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Abstract. The Internet is widely used nowadays but still has important
limitations. While average Web page size keeps increasing, the bandwidth
available to each user is not growing at the same rate. Users want to do
several things at the same time on the Web and they don’t want to wait
much time to do it.
We notice that most Web pages have substantial redundancy with pre-
vious versions of themselves and other pages. With this in mind, we
developed a novel deduplication system for HTTP traffic.
Our proposed system works from end client to server and only for text
resources transmitted through the HTTP protocol. Our system trans-
fers less bytes than a plain HTTP transfer, achieving gains of 82% when
downloading pages from popular sites such as cnn.com. It completes a
transfer request 4% faster than plain HTTP. It is also not as time con-
suming as delta-encoding between the requested resource and an older
version of it. Our approach is the first to be implemented and analysed
on a real Internet environment.

1 Introduction

The Web has had a major growth in recent years. The number of users keeps
growing, the average Web page size and number of objects per page have steadily
increased [1], the data available through the Internet is doubling every year [2].

This enormous growth entails many challenges. While available bandwidth
has steadily grown in some network environments, it remains a scarce resource
in others, such as Bluetooth networks. Even in high bandwidth scenarios, each
transferred byte frequently has a cost, for instance in terms of battery consump-
tion or fees paid to the client’s ISP, which clients naturally wish to minimize.

Fortunately, the substantial redundancy that exists across the contents down-
loaded from the Web tells us that most of the transmitted payload could be, in
fact, avoided. Most individual files exhibit intra-file redundancy, which one can
eliminate with compression schemes like Gzip. Furthermore, Web browsers fre-
quently request resources (e.g. previously downloaded HTML pages or images)
that were already downloaded by the same client (or nearby clients) and have not
changed meanwhile, a well studied problem that Web caches effectively tackle.

However, there is evidence that much redundancy in the Web originates from
situations that neither per-file data compression nor Web caching can exploit.
Such redundancy is caused by two phenomenons. A first one occurs when the
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same resource is referenced by different URLs, which occurs mostly in image re-
sources and is commonly called aliasing [4]. Most importantly, the most common
phenomenon is resource modification [3], when a resource changes by little pieces
over time. We see this everyday in our social Web. News sites are updated sev-
eral times per day, they let you comment on those news and see other people’s
comments. Social networks let you comment on other people’s profiles. Blogs
make it possible to post new content and have it commented too. Forums and
discussion sites have threads of responses from their users. Hence, pages loaded
at different times will often be very similar in content, with marginal changes
introduced by the new pieces of information.

In order to exploit the above phenomena, we need techniques for full dedu-
plication [5] of the Web. In other words, techniques that are free from the lim-
itations of data compression and classical Web caching, thus able to eliminate
any form of redundancy: be it within the individual resource, or across different
resources (or across distinct versions of the same resource); going from the granu-
larity of the individual resource down to much finer-grained chunks of redundant
information.

Perhaps that older deduplication technique that breaks the above mentioned
limitations is delta encoding [3]. In delta encoding, a client that already holds
some version of a given resource and requests a newer version will only receive a
compact set of differences from the latter to the former, which the client should
then apply upon its local (older) version. Delta-encoding is still very much in
use, mostly when the deltas can be precomputed, which is often the case when
distributing software patches and service packs. However, since the algorithms
used for computing deltas are typically very time-expensive [3], delta encoding
is not suitable for distributing dynamic content like most Web pages that are
created on-the-fly.

More recently, much research has proposed techniques for on-line dedupli-
cation of dynamic Web content. However, the proposed techniques exhibit im-
portant drawbacks that severely limit their usefulness in the large-scale Web.
Some assume strong synchronization between client and server state [6], while
the memory requirements of others do not scale well to large-scale Web servers
(e.g. [9], [8]). Some are only able to detect redundancy across the contents trans-
mitted from the ISP proxy to its clients, neglecting the proxy-server path [11].
More importantly, most solutions have never been implemented nor evaluated
experimentally (e.g. [6], [8]).

In this paper we present a novel deduplication system we called dedupHTTP.
The proposed system works from the end client to the origin server. It detects
redundancy in text resources transferred through the HTTP protocol. It uses the
client’s cached files from the requested resource’s domain as reference resources.
It eliminates redundant transfers originating from resource modification and
aliasing of resources inside each domain. The current implementation is browser
and server transparent and has a very lightweight communication protocol. Our
results show that dedupHTTP:
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Fig. 1. Architecture Overview

– Outperforms plain HTTP transfer in the number of bytes transferred by 82%
and time consumed by 4%, at large bandwidth;

– Has 10% better time performance than delta-encoding with a previous ver-
sion of the requested resource;

The rest of the paper is structured as follows. First we will explain the resource
division algorithm into chunks. Then we will overview the architechture of the
system and the communication protocol. We then show the results of our tests,
comparing our system with regular transfers, gzip compression and a simple
delta-encoding system for Web transfer. Finally we go through some of the re-
lated work and draw our conclusions to this work.

2 Architecture overview

The dedupHTTP system has two implementation points, we’ll call them client
and server for simplicity. The client stores the resources and maps them by host
domain. When it makes a request for a resource the client fetches all the iden-
tifiers from stored resources of the same host domain as the requested resource.
These identifiers represent the reference resources for the request.

When the server responds to a request it divides the response into chunks
using the algorithm from Section 4. Those chunks’ hashes are stored on the server
along with their offset within the resource and their length (16 bytes metadata
per chunk on the current implementation). The server then retrieves the client
resource identifiers from the HTTP header. The server searches for the response
resource’s chunks in the identified client resources, and the metadata required
for resource reconstruction is sent to the client.

When the client receives the response it starts reconstructing the requested
resource by fetching the referenced chunks from local cache. Then it combines
them with the non-redundant content on the response in the correct order. The
resource is saved on the client and mapped to its host domain.
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3 Protocol

When a new request is done by the client, the reference resources identifiers
are serialized into a byte array and placed inside a new HTTP header called
”Versions”, which goes on the request header. This accomplishes two important
goals. First there is no need for the server to keep client based state, as it is each
client’s responsibility to provide the right list of reference resources. Secondly, it
allows the client cache to have the regular resource cache eviction policies, the
resources the client tells the server are in its cache are the ones the server will
use as reference resources. 1

After dividing the resource, the corresponding chunk meta information is
stored on the server, mapping the resource. The server goes through all chunks’
hashes of the requested resource. For each such chunk the server queries each
of the client’s reference resources for the chunk’s existence. If the chunk is not
found the server also queries the current response’s respective resource. This way
we not only detect redundant chunks between different resources but also inside
the resource being served. Whenever a chunk is found on a queried resource we
only need to tell the client where to find it. If the chunk is not found in any of
the queried resources, we copy the chunk data to the final response.

The final response begins with a metadata section. The size of this section is
stored on a new HTTP header we called ”Metadata”. In this section goes all the
information needed for the client to find the redundant chunks in its cache. Each
redundant chunk is here identified by a four-part tuple: the offset in the current
response where the chunk is to be appended, the resource identifier where the
client can find the chunk content, the offset of the resource where the chunk
content can be found and the length of the chunk. At the end of the metadata
block we append the non-redundant response content.

When the client receives the response it only has to go through the meta-
data, copy to the final response the chunks referenced in the metadata, from the
locally cached resources, and copy the non-redundant content from the received
response to the final response, in the respective order. Thus, the new resource
is reconstructed on the client and the client does not even have to store meta
information about the chunks, only the resource identifier and the resource itself.

Each response has an identifier created on the server, which is sent in the
metadata block. We have opted to store this value in 2 bytes only, which helps
shorten the metadata block. This means there can only be 65536 different re-
sources referenced in the server. We believe this is more than enough for a regular
server, even with dynamic resources generated on-the-fly, since after some days
or weeks the older resources metadata can be evicted. Even if the client’s cache
could accommodate for resources that were older than that, the usefulness of
such resources is expectably low. Redundancy with fresh downloaded contents

1 As we show next, each client will be handling look-ups to its list of reference re-
sources. At the same time, it can try to evict some of such entries. We can easily
ensure safe synchronization of such accesses by using regular read-write locks.
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should mostly come from recent versions, rather than older ones, which we intend
to explore in future work.

For this we use an age value on each resource. When the age value for the
resource has been reached, if the client still has the resource cached it is evicted
from the client’s cache. At the same time the server will evict the chunk metadata
it possesses for that resource. This way the client and server caches are kept
synchronized without additional network messages.

The other pieces of the metadata are all stored in 4 byte integers which makes
for a 14 bytes total of metadata to reference a chunk. This number should be
taken into account when choosing the chunk size, since there will be no gain if
there can be chunks smaller than this.

3.1 Optimizations

We have seen there are consecutive chunks detected in the same resource many
times. Since we check the client’s resources in the same order for every chunk,
we can save on metadata by regarding the sequence of consecutive chunks as
a single chunk. Hence, we only send a meta-data block for the large coalesced
chunk (instead of one block per consecutive redundant chunk). A particular case
where such optimization is very effective is when a requested resource is aliased
on the domain; the only thing that will be sent to the client is a chunk’s worth
of metadata with the whole resource length.

The same resource can be requested by different clients. On the first request
the algorithm will be the one explained in this section. For the second and sub-
sequent client requests we can save an important step of processing, the chunk
division algorithm.

The server stores all served request’s ETags. These are unique resource iden-
tifiers present in the HTTP specification. When a new request is to be served
we check if the ETag has already passed before. If it has, we retrieve the cor-
responding resource chunk metadata and continue to the next phase. Only the
first request to each resource has to go through the chunk division phase.

4 Chunk division algorithm

The first step to take on the server when a resource is requested from a client
is to divide that resource into indexed chunks. This way we can easily identify
which parts of the resource the client already has and which are new and have
to be sent.

We start by creating per-byte hashes of the resource content. These hashes
represent smaller chunks of the resource. This is done by using the rolling hash
function of Karp-Rabin fingerprinting [13]. Let ci be the byte at index i of the
resource stream and k be the length of the Karp-Rabin chunk. Let b be a prime
number as base. The hash of the Karp-Rabin chunk is given by:

H(ci...ci+k) = ci ∗ bk−1 + ci+1 ∗ bk−2 + ... + ck−1 ∗ b + ck
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Since b is a constant, the iteratibility of this function allows us to calculate
the next byte’s hash with some simple operations on the previous byte’s hash
with the new byte:

H(ci+1...ci+1+k) = ((H(ci...ci+k)− ci ∗ bk) + ck+1) ∗ b

Now we have to select the hashes that represent the resource. We could select
all hashes, but that is unfeasible memory-wise since we have an hash per byte
of content. So, we select certain hashes to be the boundaries of larger chunks of
data.

For this step we chose the Winnowing technique since it has been experimen-
tally proven to give the better redundancy detection [7]. We enforce a minimum
and maximum chunk size because these content based methods can create too
big or too small chunks compared to the desired size.

After selecting the chunk boundaries we hash each larger chunk using a 64
bit MurmurHash [15]. This choice was driven by the fact that MurmurHash
outperforms cryptographic hash functions such as MD5 or SHA1, while retaining
a very low collision rate. We do not need cryptographic security in our hashes,
so using MD5 or SHA1 would be overkill. They are much slower and offer similar
collision rates (in fact MurmurHash offers better hash distribution than MD5
and very similar to SHA1 [15]).

5 Implementation

Our system was implemented with a proxy for the client machine and a reverse
proxy for the server machine. Both proxies were implemented using the OWASP
Proxy [16] library, which takes care of every aspect in HTTP communication.
Each proxy was extended with the proper functionalities described in the al-
gorithms and architecture to deal with the resource content. This was done in
about five hundred lines of Java code, since that was the language of OWASP
Proxy. The MurmurHash code was used from a public library [17] that ported
the hash code to Java.

Using proxies for the implementation allows us to be browser and server
independent, not having to familiarize with a unique browser and server im-
plementation, nor favor one over another. It has the inconvenients of adding
proxy latency to the connection and having it’s own cache on the client side.
The proxy cache and browser cache will certainly overlap in most of their data.
On the server side this is not an issue since we only store resource metadata.

The resource metadata is stored per chunk on the server. It is composed of
two 32 bit integers, offset in the resource content and chunk length, and a 64 bit
long for the chunk hash.

6 Evaluation

The test server machine is an Intel Pentium 4 @ 3.20 GHz with 2 GB of RAM,
while the client machine is an Intel Core 2 Duo @ 2.16 GHz with 4 GB of RAM.
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Number of files Total Size Server memory overhead

337 41,5 MB 16 bytes * Number of Chunks
Table 1. Workload specification

Fig. 2. Experiment average redundancy for several chunk sizes

The workload for our experiments was created by downloading every news
and comments page from www.cnn.com (Table 1). These pages change very
frequently which makes them a perfect fit for a system like this. We did this in
two consecutive days so that we could compare the redundancy that remains
from one day to the other, mimicing a regular user that likes to read the news
every day. We removed unchanged pages from the second day, since they would
be treated by a regular browser cache.

Our chunk division algorithm has two parameters that should be experi-
mented for the best redundancy detection: the smaller Karp-Rabin fingerprint
length (Table 2) and the larger chunk length (Figure 2).

The large chunks were experimented with sizes ranging from 128 bytes up to
8192 bytes (8 KB). The smaller the chunk size the more metadata the server has
to store, since we have more chunks per file. Since our metadata is not too heavy
we decided the 128 bytes chunks should be used for the rest of the experiments.
The increase in number of chunks to search for could factor in the choice of
chunk size. Although, this has not been noticeable in our experiments, so we
disregard it.

We have experimented the Karp-Rabin fingerprint sizes of 16, 32 and 48
bytes. The 16 bytes fingerprints give a better redundancy detection, although
by a small margin, so we decide to use it for the remainder of the experiments.
This parameter has no influence in the number of chunks nor in the complexity
of the division algorithm, so the value with better results should be chosen.
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Size of Karp-Rabin fingerprint Redundancy detected

16 81,75%

32 80,64%

48 80,74%
Table 2. Redundancy detected with varying Karp-Rabin fingerprint size

Fig. 3. Experiment average redundancy for several solutions

We compared our solution with three others. The first one is plain HTTP
transfer, then compressing the resources with Gzip and finally we tested against
a delta encoding solution we created.

This delta encoding system stores the resources on the server and client. If the
client is downloading a resource that already exists in its cache, but is outdated,
the server creates a delta between both versions of the resource on-the-fly. Then
it sends the delta to the client and it reconstructs the requested resource. This
solution does not work for the first request of a resource, so we have not included
those results in our measures.

We want to see how does dedupHTTP compare to the other solutions in
redundancy detected and Time to Display (Figures 3 and 4). Time to Display is
the time it takes since the resource is requested in the client until it is displayed
on the client’s machine. If the deduplication algorithm takes more processing
time than that which is spared by less transfer traffic, the Time to Display will
worsen which is undesirable. Our Time To Display results are the mean average
time of downloading all of the workload’s files one by one.

Delta encoding detects most existing redundancy that we could hope to de-
tect, since it is a lossless algorithm that works with only previous versions of
the same resource. This should be the comparison point of our solution as far
as redundancy detection goes. On the other hand it is a very costly algorithm,
which brings very high Time to Display. Plain HTTP transfer should be the ref-
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Fig. 4. Experiment average Time to Display for several solutions

erence point here, since we want to improve on the every day solution’s Time to
Display. We have also compared to plain HTTP transfer on limited bandwidth
(1 Mb/s) to assert that where fewer bandwidth is available our system would be
most benefitial.

As far as redundancy detection is concerned, we outperform Gzip by a mean-
ingful margin. Comparing to delta encoding we are a bit far from detecting as
much redundancy, although we didn’t isolate only the responses that could be
delta-encoded to get dedupHTTP results. If we did that our redundancy de-
tection is much closer to delta encoding (95%) and plus we still detect much
redundancy on the first time resource requests, where delta-encoding cannot be
used.

Regarding Time to Display we outperform every single solution we have
tested against, achieving comparable results to Gzip encoding. This is very sig-
nificant as we prove our system’s feasibility to complement regular Web caching.
We can also confirm that using delta encoding on-the-fly is much more compu-
tationaly heavy than our system.

7 Related work

Chunk fingerprinting has been widely used in distributed file systems [10] and
other deduplication systems for the Web (e.g., [11]). For chunk boundary selec-
tion these systems used the scheme proposed by Manber [12], but as Anand et
al. [7] have shown the Winnowing [14] technique is more profitable in this regard.

Manber’s fingerprint selection scheme selects each hash that complies with
H mod P = 0 where P is the desired larger chunk size. On average they expect
to have an hash selected in P bytes as a chunk boundary. Winnowing differs by
selecting the smaller hash in each consecutive window of P bytes.
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Fig. 5. Manber vs. Winnowing: chunk boundary selection

There have been many systems proposed for Web deduplication, each with its
own limitations. Spring and Wetherall [6] proposed a shared cache architecture
where two caches store chunks of data in the same way. When redundant content
is identified by the transmitting cache only the corresponding chunks fingerprints
are sent. They didn’t implement this architecture, it was used as an example of
where to use their redundancy detection algorithm. They also do not address
how to keep both caches synchronized. They suggest this approach for a protocol
independent system, but in their results we can see that only HTTP is useful to
analyse since it is the most used protocol and with most redundant data too.

Anand et al. [7] have recently confirmed these results for an enterprise setting
(on a university setting P2P traffic is a bit more relevant). They also suggest
that an end-to-end approach is preferable to a middlebox one since most users
do not share the same surfing habbits, therefore the gain of detecting cross-user
redundancy would be little when compared to the cost of detecting redundancy
across more data. We applied these studies results to devise dedupHTTP.

Chan and Woo [8] presented a general approach to cache based compaction.
It includes two main ideas: a selection algorithm to choose reference objects,
and an encoding/decoding algorithm that acts upon a new object using the
selected reference objects. They proposed a dictionary based solution for encod-
ing/decoding. When there are no reference resources it would act as gzip and
when there are some it would get redundant strings from them. Their approach
is not scalable, if the number of reference objects increases the complexity of
the algorithm increases at the same time. While our approach also increases in
complexity with the increase of reference objects, it is much less noticeable. They
have also not implemented and tested their proposal. Their selection algorithm
though gave interesting results. They tell us that resource redundancy is not
limited to previous versions of that resource. Most resources in the same folder
and even in the same domain still have much redundancy to be taken advantage
of as reference resources for deduplication.

Banga et al. [9] developed an optimistic deltas system. The server stores the
resources it sends to the clients. When a new version of a resource is requested it
creates a delta between the new version and the version the client has and sends
it. When a resource is to be sent for the first time to a client, an older version
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is immediately sent when the request is received on the server. Then if the new
resource is the same as the sent one the only thing necessary is to respond to the
client saying that. If it is different a delta is created between the two versions
and sent. The system is optimistic since it expects to have enough idle time to
send the old version of the resource while the new version is being created. It
also assumes the changes between the two versions are small relatively to the
whole document. With the bandwidths of today this kind of latency reduction
would be inefficient, more often than not overlapping the transport of the older
resource with the response with the new one.

Rhea et al. developed a Value Based Web Cache (VBWC) [11]. It is a system
similar to Spring and Wetherall’s but they implemented and tested it. They
aimed to use it at the ISP proxy, where it would store the chunk’s hashes that
went to the clients. The proxy did not store the actual data. When a chunk goes
to a client, the proxy cache checks if that client already has that chunk. If it does
it only transfers its fingerprint. The bandwidth savings of VBWC are only on the
ISP proxy-client connection. There is no cross-client redundancy detection since
their hash cache is mapped by client. Since each client also stores the chunk’s
hashes they are redundant in the ISP proxy for all clients that requested the same
chunks. All of these problems could be solved if the hash cache was implemented
at the origin server. Our approach is an example of how this can be implemented.

8 Future work and Conclusions

This work presents evidence that suggests that current HTTP transfer systems
can be much improved with simple changes on both client and server side and
fosters further research on this topic, which has been stagnant for quite some
time. Even if bandwidth is ever less a concern for desktop users, we must remind
ourselves we live in a wireless world where bandwidth is still a scarce resource.

We have devised a new on-line deduplication system for the Web. We have
shown that it outperforms the solutions available to current Web servers, includ-
ing plain HTTP transfer and Gzip compression. We are the first to implement
and test such a system in real internet conditions.

There are several items we can work further in our system. We plan to test
how does redundancy between two versions vary over time, instead of just two
days test up to thirty days difference. This will help us determine at what point
in time we should evict resource metadata on the server and client.

We want to test an hybrid algorithm that uses our system and then com-
presses the responses with Gzip. It should yeld even better redundancy detection,
although it may cost more Time to Display than affordable.

We plan to test the system in a controlled network environment, with the
client and server nodes interconnected by a network link with tunable band-
width and latency, in order to avoid external arbitrary interferences on those
parameters.

We also plan to run more detailed benchmark tests, which will allow us to
understand the factors contributing to the latency of our solution; namely, time
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spent on Web server CPU processing, message handling, message transmission,
among others. From these results, we should be able to further optimize our
solution and evaluate its true scalability.
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