
Bridging the Browser and the Server

Miguel Raposo and José Delgado,

Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Prof. Cavaco Silva, Porto

Salvo, Portugal

miguelfernandoraposo@gmail.com, jose.delgado@ist.utl.pt

Abstract. Web applications are now built on the principle that users interact

with them through a generic, universal browser. The paradigm, client-server, is

essentially limited to one-way interactions, with the client as the sole entity

with real initiative. Also, server-based applications often do not guarantee

information privacy, resulting in reluctance in its usage. This paper presents the

Browserver as a means to give users the ability to be service providers, not

mere consumers, and to avoid storing data at central servers. We describe an

architectural approach and a technological solution for the union of a browser

and a server for the development of a Browserver using existing technologies.

Keywords: Browser, Server, User Interface, Services, Peer-to-Peer

1 Introduction

In the early Internet days, applications were made with specific client and server side

components (Fig. 1) and specific protocols, with interactions limited by the existence

of the specific client on each user's machine. Nowadays, the browser constitutes a

generic, universal client component capable of accessing all of the ever-growing Web

applications (Fig. 2). Web users are seen as information generators, not merely as

consumers. Although services already constitute the main paradigm at enterprise

integration and the Internet of Services [17] is already a discussion subject, the Web is

still centered around content and not on services, with the client-server paradigm

limiting the interaction patterns with humans by requiring these to initiate the

interaction by navigating to some page through a URL. If a user is involved in some

business process, there is no direct way to interact with him through the browser so,

the email is now the most used tool to contact and request someone’s services, having

become a nightmare and not practical for many persons nowadays.

To reduce this limitation, AJAX, polling and long-lived HTTP connections

(Comet) [4] have been introduced to simulate server requests to the client, enabling

more dynamic processes. Web Sockets [1, 2] are promising real bi-directional

connections between the browser and the server, enabling better and faster

communication between browser and server than AJAX. Nevertheless, the browser

remains as a simple client, in the same paradigm, and business processes still depend

on user’s will to initiate the first interaction. This way, the email remains as an

indispensable tool to connect people.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 587–598

Fig. 1 A Specific client for each specific

application.

Fig. 2 The Web browser, a universal

client for Web applications.

Using the browser, interactions between people in the Web always have a server as

an intermediary, which offer the services that enable information sharing and

collaboration. These intermediaries can take the information and use it for their own

purposes. Users (or an agent on their behalf) should be able to provide electronic

services themselves and be first class peers in web interactions and business or

generic processes without the need for applicational intermediaries. We propose to

overcome the limitations of the client-server paradigm by endowing each user not

with a browser but with a Browserver (a browser (B) and a server (S)), as represented

in Fig. 3. Interactions can be made directly between peers (a, b, c) equipped with a

Browserver. Remote servers (S1, S2) can also be accessed as usual but are not as

crucial. Direct, P2P interactions now become the norm instead of having to resort to

centralized application servers for user interactions.

Fig. 3 The Browserver, the union of a universal client and a universal server on P2P

interactions.

This entails a paradigm change for web usage, from client-server to peer-to-peer,

and not just for file sharing. Applications such as email, instant messaging (IM),

social networks, collaborative document edition and workflow systems can be

implemented without necessarily depending on some central server system.

We conceptually present the Browserver in Sect. 2, a technological solution to it in

Sect. 3, the related work in Sect. 4 and draw some conclusions in Sect. 5.

2 The Browserver

We consider a service as a capacity exhibited by an entity (e.g. a user or system)

which can be offered by him, as provider and used by other(s), as consumer(s). The

588 INForum 2010 Miguel Raposo, José Delgado

Browserver provides a platform for service interactions involving users either as

providers and/or consumers, including both:

 A Web browser. A generic and universal browser (e.g. Internet Explorer,

Firefox, Chrome);

 A Web server. A generic and universal application server, enabling the user to

provide services to other entities (e.g. Sun Glassfish, Apache Tomcat).

Although each user is able to create content and resources [13] that others can use,

he is still positioned in the edge, and not in the center of the Web. Security issues

limit browser’s connections to be made only with the originating server of the Web

page that the user is navigating, making impossible to build applications for direct

collaboration through the browser. Each user acts as the ultimate consumer of services

made available by other users or organizations on remote servers, that act as

interaction intermediaries and have full access to information shared between peers

even if private. The Browserver sets P2P (Fig. 5), as its paradigm for interactions,

instead of the classic client-server model of the Web (Fig. 4).

Fig. 4 Client-server model. There is

always an intermediary offering services

to each entity.

Fig. 5 Peer-to-peer model. Entities can

interact directly, consuming each other's

services.

The Browserver aims at giving each user a really active role in the Web,

minimizing the need for intermediaries, and turning each user to be seen as an entity

fully capable of providing services, rather than a mere consumer of information and

services. The browser acts as a user interface for locally hosted services that can be

made available to the Web as well as to remote services that need to interact with the

user. Each public service of the user can be directly consumed (called, requested) by

the entity who needs to. Everyone becomes a service provider and the Web becomes

service centric instead of content centric.

To a business process, a person with a Browserver is seen as the set of invocable

services that he provides. Also, services otherwise located at centralized servers may

now exist in each user’s computer. This entails:

 More information privacy, by putting services locally to each Browserver and

directly consuming other’s services in a peer-to-peer fashion;

 A complete service paradigm on building applications from which enterprise

applications and customer relationship management can benefit from;

 New enterprise and personal relationships, and new tools for collaboration.

 Interactions with users can be proactive and not only reactive to user’s actions.

 The email and other communication platforms became accessory and not

mandatory for communications and interactions involving persons in the Web.

 Offline work, which can be granted by having the needed services and resources

for an application executing at the local server.

Bridging the Browser and the Server INForum 2010 – 589

3 A Technological Approach

In this section we present a high-level description of one solution for a technological

implementation of the Browserver which is part of a work in progress on the subject.

Although privacy requires security, that is not the focus of this article. The main focus

on this architectural design goes to the connection of a browser and a server and

automatic UI generation for services.

This approach intends to demonstrate the use of existing technologies to build a

Browserver. Given that services are the paradigm of the Browserver, Web Services

are chosen for its expressiveness and widespread use at organizational level and Java

is chosen for its full support on the technology. However, the Browserver is not

limited to a specific language or protocol.

3.1 Browser and Server

To unite a browser and a server some alternatives arise:

a) Develop from scratch a new fully integrated Web browser and server.

b) Develop a standards compliant browser frontend as an application running on

the server.

c) Connect a local browser to a local server using existing solutions.

In the solution presented in this article, we opt for the last option. This gives the

user the option to use the browser of its choice, while empowering him with the

features of a Browserver. It also allows normal Web navigation, making the

Browserver network a parallel Web to the existing one. Another advantage comes

with the possibility of physical separation of both components. On user’s will or

necessity, its private server could be located remotely (at his home or office) and the

browser could be on his mobile device (less computational capable).

The server must be compliant with Web Services [18] standards. Being Java the

programming language, Java Servlets are used in the implementation, therefore

Glassfish is the choice as it meets the requirements, with the integrated Metro web

service stack [10]. Tomcat or other compliant server could have also been chosen.

To actively make requests to the user, Comet and Reverse-Ajax [4] help to

overcome the limitations of the client-server model. Comet refers to long-lived HTTP

connections, enabling low-latency communication between browser and server.

Reverse-Ajax uses continuous polling from the client to the server for changes or

server pushing to the client using Comet connections enabling a server to send data to

the client without it without having been explicitly requested.

Direct Web Remoting [9], offers a framework for browser-server interaction based

on Reverse-Ajax. Complementing with a strong Javascript library, like JQuery [16]

full manipulation of a Web page displayed on the browser can be made. Fig. 6 shows:

 DWR Javascript library at the client side.

 DWR Java Servlet at the server side

 Browserver auxiliary and structural Javascript for UIs at the client side.

 Browserver Plain Old Java Classes (POJOs), Servlets and Beans, composing the

Browserver architecture at server side.

590 INForum 2010 Miguel Raposo, José Delgado

Fig. 6 Connecting browser (B) and server (S) through the DWR [9] framework.

The DWR framework exposes classes and methods on the Server that can be called

from the client, being reverse Ajax used to connect both ends (a) through pull and

push based techniques. At the client side, server methods are called (c) through the

DWR framework (b), being the returned result obtained through a callback function.

The server also acts as a proxy to the browser, allowing navigation on the Internet.

Fig. 7 shows a request (a) to a remote resource (a Web 2.0 site), going through a local

proxy at the server that executes the request (b) and sends the response to the client.

The response can be parsed, filtered and modified, if a service with such properties

exists in the server, enabling the system to act as in [8].

Fig. 7 The server (S) acting as a Web proxy to the browser (B).

3.2 Architectural Logical View

Fig. 8 presents a simplified logical view of the Browserver with two main parts: the

Browser (B) and the Server (S). In the context of this solution, the development leads

to a single application deployed and running on the server. The Browser part of the

system is responsible for creating and managing UIs for services and the connection

with the browser. The Server part of the system has responsibility of managing

services and the network of the Browserver. Each service has its own unique

identifier, compliant with the URI syntax [11]. In the Browser part:

 The BrowserManager, coordinates the creation of Containers and

ContainerUnits, and is responsible for sending the full container UI for the

specific browser that requires it through the Proxy, as well as creating new UI

units from UIData sent by the ServiceManager, using the UnitBuilder.

 A UnitBuilder takes the XML definition of an UI and builds a ContainerUnit

representing that UI. The BrowserManager can then add it to a Container.

Bridging the Browser and the Server INForum 2010 – 591

 There can be one or more Containers available and each holds multiple

ContainerUnits, being Portal,Portlets and ControlPanel realizations of these.

These elements produce code understandable by the browser like HTML and

Javascript. The Container also updates the UI at the browser through the DWR

whenever it changes internally.

 A DataHandler has the ability to handle user input from the browser. A

ContainerUnit must handle this data, sending it to the BrowserManager, who

forwards it to the ServiceManager.

 A Interface Unit can be:

o A SimpleUnit, which cannot hold any other units inside (e.g. a SimpleText is

used to present text without any special format).

o A ComplexUnit, which can hold other units (e.g. in HTML, a <div> element

plays this role).

o A DataUnit, which is a ComplexUnit and DataHandler that collects data

from the user (e.g. a <form> element in HTML corresponds to a DataUnit).

o A ContainerUnit, which is a DataUnit that holds the whole UI for a service

and handles input data from the browser, redirecting it to the corresponding

service at the Server part.

Different browsers are supported by Containers, ContainerUnits and UnitBuilders

that aim the specificities of each one. For a mobile device, a simple new Container

that extends an existing one and converts the output using XSLT could be a solution.

Fig. 8 Simplified logical view of the Browserver.

In the Server part:

 The Server part (S) is divided into the services part and the network (NW) part.

In the services part, are the externally accessible Web Services (WS).

592 INForum 2010 Miguel Raposo, José Delgado

 The ServicesManager is responsible to manage incoming requests and outgoing

responses for UI data.

 The Network consists of at least one Host (the local host) and all the known

remote Browserver hosts that can have any number of associated Services.

 The Network provides a means to remotely register local services. A remote

service directory is used to publicize the services of the Browserver.

 The UIWebService is an externally accessible Web Service for external entities

to request UIs to the local Browserver. SystemWebService is an externally

accessible Web Service for external entities to make system requests. Its

operations include deployment and undeployment of services. SOAP-based [22]

implementations of these services offer great interoperability with existing

systems.

3.3 Services

Services can be developed either to be local only or remotely accessible. The service

is deployed on the local application server and registered in the Browserver, through

the SystemWebService. The user has full control on whether the service is remotely

published or not. Services can be composed of other services, promoting reusability.

Asynchronous communication is a crucial requirement on processes involving

users so the Browserver UIWebService uses only one-way message exchange

patterns. This decision is due to the nature of the behavior of users. A reply might be

made immediately, or after weeks so, bidirectional communication channels can’t be

assured.

To receive replies to UI requests, the requester must provide a specific endpoint

that is able to receive, process and correctly deliver SOAP messages, using WS-

Addressing [22]. This is a limitation of existing communication channels, such as

HTTP, which is the basis of the Browserver communication, as it is application-

agnostic and can easily pass through firewalls.

Fig. 9 Services activity on user interface request.

Fig. 9 presents a simplified activity on UI creation from services point of view:

1) A local service X and a remote service Z, request a UI to the Browserver,

through the UIWebService, using SOAP messages (a1,b1) with UI definitions

Bridging the Browser and the Server INForum 2010 – 593

compliant with the schema presented in Fig. 10. The messages include WS-

Addresing headers indicating where to send the reply.

2) The UIWebService builds a UIRequest object with information provided by the

sender and a UIData object representing the UI definition, sending it to the

ServiceManager (a2,b2).

3) The ServiceManager dispatches requests, sending the UIData to the

BrowserManager, that will generate and present the UI to the user (a3, b3).

4) The data submitted by the user is forwarded (a4,b4) by the BrowserManager

to the ServiceManager, that builds a UIResponse with the data needed for the

reply.

5) The ServiceManager sends the data (a5,b5) to the endpoint previously

indicated by the requester.

6) The requester Service parses the data and act accordingly to its business rules.

To maintain context on successive service interactions, the messageId and

relatesTo elements of the WS-Addressing headers are used. A user data response

contains an ID that can be used on a later request, to indicate the relationship. To

make a service publicly available, the user can indicate the Browserver to publish it in

a service directory, like UDDI. A distributed solution for this is described in [21].

3.4 User Interface Generation and User Data Handling

Fig. 10 presents a simplified XML schema for UI definition for the Browserver. Upon

receive a request, the Browser object uses the UnitBuilder to get a new ContainerUnit

for that request. This ContainerUnit is then added to the Container, which has the

responsibility to update the UI view at the browser, through DWR and JQuery.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" >
 <xs:complexType name="interfaceType">
 <xs:group ref="iGroup" minOccurs="0" maxOccurs="unbounded"/>
 <xs:attribute name="title" type="xs:string"/>
 <xs:attribute name="id" type="xs:string"/>
 </xs:complexType>
 <xs:complexType name="formType">
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:choice>
 <xs:element name="inputText" type="inputTextType"/>
 <xs:element name="text" type="xs:string"/>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="inputTextType">
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:group name="iGroup">
 <xs:sequence>
 <xs:choice>
 <xs:element name="p" type="xs:string"/>
 <xs:element name="text" type="xs:string"/>
 <xs:element name="form" type="formType"/>
 <xs:element name="group">
 <xs:complexType>
 <xs:group ref="iGroup" minOccurs="0" maxOccurs="unbounded"/>

594 INForum 2010 Miguel Raposo, José Delgado

 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:sequence>
 </xs:group>
</xs:schema>

Fig. 10 Simplified user interface definition XML schema.

User input is gathered by Javascript (JQuery) and submitted to the Browser object

through DWR as a JSON string object. No POST or other HTTP actions are activated

at the browser. The JSON data is then converted to XML and sent to the DataHandler

associated with the UI unit. The DataHandler, primarily the ContainerUnit, parses

the data, deciding whether it will be redirected to a smaller unit to handle or to the

requesting service as a data response message, whose schema is simplified in Fig. 11.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" >
 <xs:element name="data">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="input" type="dType" minOccurs="0"
maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

Fig. 11 Simplified Data Response XML Schema.

3.5 Universal Service Identifier

The Universal Service Identifier (USI) is a Browserver approach that is not

mandatory for the Browserver, as it is possible to implement the Browserver with

other unique identifier scheme. We consider it to be a valuable means for unique

service identification. A USI is a subset of the URI [11], with the following syntax:

urn:bs:[Browserver][Service][Operation] (1)

[Browserver] = [name]@[subdomain].[domain] (2)

The Service and Operation parts (1) are optional. When consisting only of the

Browserver part (2), the it refers to the default Browserver service (the

UIWebService). The schema of the Browserver services URNs can be exemplified:

 bs:mike@ist.pt/

 bs:mike85@ist.pt/id/Accounting

 bs:john@chunk.us/MathService/squareOp

The Universal Service Identifier has no existing implementations, so, compliant

solutions would have to be developed. A solution comprising a distributed

hierarchical architecture, like the DNS (that could eventually be adapted), providing

services for naming and locating services, and Ad-UDDI [21] would fulfill the needs.

Bridging the Browser and the Server INForum 2010 – 595

The USI offers a naming schema that can be used to fully resolve a service

location, provided that the Web supports it with the necessary systems.

4 Related Work

There is currently no known work which is conceptually closely related to the

Browserver, although there are some attempts to give the user the ability to provide

services or resources using the browser.

Opera Unite [20] couples a browser and a server, giving the user the possibility of

providing some services and resources to other users, but not in a direct fashion.

Opera servers are always in the middle, and there is no continuous presence for

services or resources in the Web.

In [19], the author tries to get the browser to be seen as web services server, but the

method results in sending some notification (email, SMS) to the user with a URL to

follow, instead of making a direct request to the browser which the user can fulfill.

Smart Browser [8], intends to provide more processing power, enabling

background processing that can change the way things are presented, but doesn’t give

service provider capabilities to the user, who remains a mere consumer.

Most of current efforts to improve the Web are centered at the user experience as a

consumer. The HTML5 draft enables more interactive content, by extending the

dynamic UI creation to meet the standards. Anyhow, many capabilities it will bring to

the browsers can be done by the local server and, for greater user interaction, also

Flash can be used, so the choice isn’t limited.

Still in a draft state of a standard protocol [2] and API [1], Web Sockets promise to

enable seamless bi-directional communication and, consequently, much lower latency

in connections between browser and server, even through intermediary proxies and

firewalls (if encryption is used). The Browserver might eventually benefit from the

use of such technology for communication, although the direction the technology is

heading does not put the user in a provider position, as the services still remain at the

servers.

5 Rationale and Conclusions

This work intends to be a first approach to the development of the Browserver, and

instigate discussion over the best solutions to it as no system today implements its

features. An implementation of the Browserver is under development as a

demonstration of the concept, with the architectural design presented by this article

mostly implemented and functional.

The Browserver is intended to be a platform for the Internet of Services and can

change the way Web applications are designed. People, the leaves of the current Web,

can be invoked as if they were Web Services. Workflows can be implemented by

knowing that each participant is able to perform a task and to provide a service,

directly requested (as in a real business process) and not relying on the user's

willingness to follow an URL.

596 INForum 2010 Miguel Raposo, José Delgado

Nowadays, collaborative work is made mostly using central servers. Most

companies prefer using their own infrastructure as a security and privacy measure. As

in [15, 7], the Browserver eliminates the intermediaries in communication, therefore

providing a platform for more secure and private collaboration environments. The e-

mail is one of the applications that can be redesigned to send messages directly to the

addressee or to feed them through some trusted third-party with user defined

encryption mechanisms.

New and existing large-scale applications can be built or redesigned by knowing

that the client has the ability to perform server-side tasks, lowering the load on the

application servers. New P2P social networks are also a targeted application area. We

can maintain a social network by keeping the URNs of all our connections, instead of

having them all stored in some server.

Not all the current technologies are well suited for the Browserver. NAT

constitutes an obstacle to P2P networks like the one the Browserver intends to build,

and the existing solutions are not optimal. While Web Services are still the most used

standard technology to implement the service paradigm, their complexity and sluggish

performance constitute an opportunity for alternatives that best suit performance and

scalability, such as WOA and REST [14]. However, expressiveness is not the

strongest point in REST. The convergence of the two approaches is now the focus of

study and development [17]. Peer-to-Peer networks using Web Services have already

been addressed by [6, 3, 5, 12].

References

[1] The WebSocket API. W3C Working Draft, June 2010. http://dev.w3.org/html5/-

websockets/, last access on 2010-07-14.

[2] The WebSocket protocol. IEFT Draft, May 2010. http://tools.ietf.org/html/draft-

ietf-hybi-thewebsocketprotocol-00, last access on 2010-07-14.

[3] Conrad, M., Dinger, J., Hartenstein, H., Schöller, M., and Zitterbart, M.:

Combining service-orientation and peer-to-peer networks. In KiVS Kurzbeiträge

und Workshop, p. 181–184, 2005.

[4] Crane, D. and McCarthy, P.: Comet and Reverse Ajax: The Next-Generation

Ajax 2.0. Apress, Berkely, CA, USA, 2008.

[5] Galatopoullos, D.G., Kalofonos, D.N., and Manolakos, E.S.: A P2P SOA

enabling group collaboration through service composition. In ICPS ’08:

Proceedings of the 5th international conference on Pervasive services, pages

111–120, New York, NY, USA, 2008. ACM.

[6] Harrison, A., and Taylor, I.: Dynamic web service deployment using WSPeer. In

Proceedings of 13th Annual Mardi Gras Conference - Frontiers of Grid

Applications and Technologies, pages 11–16. Louisiana State University,

February 2005.

[7] Kortuem, G., Schneider, J., Preuitt, D., Thompson, T. G., Fickas, S., and Segall,

Z.:When peer-to-peer comes face-to-face: Collaborative peer-to-peer computing

in mobile ad hoc networks. Peer-to-Peer Computing, IEEE International

Conference on, 0:0075, 2001.

Bridging the Browser and the Server INForum 2010 – 597

[8] Lin, D., Jin, J., and Xiong, Y.. Smart Browser: A framework for bringing

intelligence into the browser. volume 7540, Tower A505 SP Tower, Tsinghua

Science Park, HaiDian District, Beijing, China, 100084, 2010.

[9] Marginian, D. and Walke, J.: Direct Web Remoting - easy Ajax for Java, 2010.

http://directwebremoting.org/, last access on 2010-06-07.

[10] Sun Microsystems. Metro, open source web service stack, 2009.

[11] T. Berners-Lee, Fielding, R., and Masinter, L.: RFC 3986, Uniform Resource

Identifier (URI): Generic syntax. Request For Comments (RFC), 2005.

[12] Mondejar, R., Garcia, P., Pairot, C., and Skarmeta, A.F.G.: Enabling wide-area

service oriented architecture through the p2pweb model. In WETICE ’06:

Proceedings of the 15th IEEE International Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises, pages 89–94,

Washington, DC, USA, 2006. IEEE Computer Society.

[13] Tim O’Reilly: What is web 2.0: Design patterns and business models for the

next generation of software. MPRA Paper 4578, University Library of Munich,

Germany, March 2007.

[14] Pautasso, C., Zimmermann, O., and Leymann, F.: Restful web services vs.

"big"’ web services: making the right architectural decision. In WWW ’08:

Proceeding of the 17th international conference on World Wide Web, pages

805–814, New York, NY, USA, 2008. ACM.

[15] Reif, G., Kirda, E., Gall, H., Picco, G.P, Cugola, G., and Fenkam, P.: A web-

based peer-to-peer architecture for collaborative nomadic working. In 10th IEEE

Workshops on Enabling Technologies: Infrastructures for Collaborative

Enterprises (Wetice), pages 334–339. IEEE Computer Society Press, 2001.

[16] John Resig. JQuery: The write less, do more, javascript library, 2010.

[17] Schroth, C. and Janner, T.: Web 2.0 and SOA: Converging concepts enabling

the internet of services. IT Professional, 9:36–41, 2007.

[18] W3C: Web services architecture, February 2004. http://www.w3.org/TR/ws-

arch/, last access on 2010-07-04.

[19] Waldorf, J.A., Lu, Y., and Demetriades, A.: Web browser as web service server

in interaction with business process engine. Patent US 2005/0182768 A1, Aug

2005.

[20] Opera: Opera Unite. http://unite.opera.com/, last access on 2010-07-14.

[21] Du, Z., Huai, J., and Liu, Y. Ad-UDDI: An active and distributed service

Registry. In C. Bussler and M.-C. Shan, editors, 6th VLDB Int’l Workshop on

Technologies for E-Services, volume 3811 of LNCS, pages 58–71. Springer,

2006.

[22] Weerawarana, S., Curbera, F., Leymann, F., Storey, T, and Ferguson, D.F.: Web

Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing,

WS-BPEL, WS-Reliable Messaging and More. Prentice Hall PTR, Upper Saddle

River, NJ, USA, 2005.

598 INForum 2010 Miguel Raposo, José Delgado

