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Abstract. Nowadays, there is a lot of technology that must not fail at
any circumstances. A car airbag is a simple reactive system that must
work every time the car crashes. In order to model problems like this,
there are some model-checking applications that can help us do the job.
In this paper a well known case study will be modeled and verified in
Uppaal and some variants of the problem will be documented. At the
end the problem will be generalized in order to make it easy to apply to
other problems with different values.
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1 Introduction

This paper presents a case-study on modeling and verification of time-critical sys-
tems using timed automata [2] and the Uppaal model checker [4]. The case study
revisits a well-known problem on multimedia design: the specification and veri-
fication of media streams subject to a number of quality of service constraints,
namely end-to-end latency and throughput. The proposed solution improves, in
what concerns generality, a previous attempt documented in [5]

The full version of this paper can be found at http://tinyurl.com/paper55.

2 Case study: The media stream channel revisited

The problem chosen as a case-study for this paper was a media stream channel.
This has three elements: the Source that emits messages, the Sink that receives
and processes them, and the Channel that establishes the connection between
the Source and the Sink.

These elements are obliged to the following requirements:

– Source emits a message every 50ms;
– Channel takes between 80ms and 90ms to deliver the message;
– Channel may loose messages, but no more than 20% of them;
– A message is considered lost if it does not arrive at the Sink within 90ms;
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(eds), 9-10 Setembro, 2010, pp. 519–522



– Sink takes 5ms to process each received message;
– An error should be generated if less than 15 messages per second arrive to

the Sink.

These requirements should be modeled in Uppaal, first by simulation in order
to get a feeling about its behavior and then tested through the verification of
suitable queries to check if the envisaged requirements are indeed enforced.

3 Problems and Solutions

One of the problems we have faced was to find a way to avoid the absence of
control over the messages. Actually, each message is sent by the Source every
50ms, and the Channel must have a way to simulate the delay of the commu-
nication of that message. Moreover, it must be possible to have more than one
message in delay at the same time.

Fortunately, it was realized that two processes alone were enough to solve
the problem, because of the Source frequency and the Channel latency values —
this was the crucial observation in this case-study. Such two processes must have
the possibility of being reused, inasmuch as when one of them starts processing
one message, it will be busy for at most 90ms, and, as in this interval another
message may be generated, there must be another process ready to synchronize.

Fig. 1. A possible solution.

In order to make this process reusable, the initial state is always waiting
for a message. On its arrival the process resets the clock and goes to a state
where it waits for a time t between 80ms and 91ms as shown in Fig. 1. Invariant

520 INForum 2010 André M. Rodrigues da Silva



t < check() attached to this state caters for the possibility of losing messages.
Note that the transitions must have a parameter to identify which Channel
process will receive the message.

To make sure there is an error if less than 15 messages are processed by
the Sink, a Tester process was created to count the number of successful sinkin
synchronizations per second. To do this, the latter increments a variable each
time a message is sent and resets the clocks and the counter every seconds,
sending an error to the Error process if the number of messages is less than 15.

In order to make sure that Channel does not loose more than 20% of the
messages, the number of total messages and the number of messages lost should
be known. But we can’t have unbounded integers with this information, because
when we try to verify a property, the proof tree would grow till the maximum
integer allowed is reached or till the memory runs out. To fix this problem, we
resort to an easy calculation: saying that Channel may loose messages, but no
more than 20% is the same as saying that in every 5 messages, 1 may be lost.
So, instead of counting all the messages, we can decide to increment the counter
until it reaches 5, and then reset it, incrementing one possibility of loss.

The counter that stores the number of possible losses at any moment still
remains in model and must be delimited. Actually it makes no sense for a media
channel to have a huge number of possible losses, even because the Sink will
emit an error if it receives less than 15 messages per second. So it is acceptable if
we introduce a little error here, that in theory will decrease the percentage fixed
in the requirements, meaning that less losses are allowed. To implement this, the
function update(), only tolerates the counter poss loss to be incremented until it
reaches a MAX value, globally defined. This value will maximize the number of
states considered in the proof tree; and the smaller this number, the faster the
proof will be.

The check function mentioned above is defined as follows

int check()

{ if (poss_loss>0) return 91;

return 90; }

and will enable or disable the transition of loss depending on the value of poss loss.
A property selected for verification was the most obvious:

A[] not deadlock

i.e. no state reaches a deadlock configuration. Simple as it was, its verification was
a considerable challenge, but after the replacement of the unbounded counters, the
property was verified.

4 Concluding

The final model, depicted in Fig. 1, can be easily generalized to other media stream
channels, with different latencies and frequencies. In order to do that, the frequency of
the source , the maximum latency of the channel and the interval of latency should be
declared as integer constants respecting the following rules:
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const int source_freq=10; //must be greater than Sink process time

const int max_latency=150;

const int latency_interv=5; //must be <= source_freq

const int N=max_latency/source_freq+1;

With the values above, 15 channel processes are created by the Simulator, as the
value of constant N is computed to guarantee deadlock avoidance. Restrictions at the
source frequency and the latency interval are due to the Sink processing time, because
there is only one instance of it. Note that the latency interval must be less than the
source frequency. Otherwise one process could be trying to send a message to the Sink
while another message was still being processed. Note that the Source must synchronize
with more than two processes, so the index of the transition must be incremented until
it reaches N − 1, being then restarted.

The case study discussed in this paper, set as an exercise on the practical use of
Uppaal, illustrated how this sort of tool-supported formal methods can give a precious
help to the design of real-time, complex systems. The final solution not only followed
a different strategy, but also represents a more general solution to the media stream
problem than the one proposed in [5].

The Uppaal simulator is a excellent help when creating a model, because it allows
debugging even before the specification is mature and complete enough to be model-
checked. Note, however, its role is always limited to that of an animator of the intended
behaviour. In this case-study, for example, the verifier found a problem that could not
be handled by the the simulator, the latter being unable to pursue exhaustive checking.
However, the error found could have been a lot easier to debug if the model-checker
had issued a warning, informing that the variable was not defined as a bounded integer
and was being incremented.

In concluding, it is a fact that model checking [3] is, at present, a mature collection
of techniques and practical tools for automated debugging of complex reactive systems
[1]. Actually, as this small case-study may have helped to illustrate, it is no more a
theoretical oddity, but, on contrary, its relevance for the working software engineering
cannot be understated.
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