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Abstract. This paper addresses a resilient cooperative engine for robot
teams within the context of the surveillance of physical areas. Due to the
unreliability in the wireless communication between robots, a middleware
must offer some resilience to the control application and guarantee that
the robots never collide. We present an architecture for the robots to
share a common view and to handle new events in a safe and resilient
way. The system relies on two control sub-modules, the first one, the
payload, could be complex and has access to information shared among
robots, the second one, the wormhole is reliable but only uses local infor-
mation. The system is evaluated by means of simulation tools and aims
to be ported to hardware platforms composed by real mobile robots.

Resumo: Este documento aborda um motor cooperativo e resiliente
para equipas de robôs no contexto da vigilância de áreas f́ısicas. Devido
à falta de fiabilidade na comunicação sem fios entre robôs, um middle-
ware deve oferecer alguma resiliência à aplicação de controlo e garantir
que os robôs nunca colidem. Apresentamos uma arquitectura que per-
mite aos robôs partilharem uma vista comum e lidar com novos eventos
de uma forma fiável e resiliente. O sistema apoia-se em dois sub-módulos
de controlo, o primeiro, payload, pode ser complexo e acede à informação
partilhada pelos robôs, o segundo, wormhole é confiável mas apenas uti-
liza informação local. O sistema é avaliado através de ferramentas de
simulação e tem como objectivo ser implementado em plataformas de
hardware compostas por robôs reais.
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1 Introduction

Mobile robot teams have the potential to reduce the need of human presence
for complex or repetitive tasks. For most of them, the use of cooperation be-
tween robots can enhance the overall performance of the team. Achieving an
efficient cooperation requires the use of complex algorithms implemented in each
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robot. This internal complexity in addition to the interaction issue with the en-
vironment makes the robot control system more sensitive to failures. Nowadays,
building resilient control systems for mobile robots is a real challenge.

In this paper, we will present a middleware architecture for robots in charge
of monitoring a physical area. In particular, we will focus on three architecture
features which improve the system resilience: First, a control layer which relies
on an hybrid approach, both synchronous and asynchronous. This layer involves
two sub-systems the payload and the wormhole and guarantees a timely execu-
tion of critical tasks. The second architecture feature is the tree-oriented event
structure used in the payload and based on small computation modules, This
structure offers more stability to the system by avoiding cycles of events. Fi-
nally, as last feature, we will describe a group of modules in charge of managing
a common world view for all robots and in particular a synchronization algo-
rithm used during group merging or splitting phases. The algorithm is designed
to be tolerant to communication failures.

The project context is a cooperative surveillance application of a given area.
The covered zone is a campus, a plant or any well-defined area, each robot has
a prior map of this environment. The purpose is to detect an accident or an
intrusion and to build a common strategy to handle properly the detected event
(e.g. blocking the intruder). All robots run the same version of the middleware
and are equipped with local sensors, positioning and wireless devices.

This paper is organized as follows: The next section addresses the related
work. In section 3, we provide an architecture overview. Section 4 gives details
on the wormhole and payload model, the event-based architecture, and the world
view synchronization algorithm. This latter part includes a short analysis with
pros and cons. Finally, section 5 describes pending and future applications of
the work and concludes the paper.

2 Related work

In the last twenty years, there has been a considerable amount of work to study
mobile robot localization. Researches have been carried out focussing on two
problems: computing absolute location using a priori map [6] or building incre-
mentally this map while exploring the environment [5]. Both approaches most
often rely on complex and math-oriented algorithms based on Kalman filters
and maximum likelihood estimation [7]. The present paper does not address this
kind of problem and we assume that the robot is equipped with a location de-
vice based on GPS or RSS technology 1. In the same way, the way a robot team
performs the surveillance of a physical area could obey many rules in order to
maximize the probability of locating an intruder [8]. We wilfully chose not to
optimize this part, the robot just wanders around the world, making random
decisions to turn left or right at every crossing.

In the control architecture, the payload relies on a flexible and modular tree-
oriented architecture. The idea is to break down the control layer into a chain

1 Global Positioning System and Received Signal Strength
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of small modules. Each one is triggered with an incoming event and is able
to generate outgoing events up to others modules. This concept is a simplified
application of the subsumption theory developed by Rodney A. Brooks [9] at
the beginning of the 80’s. Unlike many implementation projects based on this
theory, we do not allow information cycles between module layers, modules are
top-down triggered which minimizes the risk of an out-of-control diffusion of
events. Finally, we took up the idea of suppressing some input signal to inhibit
a group of modules which is similar to the Brooks suppressor concept.

In the vehicular domain, designing safety-critical application is essential, the
work in [1], [2] or [3] presents a hybrid (synchronous and asynchronous) control
model used in real-time applications. This model is based on two sub-systems, the
payload in charge of running complex algorithms to figure out the best behaviour
of each car to avoid collisions while the second sub-system, the wormhole is
running synchronous and robust algorithms aimed to check whether the payload
timely sends corrections to the car actuators. In case a timely timing failure is
detected, the wormhole can temporally take control of the car. As this technique
is applicable to any domain where a safety-critical control is mandatory, we used
a payload-and-wormhole-based architecture for the robot control layer.

Robot soccer game is an entertaining and well-known application of robot
team cooperation. Actually, it shows many common points with our project like
the need for all robots to real-time maintain a common view of the world. In the
paper [4], the authors present an approach of view model which was successfully
implemented during the 2002 RoboCup Sony competition. Due to some high
latency in wireless communication, the robot team does not perform any view
synchronization. In order to track a dynamic object like the ball, each robot
combines local information from vision sensors with shared information sent by
team-mates. The robot maintains timestamps and uncertainty values for each
view object, uncertainty is updated when receiving new information and grows
with time. Unlike in [4], our world model is based on a view synchronization but
we use certainty flags associated with timestamps to give more or less weight to
an object position in the world view.

3 Architecture overview

In this section, we give an architecture overview through the description of three
key features of the middleware, depicted in figure 1. The left side shows the
middleware layer division. The wormhole and payload are the middleware basic
components. The wormhole is placed in cut-through configuration between the
payload and the sensor/actuator layer and does not have access to the network
device. The payload runs all complex tasks in charge of the robot control. All
tasks are triggered by events broadcasted through a module tree. An example
of module tree used in the payload is shown in the right side of the figure. Each
group of modules is dedicated to a specific task: Position update, navigation
or world view management. Here, we will focus on the view management and
especially the synchronization mechanism.
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Fig. 1: Middleware layer division and module tree

3.1 Wormhole and payload model

The payload, may be asynchronous and runs complex and intelligent algorithms.
These algorithms might not be deterministic and the computation time may vary
especially if they require network communication. The wormhole is synchronous
and runs simple and more robust algorithms. On the robot, some critical tasks
like the collision avoidance require for the payload to timely send information to
the hardware layer. In our case, this information will be new speed and heading
commands.

The wormhole’s job is to check whether these commands are timely sent by
the payload. If so, the wormhole will just forward them to the hardware layer.
Otherwise, it will assume the robot’s control by calculating and sending itself
these commands. The wormhole uses a low-level navigation algorithm which
only involves local information. The wormhole will keep the control until the
payload starts again to send commands on time. If the payload does not regain
stability or even no longer sends any command (the payload may have crashed),
the wormhole can restart the whole payload process.

The payload sends the new commands in a structure called the promise. Each
promise includes a deadline which enables the wormhole to control the payload ’s
timeliness. For each promise, the payload is expected to send the next command
before the current deadline is exceeded.

3.2 Module definition

The event-based architecture is well adapted to robot management. It allows
to design a flexible and modular architecture. Indeed, we can create an event
type for any robot feature and dedicate a part of the tree to handle this event.
Moreover, robot hardware is composed by sensors, actuators and communication
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devices, each one of them can generate a special event or be triggered by this
event. The obstacle event is an example of event which contains the distance
values read from the local sensor.

The payload is composed by modules and groups of modules, all gathered in
a tree. Each of them is in charge of managing a robot feature. A module can be
seen as a process, with a short computation time, which is started by a single
incoming event and can produce one or more outgoing events.

We will detail later the different types of events but basically, an event is
broadcasted from a given location in the tree until the leaves. Each module
which can consume this event, is started. That way, various modules can run at
the same time.

3.3 Team management and view synchronization

Given that robots can move away from each other and go beyond their wire-
less range, a group can be split in various sub-groups. The unreliability of the
wireless network can also lead to isolate a single robot if it temporarily loses the
Wi-Fi signal. When two groups merge together, a synchronization mechanism
is necessary to consolidate the information of each group view. The payload in-
cludes such a dynamic mechanism which ensures that all robot views are the
same inside the group. The synchronization task as all other payload ’s tasks is
triggered by events. The synchro event will be detailed in chapter 4.3.

4 Design and implementation

We will now detail the payload and wormhole architecture, the implementation
of the module structure and finally the world view synchronization algorithm.

4.1 Wormhole and Payload implementation

The wormhole relies on three modules as shown in figure 2: The Timely Timing
Failure Detection (TTFD) monitors the timeliness of the asynchronous payload
process and can activate the Safety task to assume control. The Control task
receives the promise which includes the new speed and heading values and de-
cides whether these values can be forwarded to the actuator layer. The TTFD
sends as well control updates to the payload to inform it won back or lost the
control. Ideally, the payload should use these control updates to improve its
performance. In particular, it could try to real-time adjust the priority of some
internal processes.

Logical flowcharts of the TTFD and Control tasks are given in figure 3. The
payload runs in three modes: “active” when it has the control, “disable” when it
loses the control after the latest deadline is exceeded and finally in “test”, when
the wormhole receives a timely promise while the payload is disabled. The test
mode is a transition period, the wormhole keeps the control and waits for the
payload to meet the current deadline before giving him back control.
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Fig. 2: Payload and Wormhole layers

There are two restart conditions for the payload. After setting it to disable,
the TTFD task will increment a timing failure counter and will wait MAXWAIT
milliseconds. If the failure counter is greater than a prior threshold or if no
promise is received within this waiting period, the TTFD task will restart the
payload.

4.2 Tree-oriented structure

The modules could be meshed as a graph and thus make event cycles possible.
In order to avoid hazardous out-of-control cycles inside one robot or between
several robots, we chose a tree-oriented module architecture. Each tree’s branch
has one or several parents. Events are top-down broadcasted until the leaves.
A module computation is started if the current event can be consumed by the
module. There are three types of events:

– Hard events: They are signals generated by the robot’s hardware, e.g. the
robot’s clock (beat event) or a distance sensor measure (obstacle event). Such
events are always broadcasted from the tree’s root.

– Local soft events: These events are produced by a module and are broad-
casted through the neighbour branches (modules with same parent) and the
sub-branches. Any module can produce several soft events during the same
computation.

– Remote soft events: Instead of being broadcasted locally, they are trans-
mitted through the wireless network and sent to all other robots. Once de-
livered to a given robot, the event is broadcasted from the same branch as
if it would be produced locally. This mechanism relies on two architecture
properties: The module tree has the same structure for all robots which
means that any path in the local tree matches the same path in a remote
tree. Secondly, the path to locate the module which produced the event in
the tree, is stored in the transmitted event. That way, we cannot have event
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(a) TTFD task (b) Control task

Fig. 3: Wormhole logical flowchart

cycles between robots and the remote soft events meet the same constraints
as the hard and local soft events.

Let’s consider the module tree depicted in figure 4 with three robots in the
same group. We assume that e1 and e2 are hard events, e3 a local soft event
and e4 a remote soft event. Now, let’s have a look on the started modules if e1
is triggered on robot 1.

– Module 1 of Robot 1 (locally triggered by e1 )
– Module 2 of Robot 1 (locally triggered by e1 )
– Module 4 of Robot 1 (locally triggered by e3 )
– Module 6 of Robot 2 (remotely triggered by e4 with path root.g1.
– Module 6 of Robot 3 (remotely triggered by e4 with path root.g1.

Although module 3 can consume the e4 event, this module is not started
in robots 2 and 3 because it cannot be reached from the path root.g1. What’s
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Fig. 4: Example of module tree common to robots 1, 2 and 3

more, this architecture opens the possibility of dynamically enabling or disabling
a sub-branch of the module tree. When disabled, events are no longer broad-
casted through this branch. The activation or disactivation can be performed by
any computation module. In our project, each robot has three working modes:
Wandering, Searching and Blocking (an intruder), each mode corresponds to a
single branch of the navigation sub-tree. We use the branch enabling/disabling
mechanism to activate the modules associated to the robot current mode.

4.3 World view synchronization algorithm

We will now describe in details the synchronization algorithm used to maintain
in each robot a coherent world view when two or more groups are merging. This
view is composed by all dynamic objects present in the world. The first part
will deal with the algorithm principles and the second part will present some
synchronization scenarios.

Algorithm overview: When two groups are merging, the synchronization
is performed by exchanging a synchro event which contains the list of all view
objects except for the robots position. This latter is already exchanged through
the hello events so including this information in a synchro event would be re-
dundant. The synchro event is normally sent by the group leader. The leader is
the robot with the lowest id in the group. A group is identified by a single id. So
all robots from a group share the same leader and group id. The synchro event
reception is not centralized by the leader, each robot from the destination group,
will handle the synchro event and extract the object list. The synchronization
phase ends when all robots have the same leader and group id.

The basic steps below are associated to a faultless synchronization phase.
By fault, we mean any event reception failure due for instance to a temporally
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Wi-Fi signal loss. Different fault scenarios will be discussed in the next section.
Two synchro events are exchanged during a faultless synchronization, the first
synchro event is always generated by the group leader with the higher id.

– Step 1 : Leader 1 receives a hello event from the group leader 2.
– Step 2 : Leader 1 broadcasts a synchro event through the group 2.
– Step 3 : Robots from group 2 receive the object list and update their view.
– Step 4 : Leader 2 broadcasts a synchro event through the group 1.
– Step 5 : Robots from group 1 receive the object list and update their view.

The algorithm 1 gives the modules involved in the synchronization phase. The
Hello Receiver module (line 1) is triggered by an object event which is used by
a robot to broadcast its own position, the module checks out whether this event
comes from another leader. The View Synchronizer module (line 9) is triggered
by a synchro event, it extracts the object list and updates the local world view
(line 16). Finally, the Freshness Detector module (line 22) is triggered by the
beat event and removes out-of-date objects from the robot’s view. The beat is a
hard event periodically generated by the system (see section 4.2).

In order to keep the algorithm clear, we won’t detail below neither the Hello
Sender module which is also triggered by the beat event and produces an object
event, nor the View Updater module triggered by an object event and which
updates the world view. The robot state parameters are as follows:

– myId : single robot identifier.
– myView : view objects including team-mate positions.
– myLeader : current group leader identifier.
– myGroup: current group identifier.

Examples of synchronization scenarios: Figures 5 and 6 show various
synchronization scenarios with respectively two and three different groups merg-
ing at the same time. Each group is first composed by two robots, robots 0 and 1
for the first group, robots 2 and 3 for the second one and so on. Arrows identify
events (blue for hello and red for synchro events) which are handled by robots
for the synchronization phase. Other hello events broadcasted to periodically
announce robot positions are not represented here. Each scenario is given as an
example. Therefore, the number of events exchanged during a scenario could be
different according to the order each event is delivered with. This statement is
especially true if the number of groups merging at the same time is large.

In a robot time line, couple of black values correspond respectively to the
leader and group id. The hello event parameters are the source robot, leader and
group id. Finally, the synchro event parameters are the source and destination
leader id (leader1 and leader2 in the algorithm 1).

Scenarios 5b, 5c and 5d highlight temporally reception failures which lead
the robot to broadcast extra events to achieve the synchronization. Such failures
could be due to a temporary Wi-Fi signal loss. The extra event phase is initialized
by the faulty robot which receives a hello packet from its leader. This mechanism
is implemented at line 5 of the algorithm 1.
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Algorithm 1 View synchronization algorithm

1: upon event <object | type, id, leader, group> do
2: if type = ”robot” ∧ (leader 6= myLeader ∨ group 6= myGroup) then
3: if id = leader ∧myId = myLeader ∧ id < myId then
4: synchronization(myLeader, leader)
5: else if id = myLeader then
6: synchronization(myId, leader)
7: myLeader ← myId

8:
9: upon event <synchro | leader1, leader2, objList> do

10: if myLeader = leader2 then
11: if leader1 < myLeader then
12: myLeader ← leader1

13: if myId = myLeader then
14: synchronization(myId, leader1)

15: for all obj ∈ objList do
16: trigger <object | obj.type, obj.id, obj.leader, obj.group>

17: if leader1 > leader2 then
18: myGroup← leader1
19: else
20: myGroup← leader2

21:
22: upon event <beat | > do
23: updateRequired← false
24: for all obj ∈ view do
25: if isUptodate(obj) = false then
26: view ← myV iew − {obj}
27: if obj.type = ”robot” ∧ (obj.id = myLeader ∨ obj.id = myGroup) then
28: updateRequired← true

29: if updateRequired = true then
30: updateLeader()

31:
32: procedure synchronization(leader1, leader2)
33: objList← {}
34: for all obj ∈ myV iew do
35: if obj.type 6= ”robot” then
36: objList← objList + {obj}
37: trigger <synchro | leader1, leader2, objList>

38:
39: procedure updateLeader
40: myLeader ← myId
41: myGroup← myId
42: for all obj ∈ myV iew do
43: if obj.type = ”robot” ∧ obj.id < myLeader then
44: myLeader ← obj.id

45: if obj.type = ”robot” ∧ obj.id > myGroup then
46: myGroup← obj.id
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(a) Synchronization without failure (b) Reception failure on robot 1

(c) Reception failure on robot 0 (d) Reception failure on robot 3

Fig. 5: Examples of view synchronization between two groups

Fig. 6: Example of view synchronization between three groups

The last scenario 6, three groups merging at the same time, is unusual but
shows the algorithm resilience. We can notice that at the end of the first “round”,
the robot 3 doesn’t have the same group id than the others (yellow-circled value).
The situation gets stable after the second hello event.
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Advantages and drawbacks: This algorithm is very simple and offers
resilience in signal loss situations. Nevertheless in some tricky scenarios, it could
require more than one round, i.e. more than one hello event to stabilize itself.
Hello events are periodically generated (according to the beat signal frequency),
so increasing this beat signal frequency to accelerate the synchronization phase
could be attractive but may on the other hand overload the wireless network
and what’s more, lead to some algorithm instability if this frequency is greater
than half the mean round trip delay of the wireless network.

5 Conclusion and future work

We have proposed a middleware architecture aimed to offer a resilient control
system for mobile robots. A middleware version was written in C and evaluated
by means of robot simulation Java tools (Simbad v1.4). Most common scenarios
like communication failures, robot group splitting and merging, or payload over-
load have been successfully tested. The next step is now to port the middleware
to an embedded platform based on an ARM chip and a FPGA.
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