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Abstract. This paper presents our recent research efforts addressing the 
dynamic mapping of sections of execution to a coarse-grained reconfigurable 
array (CGRA) coupled to a General Purpose Processor (GPP). We are 
considering the common scenario of a GPP – a RISC processor – using the 
CGRA as a co-processor to speedup applications. We present a partitioning 
scheme based on large traces of instructions (named Megablock). We show 
estimations of the speedups achieved by considering the Megablock. 

Resumo. Este artigo apresenta os nossos esforços mais recentes em relação 
ao mapeamento dinâmico de secções de programas a correr em processadores 
de âmbito geral (GPPs) para agregados reconfiguráveis de grão grosso 
(CGRAs). Na abordagem actual consideramos um cenário em que temos um 
GPP – processador RISC – que utiliza um CGRA como co-processador para 
acelerar aplicações. Apresentamos um método de particionamento baseado em 
grandes blocos de instruções (denominados MegaBlocos) e mostramos valores 
estimados de acelerações do tempo de execução quando se considera o 
MegaBloco como unidade de partição. 

Keywords: Reconfigurable Computing, Dynamic Mapping, Just-In-Time 
Compilation, Binary Translation. 

1 Introduction 

The execution of applications on general purpose processors (GPPs) can be enhanced 
– e.g., lower execution time, lower energy consumption – by moving computationally 
intensive parts (hot-spots) to specialized custom hardware components such as 
Reconfigurable Processing Units (RPUs) [1, 2]. This is becoming common practice in 
high-performance embedded systems. It is common to use a programmable processor, 
often a RISC-like GPP, to run the application and use a custom hardware coprocessor 
(e.g., CGRAs – Coarse-Grained Reconfigurable Arrays) when certain requirements 
cannot be met by the GPP alone. 

However, to be able to use the custom hardware, we must rewrite part of the 
application and explicitly call this hardware when needed. This can be accomplished 
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by several means (e.g., manually by a programmer, automatically by a compiler). By 
using techniques from both binary translation and dynamic compilation, it is possible 
to translate the application and insert calls to the hardware at runtime. This way we 
can transparently move critical sections of programs running on a GPP to a CGRA 
co-processor without pre-changing the program binaries. We refer to this as dynamic 
mapping. It has already been successfully applied [3], but research efforts about the 
benefits and the feasibility of dynamically partitioning binaries to reconfigurable 
architectures are relatively recent [4]. 

This paper shows our most recent efforts on dynamic mapping. We identify a set of 
characteristics that when present in the critical sections can benefit dynamic mapping, 
and we propose a novel partitioning method which can extract blocks of instructions 
[5] with those characteristics in mind. We show how this partitioning method can 
impact performance. 

This paper is organized as follows. Section 2 introduces the dynamic mapping 
problem and motivation. In Section 3 we explain our approach to dynamic mapping 
and we propose the MegaBlock partitioning method. Section 4 presents experimental 
results regarding our approach and Section 5 introduces related work. Finally, Section 
6 concludes the paper. 

2 Dynamic Mapping 

As previous work has shown, if we move the critical loops of a program to dedicated 
hardware units, we can have significant performance improvements [6]. There have 
been many proposals on accelerators for reconfigurable computing, as well as a 
plethora of architectures [7, 8]. Most well-known examples include Adres [9], 
Morphosys [10], Chimaera [11], and XPP [12]. Each one of these architectures 
proposes unique features and tries to address faster execution and/or energy savings 
for a set of algorithms. Currently, there is a wide choice of hardware accelerators and 
fine-grained reconfigurable fabrics such as FPGAs (Filed-Programmable Gate 
Arrays) are a fairly cheap technology to implement them. The main obstacle to 
custom hardware units is the significant cost of rewriting the programs to take 
advantage of those units. 

A common approach has been to develop tools which automatically partition a 
program (typically in C) into software and hardware parts [13, 14]. With the help of 
profiling information, the tools detect small sections of code where the program 
spends most of its time (critical kernels or hot-spots). This approach is applied at 
compile time (statically). Since it is static, it can use more complex algorithms than 
dynamic approaches. On the other hand, the binary generated by the tools is often tied 
to a very specific setup. Even when the tool supports several families of the same 
architecture (e.g., with variations in the number of functional units), at compilation 
time the options usually are compiling to a very specific architecture, or to the lowest 
common denominator. In addition, if the execution of a program is sensitive to 
changes in the input data, the information collected during profiling might not hold 
between executions, limiting the adaptability of the generated binary. 
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During static partitioning, we can only move parts of an application to hardware if 
we have access to its code. In this approach, pre-compiled libraries (e.g., DLLs) are 
usually out of the partitioning scope, and consequently they are not considered for 
target-specific compiler optimizations. 

Dynamic mapping can make RPUs transparent without compromising existent  
binary portability, expose more optimization opportunities and expand the use of 
reconfigurable hardware in embedded computing systems. However, dynamic 
mapping represents a difficult challenge, since it implies we need to execute many of 
the tasks performed by static partition at runtime. On the other hand, it provides 
access to information previously not available, which can be used for further 
optimizations.  

We are considering the common scenario of a GPP using a co-processor to 
speedup applications. In such a case, the execution will be switching back and forth 
between the GPP and the co-processor.  

We focus our work on the level of the instructions executed by the GPP. By 
working at a higher level (e.g., doing the partitioning of the program on C code) we 
might not have access to important information about the execution flow of the 
program. 

3 Our Approach to Dynamic Mapping 

The main objective of our work is to contribute in bridging the gap between software 
and reconfigurable hardware. Embedded computing is a good target since it is an area 
where it is common to find systems including customized hardware modules and 
reconfigurable hardware. 

We want to move parts of programs to hardware to improve one or more particular 
aspects (e.g., execution time, energy consumption). So, instead of starting with the 
hardware and propose a specific architecture, in our approach we want to start with 
the programs, and discover what kind of opportunities they have for dynamic 
mapping. 

Nonetheless, the particular mapping techniques will depend on the target co-
processor architecture, memory interface, and available communication. We think 
that to maximize the impact of dynamic mapping, we should go beyond the Basic 
Block and be prepared to map blocks of instructions with dozens to hundreds of 
instructions. Bearing this in mind, we choose to base our work on the general 
architecture shown in Figure 1. This kind of target architectures with a RISC-like 
GPP is commonly used in embedded systems. Currently, we use the Xilinx 
MicroBlaze softcore processor [15] as the GPP to run the programs. Dynamic 
mapping could possibly be applied to other types of hardware co-processors, but we 
choose to focus our work on CGRAs, since they generally need less mapping efforts 
than finer-grained alternatives (e.g., FPGAs). Note, however, that this does not 
constrain the use of FPGAs as CGRAs can be mapped to the FPGA hardware 
resources, which is a trend in the reconfigurable computing area. 

We present in this paper a novel approach to one of the challenges in dynamic 
mapping: identifying what portions of code should be mapped (partitioning). 
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Figure 1. General Architecture 

Regarding the architecture assumptions previously described in this section, we 
identified three issues.  

Firstly, the longer a segment of code executes in the co-processor uninterruptedly, 
the higher the impact of dynamic mapping. This will reduce the communication and 
reconfiguration overhead [13], and since each partition will incur in a mapping cost 
the first time it is found and a reconfiguration cost every time it is used, it is desirable 
to find mapping candidates which will have a large number of iterations. 

Secondly, as stated by Amdahl’s Law, we need to move a large portion of the 
program execution to the co-processor if we want to have a significant impact. E.g., 
for a speedup of 2, we will always need to move more than 50% of the execution 
from the GPP to the co-processor. 

Lastly, branches are a common occurrence in code running on GPPs, and do not 
translate well to the usually highly parallel, data-flow co-processors. Branches can 
also prevent several optimizations and limit the amount of Instruction-Level 
Parallelism (ILP). Hardware accelerators work best when the control-flow is very low 
or non-existent. 

Taking these issues into account, we consider that a good candidate for mapping 
would be a segment of branchless code (control-flow issue) which repeats itself a high 
number of times during execution (iteration issue). It is important that such segments 
represent a significant portion of the program execution (coverage issue). Figure 2 
illustrates the segments we are currently identifying in an execution trace, in an 
example in pseudo-code. 

The BasicBlock is formed by a sequence of instructions with single entry-point and 
single exit-point  basic blocks end when a branch or jump instruction appears. 

A similar, yet more powerful type of segment is the SuperBlock. SuperBlocks are 
regions of code with single entry-point and multiple exit-points. Originally, it was 
proposed as a technique to extract more ILP from static compilation [16], but it was 
later adapted for dynamic compilation [17]. The dynamic version of the SuperBlock 
represents a common, biased path along several BasicBlocks. A SuperBlock is built 
by adding BasicBlocks until we reach a BasicBlock that ends with a backward jump. 
The jump starts a new SuperBlock. 

Expanding on the idea of the SuperBlock, we propose another type of segment, the 
MegaBlock, as a sequence of SuperBlocks, with a bias towards consecutive 
repetitions. A MegaBlock is built by identifying a sequence of SuperBlocks, up to a 
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predetermined size. When a sequence of SuperBlocks repeats itself at least one time, 
that sequence is considered as a MegaBlock with multiple iterations. SuperBlocks 
which do not form repeatable sequences are also considered as MegaBlocks, albeit 
with only one iteration. It should be noted that when these three kinds of segments are 
considered individually, they only have one execution path and the only control-flow 
inside the blocks are side-exits. 

 

Figure 2. Program execution partitioning according to BasicBlocks, SuperBlocks and 
MegaBlocks 

To use these segments in dynamic mapping, it is important that we can detect and 
extract them during runtime. To detect BasicBlocks, we identify branch instructions. 
SuperBlocks can be detected by identifying backward branch instructions. To find 
MegaBlocks at runtime we propose a technique which first, uniquely indentifies 
SuperBlocks by using the first addresses of their BasicBlocks to create a hash value 
(e.g., [16]). Using a hardware pattern matching module, we can efficiently find 
MegaBlocks within a stream of SuperBlock hashes. We could make the detection of 
MegaBlocks over the BasicBlocks instead of the SuperBlocks, but the coarser 
granularity of the SuperBlock reduces the pattern matching requirements 
significantly. 

Before mapping a section of the program execution, we can apply optimizations to 
expose more ILP, or to reduce the number of instructions to map. Although this is not 
explored in this paper, we will refer some considerations about these optimizations. 
Since the algorithms should perform during runtime, we favor algorithms which map 
well to hardware. We focus on algorithms which can be applied to a stream of 
instructions and which use tables to store temporary data, (instead of, e.g., graph 
representations). The reason is that, later they might be easier to translate to hardware. 
We use a simplified Single-Static Assignment (SSA) format without Phi functions 
[18], and maintaining the original number of the registers added with the number of 
each specific definition. It is simpler as the algorithms are applied over blocks of 
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instructions with a single execution path. Since there is no more than one path at any 
given moment, a use can only be reached by a single definition  which can be kept in 
a table  removing the need for a Phi function. 

4 Experimental Results 

We chose a set of 13 benchmarks which are commonly used in embedded computing 
and which represent a wide range of integer computations. The benchmarks used are: 
adpcm coder and decoder, autocorrelation, bubble sort, discrete cosine transform, dot 
product, fdct, fibonacci, fir, max, pop_cnt, sobel and vecsum. All benchmarks were 
compiled with mb-gcc (the GCC compiler targeting MicroBlaze) using different 
levels of optimization.  The number of instructions executed for the benchmarks range 
from around 500 instructions to 300,000 instructions. 

The Megablock identification uses the maximum size of the sequence of 
SuperBlocks as a parameter. Figure 3 represents the coverage of MegaBlock based 
partitioning with different maximum sequence sizes. Table 1 shows the sizes, in 
number of executed MicroBlaze instructions of the corresponding MegaBlocks.  

 

Figure 3. Portions of the program execution (Y axis) that are covered by MegaBlocks which 
have at least a certain amount of iterations (X axis), according to the maximum number of 
SuperBlocks a MegaBlock can have. Since every block has, at least, one iteration, value 1 on 
the X axis corresponds to 100% of the program execution on the Y axis 

Figure 3 and Table 1 indicate that the higher the maximum sequence size, the more 
coverage we have, but the bigger will be the MegaBlocks. For sequence sizes above 
32 there is no coverage gain for the presented benchmarks. There is a significant 
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difference in the average size of MegaBlocks between a maximum sequence size of 
16 and 32, but the average size in the latter case is still comfortably inside the usual 
size of blocks in approaches which implement small loops [6]. The coverage is an 
average for all benchmarks, when executing the binaries previously generated with 
the O3 flag. Regarding the three partitioning schemes previously presented, the 
results indicate that the MegaBlock with parameter 32 (i.e., considering MegaBlocks 
with up to 32 SuperBlocks) has the potential to represent a significant portion of 
program execution. For the considered benchmarks, on average, MegaBlocks with 10 
or more iterations represent almost 90% of the total execution; MegaBlocks with 100 
or more iterations represent more than 60% of the total execution. Since the 
MegaBlock has a single execution path, mapping this block to hardware may need 
less effort than mapping blocks with more complex control-flow. 

Table 1. MegaBlock sizes with respect to the number of executed instructions. We present 
results when we only take into account MegaBlocks with 2 or more iterations, and MegaBlocks 
with 10 or more iterations. Note that we are not interested in mapping blocks which have only 
one iteration. The weighted average has into account the number of iterations each MegaBlock 
of a particular size has 

Max Sequence 
Size 

Minimum Size Maximum Size Weighted Average 
2 10 2 10 2 10 

1 4 4 106 106 7.5 7.4 
2 4 4 106 106 7.5 7.4 
4 4 4 106 106 7.5 7.4 
8 4 4 783 106 9.0 8.8 
16 4 4 783 309 10.4 10.3 
32 4 4 783 309 26.0 25.6 
64 4 4 783 309 26.0 25.6 

 

 
Figure 4 presents a comparison between several partitioning methods using the 13 

benchmarks. The execution of the programs was partitioned in blocks, and we 
measured, during the program execution, the number of consecutive iterations that 
occurred for each block. Besides the methods presented in Figure 2, we also 
implemented the partitioning method used by the Warp processor [6]. Note, however, 
that this last partitioning method detects complete loops with control-flow, while the 
others are biased, branchless paths. The curves in the figure should be seen relative to 
one another: they are particular for a set of benchmarks, and even the same program 
can present a different number of iterations with a different set of input data. For the 
considered benchmarks, the MegaBlock with a maximum pattern size of 32 is 
consistently above the other considered methods. This means that for the same 
number of iterations, the blocks found by this partitioning method represent a higher 
percentage of the executed code. It was expected that the Warp partitioning method 
could present a higher coverage, since it is covering not only the frequent path of the 
loop but also all the other paths of the loop. It seems that the method used by Warp 
[6] detects only inner loops. As the MegaBlock detects patterns of SuperBlocks, if an 
inner loop can fit in a small number of SuperBlocks and the size of the maximum 
sequence is sufficiently big, the MegaBlock partitioning method will automatically 

Using the MegaBlock to Partition and ... INForum 2010 – 705



consider small unrolled inner loops. The SuperBlock partitioning method follows the 
Warp partitioning method very closely. This is to be expected, since them both use 
backward branches to detect small loops. 

 

Figure 4. Portions of the program execution (Y axis) that are covered by blocks, identified by 
several partitioning techniques, which have at least a certain amount of iterations (X axis). We 
are using MegaBlocks which have, at most, 32 SuperBlocks 

To analyze the potential speedups that can be obtained using our approach, we 
considered a hypothetical large 2D CGRA architecture coupled to the MicroBlaze. 
This CGRA consists of a number of rows, each one with functional units (FUs) and a 
single load/store unit. Each row is executed in one clock cycle. We consider that each 
instruction in the program execution can be mapped to a functional unit. We imposed 
a communication restriction, where FUs from a given row could only communicate 
with the FUs of the row immediately below. When an FU needed data from another 
FU from a distance higher than one row, the data items are communicated through 
other unoccupied FUs using “move” instructions. The only exceptions were data 
inputs, which can be read by any row. We also imposed restrictions for the memory 
operations: at any given row, there is only one load/store operation. This architecture 
is very similar in concept to the DIM architecture [19]. 

The mapping algorithm is based on the algorithm used by Clark et al. to map 
instructions to the CCA [20]. The MegaBlock is read as a stream of instructions, and 
each incoming instruction is placed on the first row which respects the data 
dependencies. After placement of the instruction, the algorithm checks if the 
instruction can receive the required data, and if not, inserts the necessary ‘move’ 
instructions. Additionally, it uses a conservative approach for memory instructions, 
mapping any load operation after the last store operation and respecting the 
occurrence order of store operations and possible side-exits. The speedup figures 
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account for communication overheads between reconfigurations, and assume we need 
one clock-cycle to communicate each live-in and live-out register. 

Figure 5 shows the speedups for each benchmark across several levels of compiler 
optimization, when we use the MegaBlock partitioning method with a maximum 
sequence size of 32 and we move to hardware all blocks which have at least 10 
iterations. As shown in Figure 5, we can achieve speedups from 2 to 4 on average, 
depending on the optimization level of the compiler. Higher optimization levels show 
higher speedups across most benchmarks, which come from a higher coverage rate for 
those optimization levels. This might happen because higher optimization levels can 
represent code in a more efficient format, which can benefit the pattern matching 
(e.g., less SuperBlocks for a given pattern). When there are simultaneously patterns of 
several sizes (e.g., the sequence AAAA has patterns of size one – A – and two – AA), 
since the pattern matching algorithm gives priority to the pattern with the smallest 
size, it is able to extract the smallest common kernel, even when the compiler uses 
optimization techniques which increase the size of the code (e.g., loop unrolling). 

 

Figure 5. Speedups across different levels of compiler optimizations 

5 Related Work 

In the context of embedded systems, there have been several efforts addressing the 
dynamic mapping applications to RPUs. 

Lysecky et al. [6] propose the Warp Processor, a system which includes a GPP, a 
fine-grained RPU and a dynamic mapping module. The dynamic mapping module 
automatically detects critical loops executing on the GPP and maps the corresponding 
binary code to the fine-grained RPU. In a posterior work [21], they use the same 
technique to improve the performance of a MicroBlaze softcore processor. 
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The Configurable Compute Accelerator (CCA) [22] is a special-purpose unit 
designed to be integrated in the pipeline of a GPP and executes a restrict set of Data-
Flow Graphs (DFGs). The CCA cannot be directly accessed through programming, 
and instead, the unit itself has hardware support for binary translation, which 
automatically moves code from the instruction pipeline to the CCA. 

Beck et al. [19] propose the Dynamic Instruction Merging (DIM) technique, a 
binary translation method to transparently map Basic Blocks from a general purpose 
MIPS processor to a coarse-grained reconfigurable array. They tightly couple the 
coarse-grained array to the processor, working as an additional functional unit in the 
execution stage of the pipeline. The objective of this architecture is to accelerate 
embedded systems that need to execute many different kinds of tasks. 

Regarding these three approaches, Warp uses fine-grained reconfigurable hardware 
as the target RPU of dynamic mapping. Comparing to a coarse-grained RPU, it 
trades-off higher flexibility in the circuitry that can be implemented with higher 
mapping overhead. It is also an approach which needs a greater mapping effort, and 
that is not tightly coupled to the processor: both the CCA and the DIM are integrated 
in the pipeline of the processor, while the Warp RPU works as a co-processor. In the 
other hand, this enables the mapping of larger blocks in the Warp Processor. It 
implements complete loops, while the CCA and the DIM exploit ILP inside a small 
number of Basic Blocks. 

6 Conclusions 

This paper presented our approach to dynamically migrate computationally intensive 
sections of program execution from a general purpose processor to a coarse-grained 
reconfigurable array working as a co-processor. We proposed the MegaBlock for 
partitioning and presented experimental results showing a comparison between our 
approach and other common approaches such as the BasicBlock and the SuperBlock. 

Ongoing work is addressing runtime optimizations and studying their impact in the 
final speedups. Future work will address hardware implementations of some of the 
modules needed to implement our dynamic mapping approach in order to quantify 
some of the resultant characteristics.  

Acknowledgments 

This research has been sponsored by the Portuguese Science Foundation (FCT) under 
research grants PTDC/EEA-ELC/70272/2006 and SFRH/BD/36735/2007. 

References 

[1] Z. Guo, W. Najjar, F. Vahid, and K. Vissers, "A quantitative analysis of the 
speedup factors of FPGAs over processors," in FPGA '04: Proceedings of 

708 INForum 2010 João Bispo, João M. P. Cardoso



the 2004 ACM/SIGDA 12th international symposium on Field 
programmable gate arrays, Monterey, California, USA, 2004, pp. 162-170. 

[2] J. Henkel, "A low power hardware/software partitioning approach for core-
based embedded systems," in Annual ACM IEEE Design Automation 
Conference: Proceedings of the 36 th ACM/IEEE conference on Design 
automation: Association for Computing Machinery, Inc, One Astor Plaza, 
1515 Broadway, New York, NY, 10036-5701, USA, 1999. 

[3] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler, A. Klaiber, 
and J. Mattson, "The Transmeta Code Morphing™ Software: using 
speculation, recovery, and adaptive retranslation to address real-life 
challenges," in Proceedings of the international symposium on Code 
generation and optimization: feedback-directed and runtime optimization: 
IEEE Computer Society Washington, DC, USA, 2003, pp. 15-24. 

[4] G. Stitt, R. Lysecky, and F. Vahid, "Dynamic hardware/software 
partitioning: a first approach," in Proceedings of the 40th conference on 
Design automation: ACM New York, NY, USA, 2003, pp. 250-255. 

[5] J. Bispo and J. M. P. Cardoso, "On Identifying Segments of Traces for 
Dynamic Compilation," in 20th International Conference on Field 
Programmable Logic and Applications (FPL’10), PhD Forum, Milano, Italy, 
2010. (accepted) 

[6] R. Lysecky, G. Stitt, and F. Vahid, "Warp Processors," ACM Trans. Des. 
Autom. Electron. Syst., vol. 11, pp. 659-681, 2006. 

[7] S. Hauck and A. DeHon, Reconfigurable Computing: The Theory and 
Practice of FPGA-Based Computation: Morgan Kaufmann/Elsevier, 2008. 

[8] R. Hartenstein, "A decade of reconfigurable computing: a visionary 
retrospective," in Proceedings of the conference on Design, automation and 
test in Europe: IEEE Press Piscataway, NJ, USA, 2001, pp. 642-649. 

[9] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, "ADRES: 
An Architecture with Tightly Coupled VLIW Processor and Coarse-Grained 
Reconfigurable Matrix," in Field-Programmable Logic and Applications, 
2003, pp. 61-70. 

[10] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M. C. 
Filho, "MorphoSys: an integrated reconfigurable system for data-parallel and 
computation-intensive applications," Computers, IEEE Transactions on, vol. 
49, pp. 465-481, 2000. 

[11] Z. A. Ye, A. Moshovos, S. Hauck', and P. Banerjee, "CHIMAERA: a high-
performance architecture with a tightly-coupled reconfigurable functional 
unit," in Computer Architecture, 2000. Proceedings of the 27th International 
Symposium on, 2000, pp. 225-235. 

[12] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and M. 
Weinhardt, "PACT XPP—A Self-Reconfigurable Data Processing 
Architecture," The Journal of Supercomputing, vol. 26, pp. 167-184, 2003. 

[13] K. Bondalapati, P. Diniz, P. Duncan, J. Granacki, M. Hall, R. Jain, and H. 
Ziegler, "DEFACTO: A design environment for adaptive computing 
technology," 1999, pp. 570-578. 

[14] Y. Yankova, G. Kuzmanov, K. Bertels, G. Gaydadjiev, Y. Lu, and S. 
Vassiliadis, "DWARV: DelftWorkbench Automated Reconfigurable VHDL 

Using the MegaBlock to Partition and ... INForum 2010 – 709



Generator," in VHDL generator”, the 17th International Conference on 
Field Programmable Logic and Applications (FPL’07: Citeseer, 2007, pp. 
697-701. 

[15] I. Xilinx, "Microblaze processor reference guide," reference manual, 2006. 
[16] W. M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. 

Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, and G. E. Haab, "The 
superblock: an effective technique for VLIW and superscalar compilation," 
The Journal of Supercomputing, vol. 7, pp. 229-248, 1993. 

[17] V. Bala, E. Duesterwald, and S. Banerjia, "Dynamo: a transparent dynamic 
optimization system," in Proceedings of the ACM SIGPLAN 2000 
conference on Programming language design and implementation 
Vancouver, British Columbia, Canada: ACM, 2000. 

[18] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, "An 
efficient method of computing static single assignment form," in 
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles 
of programming languages Austin, Texas, United States: ACM, 1989. 

[19] A. C. S. Beck, M. B. Rutzig, G. Gaydadjiev, and L. Carro, "Transparent 
reconfigurable acceleration for heterogeneous embedded applications," in 
Proceedings of the conference on Design, automation and test in Europe 
Munich, Germany: ACM, 2008. 

[20] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and K. Flautner, "An 
Architecture Framework for Transparent Instruction Set Customization in 
Embedded Processors," in ISCA '05: Proceedings of the 32nd annual 
international symposium on Computer Architecture, 2005, pp. 272-283. 

[21] R. Lysecky and F. Vahid, "Design and implementation of a MicroBlaze-
based warp processor," ACM Transactions on Embedded Computing 
Systems, vol. 8, 2009. 

[22] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner, "Application-
Specific Processing on a General-Purpose Core via Transparent Instruction 
Set Customization," in Proceedings of the 37th annual IEEE/ACM 
International Symposium on Microarchitecture Portland, Oregon: IEEE 
Computer Society, 2004. 

 
 

710 INForum 2010 João Bispo, João M. P. Cardoso


