and Jini [28] use a client/server
architecture, where servers collect service information and perform lookups for
clients. SLP can function without directory servers using multicast to find ser-
vices, but only in small LAN environments.

The systems presented by Goering et al. [29] and Lv and Cao [30] use a Peer-to-
Peer architecture instead, with the objective of being able to function in ad-hoc
networks. Goering et al. propose a service discovery protocol based on the use
of Attenuated Bloom Filters, which provide a method to locate objects, giving
preference to objects located nearby. It is simply an array of Bloom Filters of
depth d, where each row represents objects at different distances which, in this

270 INForum 2010 Raoul Felix, Paulo Ferreira, Lúıs Veiga



case, is in term of hops. Each node has an Attenuated Bloom Filter for each of
its neighbors, which is consulted when a query is received in order to send it in a
direction it will have a higher chance of success. The first level of the Attenuated
Bloom Filter corresponds to the services that are one hop away, the second to
services two hops away, and so forth. Therefore, the larger the distance from
the node, the more services will be contained in the corresponding Attenuated
Bloom Filter which will increase the chance of false positives. Relying solely on
Attenuated Bloom Filters gives this system a big limitation: only the services
located up to d-hops away can be easily found. Lv and Cao resolve this drawback
by having nodes more than d + 1 hops away cooperate among themselves. Thus,
when a query is received, it follows the same process of checking the Attenuated
Bloom Filters of its neighbors like Goering et al, but if no services are found,
then the query is forwarded to a node d + 1 hops away where the search begins
again.

3 Architecture

The objective of this work is to enhance the resource discovery mechanism
in GINGER [10], also known as GiGi, by making it completely decentralized
and more complete. This completeness regards the system’s ability to discover,
not only basic resources (e.g. CPU, Bandwidth, Memory, etc.), but also specific
installed applications (e.g. video encoders, simulators, etc.) and services (e.g. face
recognition, high-res rendering, etc.). Because GiGi can be used in many different
ways (“grid-for-the-masses”), it has to be flexible enough to run different types
of jobs normally performed by home-users.

In order to cope with a dynamic peer population and high churn rate, this
system uses an unstructured peer-to-peer approach to resource discovery, even
though message routing may not have optimum efficiency. If a structured system
were to be used, the messages needed to keep the structure intact with an un-
stable population, such as home-users, could possibly result in a high overhead.
Attenuated Bloom Filters are used to enhance message routing and speed up
resource location. Note that this solution is different to the systems mentioned
in the Related Work because it combines all types of different resources into
one discovery mechanism. It is especially different to the works [29,30] that also
make use of Attenuated Bloom Filters due to usage of one aggregated Attenu-
ated Bloom Filter (explained next), and the fact that all the different types of
basic resources, services, and applications are encoded in the Bloom Filter.

Each node in the network stores a cached version of the Attenuated Bloom
Filters of their neighbors. This information is then merged into one single Atten-
uated Bloom Filter by inserting the union (OR operation) of all neighbor Bloom
Filters at a certain depth k into depth k + 1 (Figure 1). The consequence of
using an Attenuated Bloom Filter of, for example, depth d = 2 is that a node
will only know about the resources of nodes up to 2 hops away. A solution for
this problem is discussed further in Section 3.

Discovery Mechanism: The discovery of resources, applications, and services
(illustrated as a flowchart in Figure 2) will be performed in the following way.
When a node receives a query, it will check its own information to see if it can
satisfy the requirements. If it does, a reply is sent directly to the node that
originated the query. If not, it goes through its aggregated Attenuated Bloom
Filter, which contains the combined information from its neighbors Attenuated
Bloom Filters. This way, we can quickly determine if the query cannot be satisfied
with nodes up to d hops away, in which case it will be sent directly to a node d+1

Scalable and Efficient Discovery ... INForum 2010 – 271



Level 2
Level 1
Level 0

Level 2
Level 1
Level 0

Level 2

Level 1

Level 0
Neighbor 1 Neighbor 2

Node A

Fig. 1. Example of a node A creating a single Attenuated Bloom Filter by merging
each Level i of its neighbors’ Attenuated Bloom Filters into Level i+ 1.

hops away to restart the search. If the query can be satisfied with nodes at most
d hops away, the node then needs to determine the direction to send the query
for it to be resolved. This is done by checking all the cached Attenuated Bloom
Filters of its neighbors to determine which one has the requested resources. If
found, it then forwards the query to that neighbor. If not, then it is because the
aggregated Attenuated Bloom Filter returned a false positive, which is mitigated
by simply sending the query to a node more than d + 1 hops away so it can be
resolved. As each message is forwarded to a node, the sender adds his own ID to
the resource query’s Bloom Filter which keeps track of where the message has
been sent. This Bloom Filter is cleared when a query jumps to a node d+1 hops
away. If any node received a query message and its ID is in the Bloom Filter,
then there must have been a false positive and therefore the query should fail.

End

Start
Compare query 

requirements against 
myself

Query 
Satisfied

?

Reply to query originator

Compare query requirements 
against aggregated 

attenuated Bloom filter

Query 
Satisfied

?

Resend and restart query 
to a node d + 1 hops away

Compare query requirements 
against each neighboring 

node's attenuated Bloom filter

Query 
Satisfied

?

Forward query to that 
neighbor

Yes

No

No

Yes

No

Yes

Fig. 2. Flowchart of resource, service, and application discovery from Section 3

Dynamic Resources: Some resources are mostly static and do not change, like the
Operating System, CPU and Disk speed, certain application versions, etc. But
there are other resources whose values can change quite often, such as amount
of RAM occupied, amount of CPU in use, etc. For those cases, if we used a
classic Bloom Filter then it would need to be rebuilt periodically since it does
not support the removal of elements. More, this rebuilding procedure would
require sending information about resources that are not expected to change,
thus wasting bandwidth.

Therefore, instead of using a classic Bloom Filter to store the information
about the dynamic resources, a Counting Bloom Filter is used. To compensate
the fact that a Counting Bloom Filter occupies more bits than a classic one, we
use a smaller size, as the number of static resources is greater than dynamic ones.
The usage of this new Bloom Filter mirrors that described in the previous sec-
tions: queries for dynamic resources use the Aggregated Counting Bloom Filters

272 INForum 2010 Raoul Felix, Paulo Ferreira, Lúıs Veiga



12

5

3

6

7

4

Fig. 3. Example showing how resource queries are forwarded with an Attenuated
Bloom Filter of d = 1. When a neighbor has information about the desired resource,
such as Node 3, then query is forwarded to that peer, who in turn forwards the query
to Node 6 which contains the resource. In another case, when there is no information
about the desired resource in Node 1’s area (consisting of Nodes 1, 2 and 3), then the
query is forwarded to an Outer Limit Node 4, where the search is then restarted.

instead. The difference now is when a dynamic resource changes its value and
passes a certain threshold, the direct neighbors of that node are notified. Thus,
the information closest to the node with the resource is kept up to date. The
updating of nodes further away occurs at a later stage, when there are enough
resource value alterations that can be sent in a batch, in order to save messages.

Outer Limit Peer Discovery: Using an Attenuated Bloom Filter of a certain
depth d limits the amount of information a node has about its surrounding
neighbors. If a query is received and cannot be satisfied using the information
the node knows about its peers in the same area, then it forwards the query to
another node that is d + 1 hops away (which, conceptually, is part of another
area).

To find those Outer Limit Peers, the system uses a simple Random Walk
strategy to forward a discovery message until it reaches a node d + 1 hops away.
Once that node is found, it replies to the message originator. The Peer Discovery
protocol has two parameters which can be fine tuned, such as: width (w) and
length (l). Width represents the number of nodes the discovery query should be
sent to in parallel, and the length is the number of hops that the outer limit
node should have. On the off chance that a node does not know about any outer
limit peers, either due to particular topology configurations or node failures, the
system just forwards the query to a random neighbor.

3.1 Resource Representation

Information about resources, applications, and services that each node offers
are represented inside a Bloom Filter. But, because a Bloom Filter is only capable
of performing membership tests given a key (in this case a string), we need to
add information about the actual resource (like type, value, etc.) to that key
on insertion for it to be useful in discovering resources. Therefore, keys use
namespaces to differentiate between resources and their values, which also helps
with performing membership tests for resources. The naming convention uses
a 3-level namespace, each separated using the colon (“:”) as a delimiter, and
follows the following rules:

– Level 1 : Name of the Resource, Service, or Application (e.g. CPU or ffmpeg)
– Level 2 : Type of the Resource, Service, or Application (e.g. MHz or version)
– Level 3 : Actual value of the Resource, Service, or Application

Scalable and Efficient Discovery ... INForum 2010 – 273



For instance, if we wanted to store the fact that a node has a CPU of 3 GHz,
the key we would insert into the Bloom Filter would be: “CPU:GHz:3”. Or, if
a node has the application ffmpeg version 2.3 installed, the key would look like:
“ffmpeg:version:2.3”. But, for different nodes to be able to communicate with
each other and search for the same resources, the naming of resources, services,
and applications need to be the same between all of them. An ontology could be
used, but that is out of the scope of this work. For the time being, the system
reads a configuration file that specifies the name of the resource among other
things. This configuration file needs to be the same for all nodes in the network.

Insertion: However, just following a naming convention will not suffice for the
discovery of resources. We also need to take into account the values used for
each resource. If we do not restrict the possible values, we would need to employ
a brute force strategy when querying for resources, trying each value combina-
tion and testing the Bloom Filter. For example, to find a node that at least
contains a CPU of 2.6 GHz, we would need to test for values such as 2.6, 2.7,
2.8, 2.9, 3.0, etc., which is highly inefficient. To speed this up, we define a min-
imum, maximum, and a quantum for each resource value type (which are also
specified in a configuration file). The minimum (resp. maximum) is the smallest
(resp. largest) value that the resource will have encoded in the Bloom Filter.
The quantum defines how the value space, from minimum to maximum, will be
divided. When a resource is inserted into the Bloom Filter, it is first inserted
with the key that corresponds to its range, and then with all the other keys that
correspond to ranges smaller than the resource’s value. For example, if we define
minimum = 0, maximum = 4000, and quantum = 1000 for CPU values in
MHz, then the range of values is divided into the following segments: ]0, 1000];
]1000, 2000]; ]2000, 3000]; and ]3000, 4000]. Or, if a CPU of 999MHz were to be
inserted into the Bloom Filter, it would need to be inserted under the value 1000:
“CPU:MHz:1000”; and so on.

Querying: Now, when querying a Bloom Filter for a value, the range the value
falls under needs to be determined for the specified resource and checked. For
instance, if a query requires a CPU of at least 2600 MHz, we would only need
to perform one exact match query using the range the value in the requirements
belongs to, which in this case is 3000 (2600 ⊂]2000, 3000]). Therefore, we only
need to test the key “CPU:MHz:3000” against a Bloom Filter because processors
with a faster CPU will also be registered under this key. This strategy avoids the
brute-force approach and efficiently speeds up the querying process. However,
one needs to take care when specifying the quantum value due to precision prob-
lems. In this example, a CPU of at least 2600 MHz is required, but testing the
Bloom Filter with key “CPU:MHz:3000” can result in CPUs that belong to the
interval ]2000, 2599], thus not satisfying the requirements. In a real-world sys-
tem, using a quantum = 200 would probably be more suitable, giving enough
precision without requiring too much overhead. This, and searching for a re-
source with a key one quantum value higher than required will ensure query
satisfaction.

4 Implementation Details
This work is implemented using the PeerSim [31] simulator with its Event

Driven capabilities, approximating the simulation more to real-life as opposed
to a Cycle Driven simulation. Because PeerSim is implemented in Java, the
SERD discovery mechanism is also implemented in Java, which also allowed us
to use an open source Bloom Filter implementation from the well known Hadoop
project, providing us a certain amount of confidence w.r.t. its quality.

274 INForum 2010 Raoul Felix, Paulo Ferreira, Lúıs Veiga



In order to be able to evaluate this work, we had to build an infra-structure
around PeerSim to allow things such as topology creation, resource distribu-
tion, and node activity specification. The topology of a network can either be
loaded using a file that describes the connections between nodes, or can be gen-
erated randomly using parameters that ensure minimum and maximum number
of neighbors. Resource distribution among nodes can be performed in a static
way using a simple file that specifies which node should have what resource; or,
it can be specified in a more random fashion by specifying criteria to select a
certain number of nodes. Distribution criteria can be the number of hops be-
tween nodes, the density/frequency of nodes that have the resource, or even the
homogeneity of resource distribution. Node activity specification also uses a
text file where nodes can be selected using various types of specifiers (e.g. ran-
domly, exact match, nodes with a certain resource, etc.) along with the actions
that they should perform (e.g. search for some resource) and when that action
should be executed (in terms of simulation cycles or periodicity).

Another implementation issue we had was the initial construction of the At-
tenutated Bloom Filters. PeerSim starts with an already defined topology, so
we simulated a joining phase on top of PeerSim for nodes to exchange resource
information when a new peer enters the network.

5 Evaluation
PeerSim was used to evaluate SERD in a virtual network environment with

six different test scenarios. These include varying the number of nodes that have
the desired resource, which ranges from very abundant (50% of the nodes have
the resource), abundant (25% have the resource), and scarce (only 5% have
the resource). For each of those cases, we also vary the values of the resources,
separating them into two groups: uniform, which is common with an application
like GCC, either a computer has it or it does not; and non-uniform where values
vary quite a bit, similar to a Hard Drive where the range we used was 0GB to
1000GB.

99.97%	  

96.38%	  

47.84%	  

99.93%	  

97.38%	  

51.47%	  

99.99%	  

99.99%	  

99.86%	  

99.99%	  

99.96%	  

99.84%	  

0.00%	   25.00%	   50.00%	   75.00%	   100.00%	  

50%	  

25%	  

5%	  

50%	  

25%	  

5%	  

20
81
	  

99
53
	  

Query	  Sa5sfac5on	  (%)	  SERD	  

Query	  Sa5sfac5on	  (%)	  RW	  

Fig. 4. Query Satisfaction for GCC (uni-
form)

1.60%	  

0.90%	  

0.61%	  

0.89%	  

0.54%	  

0.25%	  

94.10%	  

91.15%	  

62.15%	  

95.50%	  

91.61%	  

62.87%	  

0.00%	   25.00%	   50.00%	   75.00%	   100.00%	  

50%	  

25%	  

5%	  

50%	  

25%	  

5%	  

20
81
	  

99
53
	  

Query	  Sa5sfac5on	  (%)	  SERD	  

Query	  Sa5sfac5on	  (%)	  RW	  

Fig. 5. Query Satisfaction for Hard Drive
(non-uniform)

The SERD protocol was compared against the Random Walk protocol, which
is used as a touchstone as it is easy to implement and functions as a baseline for
performance (no protocol should perform worse). The RW implementation uses
exact-match searches and just forwards queries to random neighbors.

Each scenario was tested with both RW and SERD protocols using two dif-
ferent network sizes: one with 2081 nodes and another with 9953 nodes, repre-

Scalable and Efficient Discovery ... INForum 2010 – 275



senting small and large networks respectively. Neighbors in this topology were
randomly assigned, with the maximum number of neighbors being three. 10%
of the nodes were randomly chosen to periodically send a query, in parallel,
for a certain resource based on the scenario. Query messages were sent with a
TTL = 2 ∗ log2(NETWORK SIZE) to make sure resource queries eventually
fail. As SERD uses an Attenuated Bloom Filter, the chosen depth for the test
was d = 3.

2	  

5	  

16	  

2	  

5	  

18	  

1	  

2	  

4	  

1	  

2	  

4	  

-‐4	   1	   6	   11	   16	   21	   26	  

50%	  

25%	  

5%	  

50%	  

25%	  

5%	  

20
81
	  

99
53
	  

Average	  Number	  of	  Hops	  SERD	  

Average	  Number	  of	  Hops	  RW	  

Fig. 6. Average Number of Hops for GCC
(uniform)

22	  

22	  

22	  

26	  

26	  

26	  

4	  

6	  

14	  

4	  

7	  

16	  

-‐4	   1	   6	   11	   16	   21	   26	  

50%	  

25%	  

5%	  

50%	  

25%	  

5%	  

20
81
	  

99
53
	  

Average	  Number	  of	  Hops	  SERD	  

Average	  Number	  of	  Hops	  RW	  

Fig. 7. Average Number of Hops for Hard
Drive (non-uniform)

Figures 4 and 5 show the percentage of resource queries that were satisfied (out
of 7072 and 33830 sent queries for network sizes of 2081 and 9953, respectively).
SERD proved to be able to find the requested resources with a percentage of
satisfaction consistently superior than 90%, with the exception of the scarce
scenarios with non-uniform values. Still, more than half of the resource queries
were satisfied even though the resources were distributed to only 5% of the
nodes, further complicating the search. RW did well in the uniform scenario,
but struggled in the scarce one. RW performed terribly with non-uniform values,
barely being able to satisfy any queries. This happened because the protocol used
exact-match and just randomly picked a neighbor to forward a message to, which
led to dead ends.

23403	  

45740	  

123473	  

115009	  

232247	  

667504	  

61631	  

61934	  

73074	  

293330	  

295393	  

356226	  

0	   200000	   400000	   600000	   800000	  

50%	  

25%	  

5%	  

50%	  

25%	  

5%	  

20
81
	  

99
53
	  

Total	  Messages	  Sent	  SERD	  

Total	  Messages	  Sent	  RW	  

Fig. 8. Total Messages Sent for GCC (uni-
form)

168198	  

168895	  

169188	  

942977	  

944631	  

946075	  

83687	  

94377	  

140322	  

403357	  

472876	  

737689	  

0	   200000	   400000	   600000	   800000	   1000000	  

50%	  

25%	  

5%	  

50%	  

25%	  

5%	  

20
81
	  

99
53
	  

Total	  Messages	  Sent	  SERD	  

Total	  Messages	  Sent	  RW	  

Fig. 9. Total Messages Sent for Hard Drive
(non-uniform)

With regards to the average number of hops the resource queries traveled,
seen in Figures 6 and 7, the scenarios that proved tougher had messages travel

276 INForum 2010 Raoul Felix, Paulo Ferreira, Lúıs Veiga



a lot more. When searching for GCC, both RW and SERD protocols had a low
number of hops, except for the scarce scenario were RW increased quite a bit.
While looking for a Hard Drive, the average number of hops for RW were close
or equal to the TTL (22 and 26 for network sizes of 2081 and 9953, resp.), which
is obvious seeing as almost all queries failed.

In Figures 8 and 9 we can see the total number of sent message. With the
exception of the RW protocol’s search for Hard Drives, the SERD protocol uses
more messages than the RW protocol. This is to be expected because SERD
needs to exchange neighbor resource information (the Attenuated Bloom Filters)
and look for Outer Limit Peers, unlike RW. As this is a work in progress, this is
one area that we will try to optimize in order to reduce the number of messages.

Finally, the average message size and average routing information storage size
occupied by each node can be seen in Figure 10. SERD messages are almost dou-
ble the size of RW messages, which is expected because SERD messages include
a Bloom Filter to keep track of nodes the message has passed through. With
regards to the information stored at each node, SERD uses much more space
than RW because RW nodes only keep information about their own resources,
whereas SERD nodes store the Attenuated Bloom Filters of its neighbors and
needs space for its own Aggregated Attenuated Bloom Filter.

88.44	  

2522.89	  

394.33	  

771.72	  

0.00	   500.00	   1000.00	   1500.00	   2000.00	   2500.00	   3000.00	  

RW	  

SERD	  

Average	  Message	  Size	  (B)	   Average	  Storage	  Size	  (B)	  

Fig. 10. Average Message Size and Average Storage Size at each Node

6 Conclusion

GiGi [10] allows home users to take advantage of Grid computing which was
previously only available to scientific and corporate communities. Tasks that
would usually take a lot of time, such as audio and video compression, signal
processing related to multimedia content (e.g. photo, video, and audio enhance-
ment), intensive calculus for content generation (e.g. ray-tracing, fractal genera-
tion), among others, can now be sped up by parallelizing and distributing them
over many computers.

However, to distribute the tasks GiGi needs to locate the resources that satisfy
task prerequisites. This is precisely what the architecture described in this paper
does: discovering physical resources, services, and applications of computers con-
nected to the same P2P Grid. The main objectives are to create a decentralized
discovery mechanism that is efficient and scalable for the GiGi project. Even
though this work is for the GiGi project, it is completely independent and can
be used in other types of networks, such as cycle-sharing networks.

The current implementation focuses mainly on static resources (work in progress)
and was evaluated alongside another, albeit simpler, discovery mechanism called
Random Walk (RW). Results show that SERD proved to be better than RW,

Scalable and Efficient Discovery ... INForum 2010 – 277



with higher query success rates using less hops at the expense of increased mes-
sage size and storage space. There is still work to be done to increase the effi-
ciency and scalability of the system.

References

1. Gnutella Protocol Specification. Last checked: 2009-12-18.
http://wiki.limewire.org/index.php?title=GDF.

2. I. Clarke, S.G. Miller, T.W. Hong, O. Sandberg, and B. Wiley. Protecting free expression online
with Freenet. IEEE Internet Computing, 6(1):40–49, 2002.

3. I Stoica, R Morris, D Karger, and M Kaashoek. Chord: A scalable peer-to-peer lookup service
for internet applications. Proceedings of the 2001 conference on Applications, Jan 2001.

4. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable content-addressable
network. In Proceedings of the 2001 conference on Applications, technologies, architectures,
and protocols for computer communications, page 172. ACM, 2001.

5. A Rowstron and P Druschel. Pastry: Scalable, decentralized object location and routing for
large-scale peer-to-peer systems. Lecture notes in computer science, pages 329–350, Jan 2001.

6. S Androutsellis-Theotokis and D Spinellis. A survey of peer-to-peer content distribution tech-
nologies. ACM Computing Surveys, Jan 2004.

7. I. Foster and A. Iamnitchi. On death, taxes, and the convergence of peer-to-peer and grid
computing. Lecture Notes in Computer Science, pages 118–128, 2003.

8. D. Talia and P. Trunfio. Toward a synergy between p2p and grids. IEEE Internet Computing,
7:96–96, 2003.

9. A. Iamnitchi and D. Talia. P2p computing and interaction with grids. Future Generation
Computer Systems, 21(3):331–332, 2005.

10. L Veiga, R Rodrigues, and P Ferreira. Gigi: An ocean of gridlets on a” grid-for-the-masses.
Seventh IEEE International Symposium on Cluster Computing and the Grid, 2007. CCGRID
2007, pages 783–788, 2007.

11. M Nelson. Lzw data compression. Dr. Dobb’s Journal, Jan 1989.
12. D Huffman. A method for the construction of minimum-redundancy codes. Resonance, Jan

2006.
13. A. Tridgell. Efficient algorithms for sorting and synchronization. Doktorarbeit, Australian

National University, 1999.
14. A Muthitacharoen, B Chen, and D Mazieres. A low-bandwidth network file system. Proceedings

of the eighteenth ACM symposium on Operating systems principles, pages 174–187, Jan 2001.
15. Z Zhang and Q Lian. Reperasure: Replication protocol using erasure-code in peer-to-peer

storage network. 21st IEEE Symposium on Reliable Distributed Systems (SRDS’02), pages
330–339, Jan 2002.

16. Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder. Summary cache: a scalable wide-area
web cache sharing protocol. IEEE/ACM Trans. Netw., 8(3):281–293, 2000.

17. Michael Mitzenmacher. Compressed bloom filters. IEEE/ACM Trans. Netw., 10(5):604–612,
2002.

18. PS Almeida, C Baquero, N Preguiça, and D Hutchison. Scalable bloom filters. Information
Processing Letters, 101(6):255–261, 2007.

19. Sean C Rhea and John Kubiatowicz. Probabilistic location and routing. 2002.
20. A Iamnitchi, I Foster, and D Nurmi. A peer-to-peer approach to resource location in grid

environments. INTERNATIONAL SERIES IN OPERATIONS RESEARCH AND MAN-
AGEMENT SCIENCE, pages 413–430, Jan 2003.

21. L Liu, N Antonopoulos, and S Mackin. Social peer-to-peer for resource discovery. Proceedings
of the 15th Euromicro International Conference on Parallel, Distributed and Network-Based
Processing, pages 459–466, Jan 2007.

22. P Maymounkov and D Mazieres. Kademlia: A peer-to-peer information system based on the
xor metric. Proceedings of IPTPS02, Jan 2002.

23. C Mastroianni, D Talia, and O Verta. A super-peer model for building resource discovery
services in grids: Design and simulation analysis. Lecture notes in computer science, 3470:132,
Jan 2005.

24. D Thain, T Tannenbaum, and M Livny. Condor and the grid. Grid Computing: Making the
Global Infrastructure a Reality, pages 299–335, Jan 2003.

25. S Chapin, D Katramatos, and J Karpovich. Resource management in legion. Future Generation
Computer Systems, Jan 1999.

26. D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. SETI@ home: an exper-
iment in public-resource computing. Communications of the ACM, 45(11):61, 2002.

27. E Guttman. Service location protocol: Automatic discovery of ip network services. IEEE
Internet Computing, Jan 1999.

28. J Waldo. The jini architecture for network-centric computing. Communications of the ACM,
Jan 1999.

29. P Goering and G Heijenk. Service discovery using bloom filters. Proc. Twelfth Annual Con-
ference of the Advanced School for Computing and Imaging, Belgium, Jan 2006.

30. Qingcong Lv and Qiying Cao. Service discovery using hybrid bloom filters in ad-hoc networks.
Wireless Communications, Networking and Mobile Computing, 2007. WiCom 2007. Inter-
national Conference on, pages 1542–1545, 2007.

31. PeerSim. Last checked: 2009-12-27. http://peersim.sourceforge.net/.

278 INForum 2010 Raoul Felix, Paulo Ferreira, Lúıs Veiga


