
Exploiting AIR Composability towards
Spacecraft Onboard Software Update

Joaquim Rosa, João Craveiro, and José Rufino

∗ Universidade de Lisboa, Faculdade de Ciências, LaSIGE

Abstract. The AIR architecture, developed to meet the interests of the aerospace
industry, defines a partitioned environment for the development of aerospace ap-
plications, adopting the temporal and spatial partitioning (TSP) approach,and
addressing real-time and safety issues. The AIR Technology includes the sup-
port for mode-based schedules, allowing to alternate between scheduling modes
during a mission, according to different mission’s operation plans. Furthermore,
it can be necessary, useful or even primordial having the possibility to host new
applications in the unmanned spacecraft onboard computer platform in execu-
tion time. In this paper we define the foundations of a methodology for onboard
software update, taking advantage of the composability properties of the AIR
architecture, in order to add new features to the mission plan.
Resumo.A arquitectura AIR, desenvolvida para responder aos interesses da in-
dústria aeroespacial, define um ambiente compartimentado para o desenvolvi-
mento de aplicaç̃oes aeroespaciais que adoptem a abordagem de compartimen-
taç̃ao temporal e espacial, discutindo questões de tempo-real e de segurança no
funcionamento. A Tecnologia AIR inclui o suporte para alternar entre vários mo-
dos de escalonamento durante uma missão, de acordo com diferentes planos de
funcionamento. Aĺem disso, pode ser necessário, útil ou mesmo primordial ter
a possibilidade de alojar novas aplicações ou funcionalidades no computador de
bordo do véıculo espacial ñao-tripulado em tempo de execução. Neste artigo defi-
nimos os fundamentos de uma metodologia para actualização de software durante
o funcionamento do sistema, aproveitando as propriedades de componibilidade
da arquitectura AIR, para adicionar novas funcionalidades ao plano damiss̃ao.

1 Introduction

Future space missions aiming long-term durations call for anew generation of space-
crafts. This has driven the interest from the space agenciesand industry partners in the
definition and design of fundamental building blocks for onboard computer platforms,
where the strict demands for reliability, timeliness, safety and security are combined
with an overall requirement to reduce the size, weight and power consumption (SWaP)
of the computational infrastructure.

∗ This work was partially developed within the scope of the European Space Agency Innovation Triangle Initiative pro-
gram, through ESTEC Contract 21217/07/NL/CB, Project AIR-II (ARINC 653 in Space RTOS — Industrial Initiative,
http://air.di.fc.ul.pt). This work was partially supported by Fundação para a Cîencia e a Tecnologia (Portuguese Foun-
dation for Science and Technology), through the Multiannual Funding and CMU-Portugal Programs and the Individual
Doctoral Grant SFRH/BD/60193/2009.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 675–686



The definition of partitioned architectures implementing the logical containment
of applications in criticality domains, named partitions,allows to host different appli-
cations in the same computational infrastructure and enables the fulfilment of those
requirements [14]. The notion of temporal and spatial partitioning (TSP) ensures that
the activities in one partition do not affect the timing of activities in other partitions and
prevents the applications to access the addressing space ofeach other.

The AIR (ARINC 653 In Space Real-Time Operating System) Technology emerges
as a partitioned architecture for aerospace applications [13] applying the TSP concepts.
The AIR architecture allows the execution of both real-timeand generic operating sys-
tems in independent partitions, ensures independence fromthe processing infrastructure
and enables independent verification and validation of software components.

In a partitioned architecture, the several functions of an unmanned spacecraft, such
as Attitude and Orbit Control Subsystem (AOCS), Telemetry,Tracking and Command
(TTC) subsystem, share the same computational resources, being hosted in different
partitions. Partitions are scheduled according to fixed cyclic scheduling tables. The AIR
architecture allows the possibility to dynamically alternate between different schedul-
ing tables. This is useful for the adaptation of partition scheduling to different mission
operating modes and for the accommodation of component failures [13].

During the course of a mission, situations may appear on which it may be useful or
even necessary to introduce new functions or to modify existing ones to deal with unex-
pected events. For example, in the presence of a failure of a specific component, it may
be necessary to change the mission plan by reconfiguring the applications’ scheduling.
An example where such features had an important role was the incident with NASA’s
rover Spirit [4]. In May 2009 the rover was stuck on Mars soft sand terrain and after
some months of trying to release it without success, the NASA’s team decided to change
the mission plan and instead of doing surface exploration, the rover started working as
a stationary research platform, performing functions thatwould not be possible to a
mobile platform, such as detecting oscillations in the planet’s rotation which would
indicate a liquid core.

The modular design of the AIR architecture and the separation of applications in
the temporal and spatial domains enables composability properties which are exploited
in the build and integration process. This means that the several components can be
developed, verified and validated independently. To a software provider, this procedure
does not depend on knowledge of the other partitions and, at most, is aided by guide-
lines to accomplish timeliness requirements. To the systemintegrator, it is assigned the
responsibility of ensuring the accomplishment of system-wide temporal requirements.
This paper addresses how to take advantage of the composability properties of the AIR
architecture to establish the basis of an onboard software update methodology.

The remainder of this paper is organized as follows. In Section 2 we describe the
AIR Technology including the schedulability and composability properties of the ar-
chitecture, and the build and integration process. In Section 3, we describe the require-
ments, the components and the integration process of the onboard software update,
along with the methodology defined. In Section 4, we expose future research directions
and some related work. Finally, Section 5 concludes the paper.

676 INForum 2010 Joaquim Rosa, João Craveiro, and José Rufino



2 AIR Technology Design

The AIR Technology design was original prompted by the interest of the European
Space Agency (ESA) in the adoption of TSP concepts to the space industry. The AIR
Technology is currently evolving towards an industrial product definition by improving
and completing its architecture definition and engineeringprocess [12,13].

2.1 System Architecture

The AIR architecture, illustrated in Fig. 1, allows applications to be executed in logical
containers called partitions. At the application softwarelayer (Fig. 1) applications con-
sist in general of one or more processes, which make use of theservices provided by
anApplication Executive(APEX) interface, as defined in ARINC 653 specification [1].
In addition, a system partition may invoke also specific functions provided by the core
software layer, thus being allowed to bypass the standard APEX interface (Fig. 1).

Fig. 1. AIR Architecture and Integration of Partition Operating Systems

The core software layer provides a (real-time or generic) operating system kernel
per partition herein referred to asPartition Operating System(POS). TheAIR POS
Adaptation Layer(PAL) [6] wraps each POS, hiding its particularities from the AIR
architecture components.

The AIR architecture implements the advanced notion of portable APEX, meaning
portability between the different POSs is built on the availability of PAL related func-
tions and on the APEX core layer, which may exploit the POSIX application program-
ming interface available on most (real-time) operating systems. The APEX provides the
required partition and process management services, time management services, intra-
partition and inter-partition communication services andhealth monitoring services.

The partition management, inter-partition communicationand health monitoring
services rely additionally on theAIR Partition Management Kernel(PMK) service inter-
face. The AIR PMK bears the most responsibility in ensuring robust TSP. The temporal
partitioning is achieved by scheduling the partitions according to a given scheduling

Exploiting AIR Composability ... INForum 2010 – 677



table, repeated cyclically over amajor time frame(MTF). The spatial partitioning is
ensured by a high-level abstraction layer which provides a mapping between AIR pro-
tection requirements and the hardware’s addressing space protection mechanisms.

The AIR architecture also incorporates aHealth Monitor(HM) component to han-
dle hardware and software errors, containing them within their domains of occurrence.

2.2 Temporal and Spatial Partitioning

To ensure the safety and timeliness of mission-critical systems and minimize the draw-
backs arising from the integration of multiple functions sharing the same hardware re-
sources, the design of AIR Technology proposes the architectural principle of robust
partitioning. With partitioning we achieve two important properties. The first concerns
containing the occurrence of faults to the context where they appear, and thus not in-
terfering with the system overall behaviour. The other property has to do with system
composabilityenabling the independent verification and validation of software compo-
nents that also facilitates the overall certification process, fundamental for space-borne
vehicles.

The AIR architecture has been designed to fulfil the requirements for robust TSP.
Temporal partitioning ensures that the activities processed in one partition do not affect
the real-time requisites of the functions running in other partition. Space partitioning
relies on having separate addressing spaces and thus not allowing an application to
access the memory and input/output (I/O) spaces of a different partition.

2.3 Designing for Schedulability

The original ARINC 653 [1] notion of a single fixed partition scheduling table, defined
offline, is limited in terms of timeliness control and fault tolerance. The design of the
AIR architecture incorporates the advanced notion ofmode-based partition schedules,
allowing temporal requirements to vary according to the mission’s phase or mode of
operation [13,2].

An AIR-based system includes a set of partition schedules among which it can
switch during its operation. A schedule switch can be ordered by a specific partition
designed and allowed to do so, through the invocation of an APEX primitive. This can,
in turn, result from either a command issued from ground control or from reacting to
environmental conditions as obtained by the spacecraft’s sensors. The order will not
come into immediate effect, but rather applied at the end of the current MTF.

The AIR Partition Scheduler component is responsible for guaranteeing that the
processing resources are, at every time, assigned to the correct partition and for mak-
ing schedule switch effective at the end of the respective MTF. Its implementation is
described in pseudocode in Algorithm 1. This is executed at every system clock tick,
inside the respective interrupt service routine. The implementation of this algorithm is
optimized to introduce little overhead to such routine.

The first verification to be made is whether the current instant is a partition preemp-
tion point (line 2). In case it is not, the execution of the partition scheduler is over; this
is both the best case and the most frequent one. If it is a partition preemption point, we

678 INForum 2010 Joaquim Rosa, João Craveiro, and José Rufino



Algorithm 1 AIR Partition Scheduler featuring mode-based schedules
1: ticks ← ticks + 1 ⊲ ticks is the global system clock tick counter
2: if schedulescurrentSchedule .tabletableIterator .tick =

(ticks − lastScheduleSwitch) mod schedulescurrentSchedule .mtf then
3: if currentSchedule 6= nextSchedule ∧

(ticks − lastScheduleSwitch) mod schedulescurrentSchedule .mtf = 0 then
4: currentSchedule ← nextSchedule
5: lastScheduleSwitch ← ticks
6: tableIterator ← 0
7: end if
8: heirPartition← schedulescurrentSchedule .tabletableIterator .partition
9: tableIterator ← (tableIterator + 1) mod

schedulescurrentSchedule .numberPartitionPreemptionPoints
10: end if

then verify (line 3) if there is a pending scheduling switch to be applied and if the current
instant is also the end of the MTF. If these conditions apply,then a different partition
scheduling table will be used henceforth (line 4). The partition which will hold the pro-
cessing resources until the next preemption point, dubbed the heir partition, is obtained
from the partition scheduling table in use (line 8) and the AIR Partition Scheduler will
now be set to expect the next partition preemption point (line 9).

2.4 Designing for Composability

The design of the AIR architecture and the use of a TSP approach enables thecom-
posability propertiesof AIR-based systems, in both time and space domains. The use
of a fixed cyclic partition scheduling scheme dictates that the timeliness guarantees of
each partition are defined by the processing time assigned toeach partition. In the spa-
tial domain the composability properties ensure that the partition’s memory and I/O
resources are protected against unauthorized access from other partitions. The compos-
ability properties are thus inherent the AIR modular architecture.

The modularity of the AIR architecture design and of its build and integration pro-
cess further enables the composability of AIR-based systems [5]. This means, on a first
approach, that the several components that may compose sucha system can be devel-
oped, verified and validated independently. This eases certification efforts, since only
modified modules need to be reevaluated. It is also a fundamental basis for onboard
software update as proposed in this paper.

From the point of view of one partition’s provider, this further signifies that develop-
ment and validation does not depend on knowledge of the otherpartitions (individually
or as a whole). At most, the development of one partition should be aided by a set of
guidelines for its applicability to the target TSP systems in general. The system integra-
tor is responsible for guaranteeing a correct partition scheduling, so that partitions and
the system as a whole meet their timing requisites [5].

Exploiting AIR Composability ... INForum 2010 – 679



2.5 Build and Integration Process

Because of the particularities of the architecture, the software build and integration
process needs to differ from the canonical application build process, as provided by
standard compilers and linkers. This process is pictured inFig. 2 and it will now be
described in detail.

(a) Software build by partition application
developers

(b) System integration

Fig. 2.AIR build and integration process

Partition build process

The first stage concerns building each partition independently (Fig. 2a). In the typical
scenario, the applications to be executed in the context of apartition, the APEX library,
and the underlying POS libraries (wrapped by the AIR PAL) maybe provided by dif-
ferent teams or providers. Therefore, the build process is tailored to expect these inde-
pendent object files, and link them together to produce an object file with no unresolved
symbols but including relocation information (to allow linking with the remaining par-
titions). Although the AIR PAL also invokes the AIR PMK (which symbols are as of
yet undefined), these interactions are wrapped using data structures to reference the ap-
propriate primitives, which the AIR PMK will register by executing code generated at
system integration time with the assistance of a specific AIRtool.

The introduction of a scheduling analysis phase in the application developers’ soft-
ware production chain [5] takes advantage of the composability properties to provide
independent schedulability analysis. Application developers can perform this analysis
using the timing requirements (period, worst-case execution time, deadline, etc.) of
their applications’ processes. This information can be either estimated, or tentatively
determined through static code analysis [11].

680 INForum 2010 Joaquim Rosa, João Craveiro, and José Rufino



System integration

The system integration process (Fig. 2b) receives input (partition object files) from po-
tentially different teams or providers. Since all partitions will include the common in-
terface provided by the AIR PAL and AIR APEX libraries, the various partitions’ object
files will have symbol name collisions; partitions running the same POS or POSs pro-
viding the same standardized interfaces (e. g., POSIX) haveadditional name collisions.
Therefore, linking these objects will require previous preprocessing. This preprocess-
ing can be in the form of atag filter utility which prefixes all symbols and calls in each
partition’s object files with unique prefixes (e. g.,P1, P2, etc.). This process can be
further optimized by automating the generation of partition prefixes, namely deriving
them from the configuration file.

The partition objects can now be linked with the AIR PMK and the configuration
object. This configuration object is derived by compiling C source code files, which
in turn have been converted from XML (Extensible Markup Language) configuration
files. The use of XML for the configuration file is motivated by the overall intention
to comply, up to a certain degree, with the ARINC 653 specification [1]. Besides the
parameters translated from these XML files (such as partition scheduling tables, ad-
dressing spaces, and inter-partition communication portsand channels), configuration
objects include routines for the AIR PMK to register the adequate primitives in the AIR
PAL structures. This linking step produces the system object file, from which in turn
one can generate the most adequate deployment format for thetarget platform. In the
system integration phase, scheduling analysis capabilities shall be introduced in relation
with the generation of a system-wide configuration [5].

3 Onboard Software Update

We establish the foundations of a methodology to allow including new features on a
spacecraft during a mission. The challenges we face are related to maintaining the real-
time and safety guarantees defined for the original mission.Adding a new application
to the system should be performed in a way that does not affectthe overall behaviour
of the system, including the timeliness of the already running applications.

3.1 Defining Requirements and Components

To support the upload of modified software components to the spacecraft’s onboard
computer platform, we assume the existence of a (secure) communication channel and
a data communication protocol. The communication functions aboard the spacecraft are
responsible for dealing with the reception of the data sent by the ground station and for
performing online processing of the transferred data stream. Handling the update of on-
board software components implies: the identification of the components being updated
(partition software components, PSTs sets); the allocation of the required memory re-
sources; the functional integration of each component in the operation of the onboard
computer platform. The onboard software update handler shall be implemented as an
activity (process/thread) in the domain of the (system) partition associated to the com-
munication functions.

Exploiting AIR Composability ... INForum 2010 – 681



To the partition hosting the communication functions it is ensured a given time
processing budget. However, we assume that software updateactivities are performed
on a best-effort basis, thus with minimal impact on the timeliness of the communication
functions. This ensures the safety of onboard software update since it will not interfere
with other communication functions, namely with the detection and the identification
of ground commands.

To support the introduction of onboard software update operations, the original
APEX interface must be extended with the services presentedin Table 1. However,
only the APEX interface of the partition hosting the onboardsoftware update functions
needs to be extended.

Table 1.Extended APEX services for Onboard Software Update

Primitive Short description

XAPEX MALLOC Allocate memory from the partition’s free memory pool

XAPEX MFREE Deallocate a memory zone for the partition’s free memory pool

XAPEX MCLAIM Claim memory from a specified partition for the partition’s free memory
pool

XAPEX PUPDATE Apply partition software components update

XAPEX PSTUPDATE Apply system partition scheduling table (PST) set update

3.2 Integration on Spacecraft Onboard Platform

We assume the component dedicated to onboard software update, the Update Handler,
is defined as a process/thread integrated in the partition responsible for the communi-
cation functions, as illustrated in the simplified spacecraft architecture [8], pictured in
Fig. 3. This partition also includes a command detection function. Commands issued
from ground mission control will be passed to the TTC througha inter-partition com-
munication channel. One example is a ground command to change a PST.

Fig. 3.Spacecraft onboard platform

682 INForum 2010 Joaquim Rosa, João Craveiro, and José Rufino



3.3 Designing an Onboard Software Update Methodology

The design of a methodology for onboard software update in AIR-based systems has
evolved from the build and integration process. This methodology is extended to cope
with the modification of software components in order to upgrade the original mission.

This may include the modification of application software, partition or system wide
configurations or simple the definition of a new set of partition scheduling tables (PSTs).
The complete methodology consists in a four-step procedureas follows:

STEP 1: Offline Verification and Validation of Software Modifications

The modifications to the software components of a given mission may include the re-
design of the applications associated with a given partition (e.g., payload functions)
and the definition of a new set of PSTs. The linking of the modified partition with the
objects of other partitions is made on the logical address space in order to guarantee
that the mapping of unmodified partitions remains unchanged. This way, only the up-
dated components need to be uploaded to the spacecraft onboard computer platform.
This process is illustrated at the left side of Fig. 4 and may involve scheduling analysis
of the partition. The update of the mission may simply involve the modification of a
given PSTs set. In this case, the schedulability analysis and the generation of a new
configuration and PSTs set is only performed at the system integration stage.

This corresponds to the AIR original verification and validation process of software
components performed on the ground, before sending the applications to the spacecraft,
and consists on applying the build and integration process to ensure that the safety and
the TSP requirements would not be compromised with the introduction of new com-
ponents on the system. Due to the composability properties of the AIR architecture,
the build process may be done by the software development teams or providers inde-
pendently. Each team or provider, along with the new application, delivers the partition
timing requirements, that altogether will form the partition scheduling tables (PSTs),
used by the AIR PMK Partition Scheduler on the target system.

The output produced in this step is the system object file, resulted from the integra-
tion of all the built objects potentially from various developers.

STEP 2: Extraction of Updated Components

After having the result of the build and integration processdone on the previous step,
there is the need to identify which components need to be uploaded to the spacecraft
onboard computer platform. The final goal of this step is to identify those components,
extract them from the complete system object file and create anew object composed
only by the components to be uploaded to the spacecraft onboard computer. Also, it is
necessary to build the object file according to a specific format, in order to the Update
Handler be able to recognize the data received and perform its handling.

Like the previous one, this step is made on the ground. It requires a special-purpose
toolset to perform the extraction and the formatting functions. The extraction and the
formatting actions are represented by the shaded area at theright side of Fig. 4.

Finally, the updated object will be uploaded to the spacecraft using the communica-
tion facilities to exchange data between the ground stations and the space vehicles.

Exploiting AIR Composability ... INForum 2010 – 683



Fig. 4. Integration of an AIR-based system extended with the extraction and formatting of the
updated components

STEP 3: Transfer of Updated Components

In the spacecraft, the application and PSTs uploaded in a single object file are received
by the partition running the application responsible for the communication operations.
Complementarily to the formatting done in the Step 2, when the modified components
were formatted into an object file, the Update Handler look into the uploaded object file
and separate the application of the PSTs.

We assume the existence of a component which will provide therequired commu-
nication facilities between the spacecraft and the ground stations.

Upon reception of partition software components the UpdateHandler will invoke
the XAPEX MALLOC primitive to allocate the required memory. We assumethat the
available memory is large enough to contain the updated application. The Update Han-
dler may also invoke the XAPEXMCLAIM primitive to claim the memory used by the
partition being updated, followed by the XAPEXPUPDATE primitive which assigns
the updated software components to the specified partition (Table 1). Finally, upon re-
ception of a PSTs set, the Update Handler will invoke the XAPEX PSTUPDATE prim-
itive which will apply the PST set update.

STEP 4: Activation of Updated Components

To guarantee that applying the updated PSTs set does not compromise the safety of the
whole mission, the XAPEXPSTUPDATE (Table 1) will perform a blocking wait until
the proper conditions are met, as described in Algorithm 2. The first condition for safe
application of a new set of PSTs is that the currently selected schedule is identical in
both the existing and the updated PSTs sets. The second condition is that a schedule

684 INForum 2010 Joaquim Rosa, João Craveiro, and José Rufino



switch to a PST which has been modified in the updated set is notpending. The goal
of these conditions is to ensure that the operation conditions that the system expects
and/or the criteria by which the system or a ground operator has chosen the current or
next schedule are not voided.

Algorithm 2 XAPEX PSTUPDATE primitive
1: while schedulescurrentSchedule 6≡ newSchedulescurrentSchedule ∨

schedulesnextSchedule 6≡ newSchedulesnextSchedule do ⊲ Wait (block)
2: end while
3: SWAP(schedules,newSchedules)

After the new PSTs have been activated, the uploaded partition application can now
be scheduled, a situation which may occur upon receiving a schedule switch command
from the ground mission control, as illustrated in Fig. 3.

4 Future Developments and Related Work

The importance of a strong verification and validation process in critical systems is
addressed in [3] and the relevance of a safety-policy validation at binary level is high-
lighted in [10]. The problem of dependable online upgrade ofreal-time software was
approached in [16].

The methodology established in this paper for onboard software update can be fur-
ther extended to cope with the upgrade of critical software components that must be
performed without interruption, such as those ensuring AOCS, TTC and communica-
tion functions. This implies a new set of challenges to be addressed specifically in the
steps 3 (transfer of updated components) and 4 (activation of updated components).
Although driven by the specific requirements of aerospace applications, these develop-
ments may benefit from the work performed on dynamic softwareupdate [7,9,15,17].

Solutions for dynamic software update on real-time systemsrequiring the identifi-
cation of specific points in time for components’ update is discussed in [17], while [15]
makes no presumption about new application’s periods and execution times.

The results achieved in [7] shown that the real-time and fault-tolerant requirements
of avionics systems could be accomplish even during a dynamic reconfiguration of the
system due to component failures. An approach for dynamic update of applications in
C-like languages is provided in [9] and focuses on the updateof the code and data at
predetermined times, but does not specify real-time requirements.

5 Conclusion

In this paper we described the AIR Technology, towards buildaerospace applications
to temporal and spatial partitioning systems. Motivated bythe need to add new applica-
tions in the system during a mission, due to changing its plans, we defined the onboard
software update requirements and discussed how to take advantage of the composability

Exploiting AIR Composability ... INForum 2010 – 685



inherent to the build and integration process of the AIR-based systems. We establish
a methodology for onboard software update, that exploits the composability properties
of the AIR architecture, allowing independent verificationand validation. The onboard
software update methodology is based on the redefinition of the original space mission
and it is supported on a specific toolset for the extraction ofthe updated software com-
ponents, to be uploaded to the spacecraft onboard computer.The methodology can be
further extended to support dynamic update of critical software components.

References

1. AEEC (Airlines Electronic Engineering Committee): Avionics application software standard
interface, part 1 - required services. ARINC Specification 653P1-2 (Mar 2006)

2. AEEC (Airlines Electronic Engineering Committee): Avionics application software standard
interface, part 2 - extended services. ARINC Specification 653P2-1 (Dec 2008)

3. Bahill, A.T., Henderson, S.J.: Requirements development, verification, and validation exhib-
ited in famous failures. Systems Engineering 8(1), 1–14 (2005)

4. Brown, D., Webster, G.: Now a Stationary Research Platform, NASA’s
Mars Rover Spirit Starts a New Chapter in Red Planet Scientific Studies.
http://www.nasa.gov/missionpages/mer/news/mer20100126.html (Jan 2010)

5. Craveiro, J., Rufino, J.: Schedulability analysis in partitioned systemsfor aerospace avionics.
In: Proc. 15th IEEE Int. Conf. on Emerging Technologies and FactoryAutomation (ETFA
2010). Bilbao, Spain (Sep 2010)

6. Craveiro, J., Rufino, J., Schoofs, T., Windsor, J.: Flexible operating system integration in par-
titioned aerospace systems. In: Actas do INForum - Simpósio de Inforḿatica 2009. Lisboa,
Portugal (Sep 2009)

7. Ellis, S.M.: Dynamic software reconfiguration for fault-tolerant real-time avionic systems.
Microprocessors and Microsystems 21, 29–39 (1997)

8. Fortescue, P.W., Stark, J.P.W., Swinerd, G. (eds.): Spacecraft Systems Engineering, 3rd Edi-
tion. Wiley (2003)

9. Hicks, M.: Dynamic software updating. ACM Transactions on Programming Languages and
Systems 27(6), 1049–1096 (Nov 2005)

10. Necula, G.C., Lee, P.: Safe kernel extensions without run-time checking. In: Proc. USENIX
2nd Symposium on Operating Systems Design and Implementation. pp. 28–31 (1996)

11. Pushner, P., Koza, C.: Calculating the maximum execution time of real-time programs. Jour-
nal of Real-Time Systems 1, 160–176 (Sep 1989)

12. Rufino, J., Craveiro, J., Schoofs, T., Tatibana, C., Windsor,J.: AIR Technology: a step
towards ARINC 653 in space. In: Proceedings of the DASIA 2009 “DAtaSystems In
Aerospace” Conference. EUROSPACE, Istanbul, Turkey (May 2009)

13. Rufino, J., Craveiro, J., Verissimo, P.: Architecting robustnessand timeliness in a new gen-
eration of aerospace systems. In: Casimiro, A., de Lemos, R., Gacek, C. (eds.) Architecting
Dependable Systems 7. LNCS, Springer, Berlin Heidelberg (2010), accepted for publication

14. Rushby, J.: Partitioning in avionics architectures: Requirements, mechanisms and assurance.
Tech. Rep. NASA CR-1999-209347, SRI International, California, USA (Jun 1999)

15. Seifzadeh, H., Kazem, A., Kargahi, M., Movaghar, A.: A method for dynamic software up-
dating in real-time systems. In: Proceedings of the 8th IEEE/ACIS International Conference
on Computer and Information Science. Shanghai, PR China (Jun 2009)

16. Sha, L.: Dependable system upgrade. In: RTSS ’98: Proceedings of the IEEE Real-Time
Systems Symposium. p. 440. IEEE Computer Society, Washington, DC, USA (1998)

17. Wahler, M., Ritcher, S., Oriol, M.: Dynamic software updates for real-time systems. In: Pro-
ceedings of the HotSWUp’09. Orlando, Florida, USA (Oct 2009)

686 INForum 2010 Joaquim Rosa, João Craveiro, and José Rufino


